Advances in Femtosecond Coherent Anti-Stokes Raman Scattering for Thermometry
Abstract
:1. Introduction
2. Ultrashort Pulse CARS Spectroscopy Temperature Measurement
2.1. Femtosecond Time-Resolved CARS Spectroscopy
2.2. Femtosecond Single-Pulse CARS Technology
2.2.1. Femtosecond Chirped Probe Pulse CARS
2.2.2. Hybrid Femtosecond/Picosecond CARS Spectroscopy for Temperature Measurement
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabet, K.N.; Patton, R.A.; Jiang, N.; Lempert, W.R.; Sutton, J.A. High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system. Appl. Phys. B 2012, 106, 569–575. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, H.; Wei, H.; Tan, Y.; Li, Y. Improved opposition-based self-adaptive differential evolution algorithm for vibrational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering thermometry. Appl. Opt. 2022, 61, 4500–4508. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Cai, W.; Liu, B.; Zhu, S.; Zhou, B.; Sui, R.; Lu, Q. Experimental detection of two-dimensional temperature distribution in Rocket-Based Combined Cycle combustion chamber using multispectral imaging processing. Fuel 2023, 333, 126391. [Google Scholar] [CrossRef]
- Zheng, S.; Cai, W.; Sui, R.; Luo, Z.; Lu, Q. In-situ measurements of temperature and emissivity during MSW combustion using spectral analysis and multispectral imaging processing. Fuel 2022, 323, 124328. [Google Scholar] [CrossRef]
- Goldenstein, C.S.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K. Infrared laser-absorption sensing for combustion gases. Prog. Energ. Combust. 2017, 60, 132–176. [Google Scholar] [CrossRef]
- Nair, A.P.; Lee, D.D.; Pineda, D.I.; Kriesel, J.; Hargus, W.A.; Bennewitz, J.W.; Danczyk, S.A.; Spearrin, R.M. MHz laser absorption spectroscopy via diplexed RF modulation for pressure, temperature, and species in rotating detonation rocket flows. Appl. Phys. B 2020, 126, 138. [Google Scholar] [CrossRef]
- Braun, J.; Saracoglu, B.H.; Paniagua, G. Unsteady Performance of Rotating Detonation Engines with Different Exhaust Nozzles. J. Propul. Power 2017, 33, 121–130. [Google Scholar] [CrossRef]
- Grib, S.W.; Fugger, C.A.; Hsu, P.S.; Jiang, N.; Roy, S.; Schumaker, S.A. Two-dimensional temperature in a detonation channel using two-color OH planar laser-induced fluorescence thermometry. Combust. Flame 2021, 228, 259–276. [Google Scholar] [CrossRef]
- Retter, J.E.; Koll, M.; Dedic, C.E.; Danehy, P.M.; Richardson, D.R.; Kearney, S.P. Hybrid time-frequency domain dual-probe coherent anti-Stokes Raman scattering for simultaneous temperature and pressure measurements in compressible flows via spectral fitting. Appl. Opt. 2023, 62, 50–62. [Google Scholar] [CrossRef]
- Wang, G.; Tang, H.; Yang, C.; Magnotti, G.; Roberts, W.L.; Guiberti, T.F. Quantitative laser-induced fluorescence of NO in ammonia-hydrogen-nitrogen turbulent jet flames at elevated pressure. Proc. Combust. Inst. 2023, 39, 1465–1474. [Google Scholar] [CrossRef]
- Luers, A.; Salhlberg, A.-L.; Hochgreb, S.; Ewart, P. Flame thermometry using laser-induced-grating spectroscopy of nitric oxide. Appl. Phys. B 2018, 124, 43. [Google Scholar] [CrossRef]
- Yu, X.; Li, F.; Chen, L.; Ou, D.; Zeng, H. Combined tunable diode laser absorption spectroscopy and monochromatic radiation thermometry in ammonium dinitramide-based thruster. Opt. Eng. 2018, 57, 026106. [Google Scholar] [CrossRef]
