Toward Gas-Phase Thermometry Using Pure-Rotational Impulsive Stimulated Raman Scattering Spectroscopy with a Low-Energy Femtosecond Oscillator
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, S.; Gord, J.R.; Patnaik, A.K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows. Prog. Energy Combust. Sci. 2010, 36, 280–306. [Google Scholar] [CrossRef]
- Miller, J.D.; Roy, S.; Slipchenko, M.N.; Gord, J.R.; Meyer, T.R. Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering. Opt. Express 2011, 19, 15627–15640. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, H.U.; Miller, J.D.; Slipchenko, M.N.; Meyer, T.R.; Prince, B.D.; Roy, S.; Gord, J.R. Time- and frequency-dependent model of time-resolved coherent anti-Stokes Raman scattering (CARS) with a picosecond-duration probe pulse. J. Chem. Phys. 2014, 140, 024316. [Google Scholar] [CrossRef] [PubMed]
- Kearney, S.P. Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames. Combust. Flame 2015, 162, 1748–1758. [Google Scholar] [CrossRef]
- Kearney, S.P.; Danehy, P.M. Pressure measurements using hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering. Opt. Lett. 2015, 40, 4082–4085. [Google Scholar] [CrossRef]
- Richardson, D.R.; Stauffer, H.U.; Roy, S.; Gord, J.R. Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry. Appl. Opt. 2017, 56, E37–E49. [Google Scholar] [CrossRef]
- Nibbering, E.; Grillon, G.; Franco, M.A.; Prade, B.S.; Mysyrowicz, A. Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. J. Opt. Soc. Am. B 1997, 14, 650–660. [Google Scholar] [CrossRef]
- Ripoche, J.F.; Grillon, G.; Prade, B.; Franco, M.; Nibbering, E.; Lange, R.; Mysyrowicz, A. Determination of the time dependence of n2 in air. Opt. Commun. 1997, 135, 310–314. [Google Scholar] [CrossRef]
- Bartels, R.A.; Oron, D.; Rigneault, H. Low frequency coherent Raman spectroscopy. J. Phys. Photonics 2021, 3, 042004. [Google Scholar] [CrossRef]
- Rigneault, H.; Berto, P. Coherent Raman light matter interaction processes. APL Photonics 2018, 3, 091101. [Google Scholar] [CrossRef]
- Yan, Y.-X.; Gamble, E.B.; Nelson, K.A. Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications. J. Chem. Phys. 1985, 83, 5391–5399. [Google Scholar] [CrossRef]
- Raanan, D.; Ren, L.; Oron, D.; Silberberg, Y. Impulsive Raman spectroscopy via precision measurement of frequency shift with low energy excitation. Opt. Lett. 2018, 43, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Wrzesinski, P.; Pestov, D.; Gunaratne, T.; Dantus, M.; Gord, J.R. Single-beam coherent anti-Stokes Raman scattering spectroscopy of using a shaped 7 fs laser pulse. Appl. Phys. Lett. 2009, 95, 074102. [Google Scholar] [CrossRef]
- Roy, S.; Wrzesinski, P.J.; Pestov, D.; Dantus, M.; Gord, J.R. Single-beam coherent anti-Stokes Raman scattering (CARS) spectroscopy of gas-phase CO2 via phase and polarization shaping of a broadband continuum. J. Raman Spectrosc. 2010, 41, 1194–1199. [Google Scholar] [CrossRef]
- Peterson, W.; Hiramatsu, K.; Goda, K. Sagnac-enhanced impulsive stimulated Raman scattering for highly sensitive low-frequency Raman spectroscopy. Opt. Lett. 2019, 44, 5282–5285. [Google Scholar] [CrossRef]
- Peterson, W.; Gala de Pablo, J.; Lindley, M.; Hiramatsu, K.; Goda, K. Ultrafast impulsive Raman spectroscopy across the terahertz–fingerprint region. Adv. Photon. 2022, 4, 016003. [Google Scholar] [CrossRef]
- Falconieri, M.; Gagliardi, S.; Rondino, F.; Marrocco, M.; Kulatilaka, W.D. High-sensitivity impulsive stimulated Raman spectrometer with fast data acquisition. J. Raman Spectrosc. 2021, 52, 664–669. [Google Scholar] [CrossRef]
- Raanan, D.; Audier, X.; Shivkumar, S.; Asher, M.; Menahem, M.; Yaffe, O.; Forget, N.; Rigneault, H.; Oron, D. Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation. Opt. Lett. 2019, 44, 5153–5156. [Google Scholar] [CrossRef]
- Wahlstrand, J.K.; Merlin, R.; Li, X.; Cundiff, S.T.; Martinez, O.E. Impulsive stimulated Raman scattering: Comparison between phase-sensitive and spectrally filtered techniques. Opt. Lett. 2005, 30, 926–928. [Google Scholar] [CrossRef]
- Lin, C.H.; Heritage, J.P.; Gustafson, T.K.; Chiao, R.Y.; McTague, J.P. Birefringence arising from the reorientation of the polarizability anisotropy of molecules in collisionless gases. Phys. Rev. A 1976, 13, 813–829. [Google Scholar] [CrossRef]
- Morgen, M.; Price, W.; Hunziker, L.; Ludowise, P.; Blackwell, M.; Chen, Y. Femtosecond Raman-induced polarization spectroscopy studies of rotational coherence in O2, N2 and CO2. Chem. Phys. Lett. 1993, 209, 1–9. [Google Scholar] [CrossRef]