- Gu, M.; Satija, A.; Lucht, R.P. CO2 chirped-probe-pulse femtosecond CARS thermometry. Proc. Combust. Inst. 2021, 38, 1599–1606. [Google Scholar] [CrossRef]
- Chang, Z.; Gejji, R.; Satija, A.; Lucht, R.P. Chirped-Probe-Pulse Femtosecond CARS H2 Thermometry in a High-Pressure Model Rocket Combustor. In Proceedings of the AIAA SciTech Forum, National Harbor, MD, USA & Online, 23–27 January 2023. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, Y.; Chen, X.; Li, Y.; Wei, H. Interpulse stimulation Fourier-transform coherent anti-Stokes Raman spectroscopy: Publisher’s note. Photonics Res. 2023, 11, 609. [Google Scholar] [CrossRef]
- Gong, L.; Zheng, W.; Ma, Y.; Huang, Z. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat. Photonics 2019, 14, 115–122. [Google Scholar] [CrossRef]
- Roy, S.; Meyer, T.R.; Lucht, R.P.; Belovich, V.M.; Corporan, E.; Gord, J.R. Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy. Combust. Flame 2004, 138, 273–284. [Google Scholar] [CrossRef]
- Marrocco, M. Comparative analysis of Herman-Wallis factors for uses in coherent anti-Stokes Raman spectra of light molecules. J. Raman Spectrosc. 2009, 40, 741–747. [Google Scholar] [CrossRef]
- Beyrau, F.; Brauer, A.; Seeger, T.; Leipertz, A. Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering. Opt. Lett. 2004, 29, 247–249. [Google Scholar] [CrossRef]
- Roy, S.; Meyer, T.R.; Gord, J.R. Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals. Appl. Phys. Lett. 2005, 87, 264103. [Google Scholar] [CrossRef]
- Xue, B.; Tamaru, Y.; Fu, Y.; Yuan, H.; Lan, P.; Mücke, O.D.; Suda, A.; Midorikawa, K.; Takahashi, E.J. A Custom-Tailored Multi-TW Optical Electric Field for Gigawatt Soft-X-Ray Isolated Attosecond Pulses. Ultrafast Sci. 2021, 2021, 9828026. [Google Scholar] [CrossRef]
- Raciukaitis, G. Ultra-Short Pulse Lasers for Microfabrication: A Review. IEEE J. Sel. Top. Quant. 2021, 27, 1–12. [Google Scholar] [CrossRef]
- Tsakanova, G.; Arakelova, E.; Matevosyan, L.; Petrosyan, M.; Gasparyan, S.; Harutyunyan, K.; Babayan, N. The role of women scientists in the development of ultrashort pulsed laser technology-based biomedical research in Armenia. Int. J. Radiat. Biol. 2021, 98, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, Z.; Ge, H.; Zhao, L.A.; Xu, H.; Wang, Y.; Song, L.; Xia, Y. Influence of the Surface Modification on Carrier Kinetics and ASE of Evaporated Perovskite Film. IEEE Photonic Tech. Lett. 2023, 35, 285–288. [Google Scholar] [CrossRef]
- Lakhotia, H.; Kim, H.Y.; Zhan, M.; Hu, S.; Meng, S.; Goulielmakis, E. Laser picoscopy of valence electrons in solids. Nature 2020, 583, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, S.A.; Kliewer, C.J. Gas detection sensitivity of hybrid fs/ps and fs/ns CARS. Opt. Lett. 2022, 47, 1470–1473. [Google Scholar] [CrossRef] [PubMed]
- Hosseinnia, A.; Ruchkina, M.; Ding, P.; Bengtsson, P.-E.; Bood, J. Simultaneous temporally and spectrally resolved Raman coherences with single-shot fs/ns rotational CARS. Opt. Lett. 2020, 45, 308–311. [Google Scholar] [CrossRef]
- Hosseinnia, A.; Ruchkina, M.; Ding, P.; Bood, J.; Bengtsson, P.-E. Single-shot fs/ns rotational CARS for temporally and spectrally resolved gas-phase diagnostics. Proc. Combust. Inst. 2021, 38, 1843–1850. [Google Scholar] [CrossRef]
- Maker, P.D.; Terhune, R.W. Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength. Phys. Rev. 1965, 148, 990. [Google Scholar] [CrossRef]
- Regnier, P.R.; Moya, F.; Taran, J.P.E. Gas Concentration Measurement by Coherent Raman Anti-Stokes Scattering. AIAA J. 1974, 12, 826–831. [Google Scholar] [CrossRef]
- Moya, F.; Druet, S.A.J.; Taran, J.P.E. Gas spectroscopy and temperature measurement by coherent Raman anti-stokes scattering. Opt. Commun. 1975, 13, 169–174. [Google Scholar] [CrossRef]
- Roy, S.; Gord, J.R.; Patnaik, A.K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy: Fundamental developments and applications in reacting flows. Prog. Energ. Combust. 2010, 36, 280–306. [Google Scholar] [CrossRef]
- Gord, J.R.; Meyer, T.R.; Roy, S. Applications of ultrafast lasers for optical measurements in combusting flows. Annu. Rev. Anal. Chem. 2008, 1, 663–687. [Google Scholar] [CrossRef] [PubMed]
- Slabaugh, C.D.; Dennis, C.N.; Boxx, I.; Meier, W.; Lucht, R.P. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 2. Analysis of swirl flame dynamics. Combust. Flame 2016, 173, 454–467. [Google Scholar] [CrossRef]
- Lang, T.; Kompa, K.L.; Motzkus, M. Femtosecond CARS on H2. Chem. Phys. Lett. 1999, 310, 65–72. [Google Scholar] [CrossRef]
- Eckbreth, A.C. BOXCARS: Crossed-beam phase-matched CARS generation in gases. Appl. Phys. Lett. 1978, 32, 421–423. [Google Scholar] [CrossRef]
- Zheng, J.B.; Leipertz, A.; Snow, J.B.; Chang, R.K. Simultaneous observation of rotational coherent Stokes Raman scattering and coherent anti-Stokes Raman scattering in air and nitrogen. Opt. Lett. 1983, 8, 350–352. [Google Scholar] [CrossRef]
- Prior, Y. Three-dimensional phase matching in four-wave mixing. Appl. Opt. 1980, 19, 1741_1–1743. [Google Scholar] [CrossRef] [PubMed]
- Shirley, J.A.; Hall, R.J.; Eckbreth, A.C. Folded BOXCARS for rotational Raman studies. Opt. Lett. 1980, 5, 380. [Google Scholar] [CrossRef] [PubMed]
- Bohlin, A.; Kliewer, C.J. Direct Coherent Raman Temperature Imaging and Wideband Chemical Detection in a Hydrocarbon Flat Flame. J. Phys. Chem. Lett. 2015, 6, 643–649. [Google Scholar] [CrossRef]
- Kearney, S.P. Hybrid fs/ps rotational CARS temperature and oxygen measurements in the product gases of canonical flat flames. Combust. Flame 2015, 162, 1748–1758. [Google Scholar] [CrossRef]
- Engel, S.R.; Miller, J.D.; Dedic, C.E.; Seeger, T.; Leipertz, A.; Meyer, T.R. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed CH4/N2 measurements in binary gas mixtures. J. Raman Spectrosc. 2013, 44, 1336–1343. [Google Scholar] [CrossRef]
- Miller, J.D.; Dedic, C.E.; Meyer, T.R. Vibrational femtosecond/picosecond coherent anti-Stokes Raman scattering with enhanced temperature sensitivity for flame thermometry from 300 to 2400 K. J Raman Spectrosc 2015, 46, 702–707. [Google Scholar] [CrossRef]
- Scherman, M.; Nafa, M.; Schmid, T.; Godard, A.; Bresson, A.; Attal-Tretout, B.; Joubert, P. Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N(2) thermometry. Opt. Lett. 2016, 41, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Kliewer, C.J. High-spatial-resolution one-dimensional rotational coherent anti-Stokes Raman spectroscopy imaging using counterpropagating beams. Opt. Lett. 2012, 37, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Courtney, T.L.; Mecker, N.T.; Patterson, B.D.; Linne, M.; Kliewer, C.J. Hybrid femtosecond/picosecond pure rotational anti-Stokes Raman spectroscopy of nitrogen at high pressures (1–70 atm) and temperatures (300–1000 K). Appl. Phys. Lett. 2019, 114, 101107. [Google Scholar] [CrossRef]