- Sarkisov, O.M.; Tovbin, D.G.; Lozovoy, V.V.; Gostev, F.E.; Titov, A.A.; Antipin, S.A.; Umanskiy, S.Y. Femtosecond Raman-induced polarisation spectroscopy of coherent rotational wave packets: D2, N2 and NO2. Chem. Phys. Lett. 1999, 303, 458–466. [Google Scholar] [CrossRef]
- Hertz, E.; Lavorel, B.; Faucher, O.; Chaux, R. Femtosecond polarization spectroscopy in molecular gas mixtures: Macroscopic interference and concentration measurements. J. Chem. Phys. 2000, 113, 6629–6633. [Google Scholar] [CrossRef]
- Tran, H.; Lavorel, B.; Faucher, O.; Saint-Loup, R.; Joubert, P. Temperature measurement in gas mixtures by femtosecond Raman-induced polarization spectroscopy. J. Raman Spectrosc. 2003, 34, 994–998. [Google Scholar] [CrossRef]
- Reichert, M.; Zhao, P.; Reed, J.M.; Ensley, T.R.; Hagan, D.J.; Van Stryland, E.W. Beam deflection measurement of bound electronic and rotational nonlinear refraction in molecular gases. Opt. Express 2015, 23, 22224–22237. [Google Scholar] [CrossRef]
- Cai, H.; Wu, J.; Couairon, A.; Zeng, H. Spectral modulation of femtosecond laser pulse induced by molecular alignment revivals. Opt. Lett. 2009, 34, 827–829. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, X.; Wu, J.; Dinga, L.; Zeng, H. Spectral modulation of ultraviolet femtosecond laser pulse by molecular alignment of CO2, O2, and N2. Appl. Phys. Lett. 2010, 96, 031105. [Google Scholar] [CrossRef]
- Wilson, J.W.; Bartels, R.A. Rapid Birefringent Delay Scanning for Coherent Multiphoton Impulsive Raman Pump–Probe Spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 130–139. [Google Scholar] [CrossRef]
- Wang, C.H.; Jones, D.R.; Christensen, D.H. Studies of molecular motions of CH2Br2 in the liquid state by depolarized Rayleigh and Raman scattering. J. Chem. Phys. 1976, 64, 2820–2825. [Google Scholar] [CrossRef]
- Kohmoto, T.; Fukuda, Y.; Kunitomo, M. Raman-induced rotational coherence in gaseous molecules observed by the ultrafast polarization spectroscopy. Phys. Lett. A 2000, 277, 233–239. [Google Scholar] [CrossRef]
- Tamamitsu, M.; Sakaki, Y.; Nakamura, T.; Podagatlapalli, G.K.; Ideguchi, T.; Goda, K. Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line. Vib. Spectrosc. 2017, 91, 163–169. [Google Scholar] [CrossRef][Green Version]
- Herzberg, G. Spectra of Diatomic Molecules. In Molecular Spectra and Molecular Structure; D. Van Nostrand Reinhold: Princeton, NJ, USA, 1950; Volume 1. [Google Scholar]
- Knopp, G.; Beaud, P.; Radi, P.; Tulej, M.; Bougie, B.; Cannavo, D.; Gerber, T. Pressure-dependent N2 Q-branch fs-CARS measurements. J. Raman Spectrosc. 2002, 33, 861–865. [Google Scholar] [CrossRef]
- Knopp, G.; Radi, P.; Tulej, M.; Gerber, T.; Beaud, P. Collision induced rotational energy transfer probed by time-resolved coherent anti-Stokes Raman scattering. J. Chem. Phys. 2003, 118, 8223–8233. [Google Scholar] [CrossRef]
- Linne, M.; Mecker, N.T.; Kliewer, C.J.; Escofet-Martin, D.; Peterson, B. Revisiting N2-N2 collisional linewidth models for S-branch rotational Raman scattering. Combust. Flame 2022, 243, 111928. [Google Scholar] [CrossRef]
- Hellwarth, R.W.; Cherlow, J.; Yang, T. Origin and frequency dependence of nonlinear optical susceptibilities of glasses. Phys. Rev. B 1975, 11, 964–967. [Google Scholar] [CrossRef]
- Zheltikov, A.M. An analytical model of the rotational Raman response function of molecular gases. J. Raman Spectrosc. 2008, 39, 756–765. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falconieri, M.; Tedeschi, D.; Gagliardi, S.; Rondino, F.; Marrocco, M.; Kulatilaka, W.D. Toward Gas-Phase Thermometry Using Pure-Rotational Impulsive Stimulated Raman Scattering Spectroscopy with a Low-Energy Femtosecond Oscillator. Appl. Sci. 2022, 12, 12710. https://doi.org/10.3390/app122412710
Falconieri M, Tedeschi D, Gagliardi S, Rondino F, Marrocco M, Kulatilaka WD. Toward Gas-Phase Thermometry Using Pure-Rotational Impulsive Stimulated Raman Scattering Spectroscopy with a Low-Energy Femtosecond Oscillator. Applied Sciences. 2022; 12(24):12710. https://doi.org/10.3390/app122412710
Chicago/Turabian StyleFalconieri, Mauro, Davide Tedeschi, Serena Gagliardi, Flaminia Rondino, Michele Marrocco, and Waruna D. Kulatilaka. 2022. "Toward Gas-Phase Thermometry Using Pure-Rotational Impulsive Stimulated Raman Scattering Spectroscopy with a Low-Energy Femtosecond Oscillator" Applied Sciences 12, no. 24: 12710. https://doi.org/10.3390/app122412710
APA StyleFalconieri, M., Tedeschi, D., Gagliardi, S., Rondino, F., Marrocco, M., & Kulatilaka, W. D. (2022). Toward Gas-Phase Thermometry Using Pure-Rotational Impulsive Stimulated Raman Scattering Spectroscopy with a Low-Energy Femtosecond Oscillator. Applied Sciences, 12(24), 12710. https://doi.org/10.3390/app122412710