- Yang, C.B.; He, P.; Escofet-Martin, D.; Peng, J.B.; Fan, R.W.; Yu, X.; Dunn-Rankin, D. Impact of input field characteristics on vibrational femtosecond coherent anti-Stokes Raman scattering thermometry. Appl. Opt. 2018, 57, 197–207. [Google Scholar] [CrossRef]
- Welford, W.T. The Principles of Nonlinear Optics. Phys. Bull. 1985, 36, 178. [Google Scholar] [CrossRef]
- Cheng, J.X.; Book, L.D.; Xie, X.S. Polarization coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 2001, 26, 1341–1343. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-X.; Volkmer, A.; Xie, X.S. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. B 2002, 19, 1363–1375. [Google Scholar] [CrossRef]
- Dudovich, N.; Oron, D.; Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 2002, 418, 512–514. [Google Scholar] [CrossRef]
- Song, Y.; Wu, H.; Zhu, G.; Zeng, Y.; Yu, G.; Yang, Y. A femtosecond time-resolved coherent anti-Stokes Raman spectroscopy thermometry for steady-state high-temperature flame. Combust. Flame 2022, 242, 112166. [Google Scholar] [CrossRef]
- Kulatilaka, W.D.; Stauffer, H.U.; Gord, J.R.; Roy, S. One-dimensional single-shot thermometry in flames using femtosecond-CARS line imaging. Opt. Lett. 2011, 36, 4182–4184. [Google Scholar] [CrossRef] [PubMed]
- Mazza, F.; Griffioen, N.; Castellanos, L.; Kliukin, D.; Bohlin, A. High-temperature rotational-vibrational O2CO2 coherent Raman spectroscopy with ultrabroadband femtosecond laser excitation generated in-situ. Combust. Flame 2022, 237, 111738. [Google Scholar] [CrossRef]
- Zinth, W.; Laubereau, A.; Kaiser, W. Time resolved observation of resonant and non-resonant contributions to the nonlinear susceptibility χ(3). Opt. Commun. 1978, 26, 457–462. [Google Scholar] [CrossRef]
- Hayden, C.C.; Chandler, D.W. Femtosecond time-resolved studies of coherent vibrational Raman scattering in large gas-phase molecules. J. Chem. Phys. 1995, 103, 10465–10472. [Google Scholar] [CrossRef]
- Lang, T.; Motzkus, M.; Frey, H.M.; Beaud, P. High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature. J. Chem. Phys. 2001, 115, 5418–5426. [Google Scholar] [CrossRef]
- Beaud, P.; Frey, H.M.; Lang, T.; Motzkus, M. Flame thermometry by femtosecond CARS. Chem. Phys. Lett. 2001, 344, 407–412. [Google Scholar] [CrossRef]
- Roy, S.; Kinnius, P.J.; Lucht, R.P.; Gord, J.R. Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy. Opt. Commun. 2008, 281, 319–325. [Google Scholar] [CrossRef]
- Roy, S.; Richardson, D.; Kinnius, P.J.; Lucht, R.P.; Gord, J.R. Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2. Appl. Phys. Lett. 2009, 94, 144101. [Google Scholar] [CrossRef]
- Lucht, R.P.; Kinnius, P.J.; Roy, S.; Gord, J.R. Theory of femtosecond coherent anti-Stokes Raman scattering spectroscopy of gas-phase transitions. J. Chem. Phys. 2007, 127, 044316. [Google Scholar] [CrossRef]
- Lucht, R.P.; Roy, S.; Meyer, T.R.; Gord, J.R. Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence. Appl. Phys. Lett. 2006, 89. [Google Scholar] [CrossRef]
- Xia, Y.; Zhao, Y.; Zhang, T.; He, P.; Fan, R.; Dong, Z.; Chen, D.; Zhang, Z. Measurements of flame temperature by femtosecond CARS. Chin. Opt. Lett. 2012, 10, S13002–S313003. [Google Scholar] [CrossRef]
- Roy, S.; Kulatilaka, W.D.; Richardson, D.R.; Lucht, R.P.; Gord, J.R. Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy. Opt. Lett. 2009, 34, 3857–3859. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.; Motzkus, M. Determination of line shift coefficients with femtosecond time resolved CARS. J. Raman Spectrosc. 2000, 31, 65–70. [Google Scholar] [CrossRef]
- Patnaik, A.K.; Roy, S.; Gord, J.R.; Lucht, R.P.; Settersten, T.B. Effects of collisions on electronic-resonance-enhanced co-herent anti-Stokes Raman scattering of nitric oxide. J. Chem. Phys. 2009, 130, 214304. [Google Scholar] [CrossRef] [PubMed]
- Potma, E.O.; Jones, D.J.; Cheng, J.X.; Xie, X.S.; Ye, J. High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers. Opt. Lett. 2002, 27, 1168–1170. [Google Scholar] [CrossRef]
- Lausten, R.; Smirnova, O.; Sussman, B.J.; Grafe, S.; Mouritzen, A.S.; Stolow, A. Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses. J. Chem. Phys. 2008, 128, 244310. [Google Scholar] [CrossRef]
- Volkmer, A.; Book, L.D.; Xie, X.S. Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay. Appl. Phys. Lett. 2002, 80, 1505–1507. [Google Scholar] [CrossRef]
- Rodriguez, L.G.; Lockett, S.J.; Holtom, G.R. Coherent anti-stokes Raman scattering microscopy: A biological review. Cytom. A 2006, 69, 779–791. [Google Scholar] [CrossRef]
- Evans, C.L.; Xu, X.; Kesari, S.; Xie, X.S.; Wong, S.T.; Young, G.S. Chemically-selective imaging of brain structures with CARS microscopy. Opt. Express 2007, 15, 12076–12087. [Google Scholar] [CrossRef]
- Song, Y.; Wu, H.; Zhu, G.; Yang, Y.; Lei, Q.; Yu, G. Real-time temperature monitoring technology for dynamic combustion processes using dual-probe femtosecond CARS. Opt. Laser. Eng. 2024, 175, 108001. [Google Scholar] [CrossRef]
- Dedic, C.E.; Miller, J.D.; Meyer, T.R. Dual-pump vibrational/rotational femtosecond/picosecond coherent anti-Stokes Raman scattering temperature and species measurements. Opt. Lett. 2014, 39, 6608–6611. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.R.; Lucht, R.P.; Kulatilaka, W.D.; Roy, S.; Gord, J.R. Theoretical modeling of single-laser-shot, chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering thermometry. Appl. Phys. B 2011, 104, 699–714. [Google Scholar] [CrossRef]
- Lang, T.; Motzkus, M. Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry. J. Opt. Soc. Am. B 2002, 19, 340–344. [Google Scholar] [CrossRef]
- Richardson, D.R.; Lucht, R.P.; Roy, S.; Kulatilaka, W.D.; Gord, J.R. Single-laser-shot femtosecond coherent anti-Stokes Raman scattering thermometry at 1000Hz in unsteady flames. Proc. Combust. Inst. 2011, 33, 839–845. [Google Scholar] [CrossRef]
- Richardson, D.R.; Bangar, D.; Lucht, R.P. Polarization suppression of the nonresonant background in femtosecond coherent anti-Stokes Raman scattering for flame thermometry at 5 kHz. Opt. Express 2012, 20, 21495–21504. [Google Scholar] [CrossRef] [PubMed]
- Tolles, W.M.; Nibler, J.W.; McDonald, J.R.; Harvey, A.B. A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS). Appl. Spectrosc. 1977, 31, 253–271. [Google Scholar] [CrossRef]
- Dennis, C.N.; Cruise, D.L.; Mongia, H.C.; King, G.B.; Lucht, R.P. Study of Swirl Stabilized Burner with Interchangeable Swirler Using Chirped-Probe-Pulse Femtosecond Coherent Anti-Stokes Raman Scattering for Thermometry and CH4 Concentration Measurements. In Proceedings of the AIAA SciTech Forum, Kissimmee, FL, USA & Online, 5–9 January 2015. [Google Scholar] [CrossRef]
- Fineman, C.N.; Lucht, R.P. Sooting Jet Diffusion Flame Thermometry at 5 kHz using Femtosecond Coherent Anti-Stokes Raman Scattering. AIAA J. 2014, 3, 3731–3738. [Google Scholar] [CrossRef]
- Dennis, C.N.; Slabaugh, C.D.; Boxx, I.G.; Meier, W.; Lucht, R.P. Chirped probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry at 5 kHz in a Gas Turbine Model Combustor. Proc. Combust. Inst. 2015, 35, 3731–3738. [Google Scholar] [CrossRef]
- Dennis, C.N.; Slabaugh, C.D.; Boxx, I.G.; Meier, W.; Lucht, R.P. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 1: Temporally resolved swirl-flame thermometry. Combust. Flame 2016, 173, 441–453. [Google Scholar] [CrossRef]
- Thomas, L.M.; Satija, A.; Lucht, R.P. Technique developments and performance analysis of chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering combustion thermometry. Appl. Opt. 2017, 56, 8797–8810. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.; Thomas, L.M.; Satija, A.; Lucht, R.P.; Masri, A.R. Chirped-probe-pulse femtosecond CARS thermometry in turbulent spray flames. Proc. Combust. Inst. 2019, 37, 1383–1391. [Google Scholar] [CrossRef]
- Lowe, A.; Thomas, L.M.; Satija, A.; Lucht, R.P.; Masri, A.R. Five kHz thermometry in turbulent spray flames using chirped-probe-pulse femtosecond CARS, part II: Structure of reaction zones. Combust. Flame 2019, 200, 417–432. [Google Scholar] [CrossRef]
- Su, J.; Xie, R.; Johnson, C.K.; Hui, R. Single fiber laser based wavelength tunable excitation for CRS spectroscopy. J. Opt. Soc. Am. B 2013, 30, 1671–1682. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Mendoza, I.; Langbein, W.; Borri, P. Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion. Appl. Phys. Lett. 2008, 93, 201103. [Google Scholar] [CrossRef]
- Richardson, D.R.; Stauffer, H.U.; Roy, S.; Gord, J.R. Comparison of chirped-probe-pulse and hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for combustion thermometry. Appl. Opt. 2017, 56, E37–E49. [Google Scholar] [CrossRef]
- Zhao, H.; Tian, Z.; Wu, T.; Li, Y.; Wei, H. Optimization of probe time delays in hybrid femtosecond/picosecond vibrational coherent anti-Stokes Raman scattering thermometry. In Proceedings of the CLEO: Science and Innovations, San Jose, CA, USA, 10–15 May 2020; Optica Publishing Group: Washington, DC, USA, May 2020; p. JW2F-15. [Google Scholar] [CrossRef]
- Prince, B.D.; Chakraborty, A.; Prince, B.M.; Stauffer, H.U. Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra. J. Chem. Phys. 2006, 125, 044502. [Google Scholar] [CrossRef]
- Miller, J.D.; Slipchenko, M.N.; Meyer, T.R.; Stauffer, H.U.; Gord, J.R. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry. Opt. Lett. 2010, 35, 2430–2432. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Roy, S.; Slipchenko, M.N.; Gord, J.R.; Meyer, T.R. Single-shot gas-phase thermometry using pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering. Opt. Express 2011, 19, 15627–15640. [Google Scholar] [CrossRef]
- Escofet-Martin, D.; Ojo, A.O.; Collins, J.; Mecker, N.T.; Linne, M.; Peterson, B. Dual-probe 1D hybrid fs/ps rotational CARS for simultaneous single-shot temperature, pressure, and O2/N2 measurements. Opt. Lett. 2020, 45, 4758–4761. [Google Scholar] [CrossRef]
- Kim, A.; Dedic, C.E.; Cutler, A.D. Development of a fs/ps CARS system for temperature and species measurements in a dual-mode scramjet combustor. In Proceedings of the AIAA SCITECH 2023 Forum, National Harbor, MD, USA & Oline, 23–27 January 2023. [Google Scholar] [CrossRef]
- Seeger, T.; Leipertz, A. Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air. Appl. Opt. 1996, 35, 2665–2671. [Google Scholar] [CrossRef] [PubMed]
- Thumann, A.; Schenk, M.; Jonuscheit, J.; Seeger, T.; Leipertz, A. Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K. Appl. Opt. 1997, 36, 3500–3505. [Google Scholar] [CrossRef] [PubMed]
- Kearney, S.P.; Scoglietti, D.J.; Kliewer, C.J. Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering temperature and concentration measurements using two different picosecond-duration probes. Opt. Express 2013, 21, 1232–12339. [Google Scholar] [CrossRef] [PubMed]
- Bohlin, A.; Kliewer, C.J. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot. J. Chem. Phys. 2013, 138, 221101. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, H.U.; Miller, J.D.; Roy, S.; Gord, J.R.; Meyer, T.R. Communication: Hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse. J. Chem. Phys. 2012, 136, 111101. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Escofet-Martin, D.; Dunn-Rankin, D.; Chien, Y.-C.; Yu, X.; Mukamel, S. Hybrid femtosecond/picosecond pure-rotational coherent anti-Stokes Raman scattering with chirped probe pulses. J. Raman Spectrosc. 2017, 48, 1881–1886. [Google Scholar] [CrossRef]
- Zhao, H.; Tian, Z.; Wu, T.; Li, Y.; Wei, H. Dynamic and sensitive hybrid fs/ps vibrational CARS thermometry using a quasi-common-path second-harmonic bandwidth-compressed probe. Appl. Phys. Lett. 2021, 118, 071107. [Google Scholar] [CrossRef]
- Cutler, A.D.; Cantu, L.M.L.; Gallo, E.C.A.; Baurle, R.; Danehy, P.M.; Rockwell, R.; Goyne, C.; McDaniel, J. Nonequilibrium Supersonic Freestream Studied Using Coherent Anti-Stokes Raman Spectroscopy. AIAA J. 2015, 53, 2762–2770. [Google Scholar] [CrossRef]
- Magnotti, G.; Cutler, A.D.; Herring, G.C.; Tedder, S.A.; Danehy, P.M. Saturation and Stark broadening effects in dual-pump CARS of N2, O2, and H2. J. Raman Spectrosc. 2012, 43, 611–620. [Google Scholar] [CrossRef]
- Wrzesinski, P.J.; Stauffer, H.U.; Kulatilaka, W.D.; Gord, J.R.; Roy, S. Time-resolved femtosecond CARS from 10 to 50 Bar: Collisional sensitivity. J. Raman Spectrosc. 2013, 44, 1344–1348. [Google Scholar] [CrossRef]
- Stauffer, H.U.; Rahman, K.A.; Slipchenko, M.N.; Roy, S.; Gord, J.R.; Meyer, T.R. Interference-free hybrid fs/ps vibrational CARS thermometry in high-pressure flames. Opt. Lett. 2018, 43, 4911–4914. [Google Scholar] [CrossRef]
- Vestin, F.; Afzelius, M.; Bengtsson, P.E. Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra. J. Raman Spectrosc. 2005, 36, 95–101. [Google Scholar] [CrossRef]
- Rockwell, R.D.; Goyne, C.P.; Haw, W.; Krauss, R.H.; McDaniel, J.C.; Trefny, C.J. Experimental Study of Test-Medium Vitiation Effects on Dual-Mode Scramjet Performance. J. Propul. Power 2011, 27, 1135–1142. [Google Scholar] [CrossRef]
- Rockwell, R.D.; Goyne, C.P.; Rice, B.E.; Kouchi, T.; McDaniel, J.C.; Edwards, J.R. Collaborative Experimental and Computational Study of a Dual-Mode Scramjet Combustor. J. Propul. Power 2014, 30, 530–538. [Google Scholar] [CrossRef]
- Cutler, A.D.; Magnotti, G.; Cantu, L.; Gallo, E.; Rockwell, R.; Goyne, C. Dual-Pump Coherent Anti-Stokes Raman Spectroscopy Measurements in a Dual-Mode Scramjet. J. Propul. Power 2014, 30, 539–549. [Google Scholar] [CrossRef]
- Cutler, A.D.; Gallo, E.C.A.; Cantu, L.M.L.; Rockwell, R.D.; Goyne, C.P. Coherent anti-Stokes Raman spectroscopy of a premixed ethylene–air flame in a dual-mode scramjet. Combust. Flame 2018, 189, 92–105. [Google Scholar] [CrossRef]
Researcher | Year | Target Molecules | Application | Temperature/K | Accuracy | Precision |
---|---|---|---|---|---|---|
Motzkus [35] | 1999 | H2 | Sealed-off quartz cell | 300–1100 | / | / |
Lucht [59] | 2008 | H2 | Hencken burner | 1500–2500 | 1.6–2.7% | 2–3.3% |
Lucht [64] | 2009 | H2 | Hencken burner | 300–2400 | 1–6% | 1.5–3% |
Xia [63] | 2012 | N2 | Methane/O2/N2 flame | 300–1325 | / | / |
Song [65] | 2024 | N2 | Swirl burner | 850–2000 | / | ~3.7% |
Researcher | Year | Target Molecules | Application | Temperature/K | Accuracy | Precision |
---|---|---|---|---|---|---|
Lang [75] | 2002 | H2 | Combustion cells | 300–1100 | ~2.7% | / |
Roy [64] | 2009 | N2 | Near-adiabatic flame | 300–2400 | 1–6% | 1.5–3% |
Lucht [76] | 2011 | N2 | Hencken burner | 1790–1940 | ~2% | 5% |
Lucht [77] | 2016 | N2 | Dual-swirl gas turbine model combustor | 300–2200 | ±3% | ±2% |
Lucht [78] | 2017 | N2 | Hencken burner | 295–2295 | 2.7% | ±3.5% |
Thomas [79] | 2019 | N2 | Turbulent spray flames | 2512 | 2.8% | ±3.4% |
Lucht [13] | 2021 | CO2/N2 | Hencken burner | 295–1420 | N2: 1.1–8.9% CO2: 0.6–5.3% | 1.6% (>1200 K) 1.1–1.4% (<1200 K) |
Chang [14] | 2023 | H2 | High-pressure rocket chamber | 2000–3000 | / | / |
Researcher | Year | Target Molecules | Application | Temperature/K | Accuracy | Precision |
---|---|---|---|---|---|---|
Miller [91] | 2010 | N2 | Unsteady high-temperature flames | 2400 | ~3.3% | 2.2% |
Miller [92] | 2011 | N2 | The time delay is 13.5 ps to 30 ps | 306–700 | / | 1% |
Miller [73] | 2014 | O2/H2/N2 | Adiabatic H2–air Hencken burner flame | 298–2300 | / | RCARS: 5% VCARS: 2% |
Kearney [41] | 2015 | N2 | Near-adiabatic H2/air flames Premixed C2H4/air flames | H2: 1550 C2H4: 1660 | / | 1–1.5% |
Escofet-Martin [93] | 2020 | N2 | Pressure (0.9–1.1 bar) | 280–310 | 0.62% | 0.42% |
Li [89] | 2020 | N2 | Hencken burner | 2110 | 1.2% | / |
Kim [94] | 2023 | C2H4 | Supersonic combustion facility | 2294 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Xia, M.; Yun, S.; Zhang, Y.; Zhang, S.; Ge, H.; Deng, Y.; Liu, M.; Wang, W.; Zhao, L.; et al. Advances in Femtosecond Coherent Anti-Stokes Raman Scattering for Thermometry. Photonics 2024, 11, 622. https://doi.org/10.3390/photonics11070622
Song K, Xia M, Yun S, Zhang Y, Zhang S, Ge H, Deng Y, Liu M, Wang W, Zhao L, et al. Advances in Femtosecond Coherent Anti-Stokes Raman Scattering for Thermometry. Photonics. 2024; 11(7):622. https://doi.org/10.3390/photonics11070622
Chicago/Turabian StyleSong, Kaiyuan, Mingze Xia, Sheng Yun, Yuan Zhang, Sheng Zhang, Hui Ge, Yanyan Deng, Meng Liu, Wei Wang, Longfei Zhao, and et al. 2024. "Advances in Femtosecond Coherent Anti-Stokes Raman Scattering for Thermometry" Photonics 11, no. 7: 622. https://doi.org/10.3390/photonics11070622
APA StyleSong, K., Xia, M., Yun, S., Zhang, Y., Zhang, S., Ge, H., Deng, Y., Liu, M., Wang, W., Zhao, L., Wang, Y., Lv, Z., & Xia, Y. (2024). Advances in Femtosecond Coherent Anti-Stokes Raman Scattering for Thermometry. Photonics, 11(7), 622. https://doi.org/10.3390/photonics11070622