Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = Raman fiber amplifiers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4193 KiB  
Article
Comparative Analysis of Two Types of Combined Power-Over-Fiber and Radio-Over-Fiber Systems Using Raman Amplification for Different Link Lengths
by Paulo Kiohara, Romildo H. Souza, Véronique Quintard, Mikael Guegan, Laura Ghisa, André Pérennou and Olympio L. Coutinho
Sensors 2025, 25(13), 4159; https://doi.org/10.3390/s25134159 - 4 Jul 2025
Viewed by 330
Abstract
The use of analog radio-over-fiber (RoF) systems combined with power-over-fiber (PoF) systems has been proposed in recent years for applications involving remote sensors used in hazardous environments or where electrical wiring may be impractical. This article presents a hybrid architecture topology that combines [...] Read more.
The use of analog radio-over-fiber (RoF) systems combined with power-over-fiber (PoF) systems has been proposed in recent years for applications involving remote sensors used in hazardous environments or where electrical wiring may be impractical. This article presents a hybrid architecture topology that combines PoF and RoF, using Raman amplification to obtain RF gain. The first emphasis is placed on the use of two types of high-power laser sources (HPLSs) for the PoF system: a 1480 nm Raman-based HPLS and a 1550 nm HPLS that is based on an erbium-doped fiber amplifier (EDFA). The second emphasis of this paper is on how these two HPLSs simulate Raman scattering (SRS) in the fiber, considering different lengths of SMF 28 for the link. Thus, a comparative analysis is proposed considering the effects induced on the RF signal, mainly focused on its RF power gain (GRF), noise figure (NF), and spurious-free dynamic range (SFDR). The obtained results show that the architecture using a PoF system based on the 1550 nm HPLS benefits from a lower noise figure degradation, even when the noise generated by the optical amplification is considered. Full article
(This article belongs to the Special Issue Optical Communications in Sensor Networks)
Show Figures

Figure 1

13 pages, 3864 KiB  
Article
First Real-Time 221.9 Pb/S∙Km Transmission Capability Demonstration Using Commercial 138-Gbaud 400 Gb/S Backbone OTN System over Field-Deployed Seven-Core Fiber Cable with Multiple Fusion Splicing
by Jian Cui, Yu Deng, Zhuo Liu, Yuxiao Wang, Chen Qiu, Zhi Li, Chao Wu, Bin Hao, Leimin Zhang, Ting Zhang, Bin Wu, Chengxing Zhang, Weiguang Wang, Yong Chen, Kang Li, Feng Gao, Lei Shen, Lei Zhang, Jie Luo, Yan Sun, Qi Wan, Cheng Chang, Bing Yan and Ninglun Guadd Show full author list remove Hide full author list
Photonics 2025, 12(3), 269; https://doi.org/10.3390/photonics12030269 - 14 Mar 2025
Cited by 2 | Viewed by 626
Abstract
The core-division-multiplexed (CDM) transmission technique utilizing uncoupled multi-core fiber (MCF) is considered a promising candidate for next-generation long-haul optical transport networks (OTNs) due to its high-capacity potential. For the field implementation of MCF, it is of great significance to explore its long-haul transmission [...] Read more.
The core-division-multiplexed (CDM) transmission technique utilizing uncoupled multi-core fiber (MCF) is considered a promising candidate for next-generation long-haul optical transport networks (OTNs) due to its high-capacity potential. For the field implementation of MCF, it is of great significance to explore its long-haul transmission capability using high-speed OTN transceivers over deployed MCF cable. In this paper, we investigate the real-time long-haul transmission capability of a deployed seven-core MCF cable using commercial 138-Gbaud 400 Gb/s backbone OTN transceivers with a dual-polarization quadrature phase shift keying (DP-QPSK) modulation format. Thanks to the highly noise-tolerant DP-QPSK modulation format enabled by the high baud rate, a real-time 256 Tb/s transmission over a 990.64 km (14 × 70.76 km) deployed seven-core fiber cable with more than 600 fusion splices is field demonstrated for the first time, which achieves a real-time capacity–distance product of 221.9 Pb/s∙km. Specifically, the long-haul CDM transmission is simulated by cascading the fiber cores of two segments of 70.76 km seven-core fibers. And dynamic gain equalizers (DGEs) are utilized to mitigate the impacts of stimulated Raman scattering (SRS) and the uneven gain spectra of amplifiers in broadband transmissions by equalizing the power of signals with different wavelengths. This field trial demonstrates the feasibility of applying uncoupled MCF in long-haul OTN transmission systems and will contribute to its field implementation in terrestrial fiber cable systems. Full article
(This article belongs to the Special Issue Optical Networking Technologies for High-Speed Data Transmission)
Show Figures

Figure 1

13 pages, 3428 KiB  
Article
Modeling of Graded-Index Raman Fiber Amplifiers with Pump Depletion
by Sonali Maity, Anuj P. Lara, Samudra Roy and Govind P. Agrawal
Photonics 2024, 11(11), 1081; https://doi.org/10.3390/photonics11111081 - 18 Nov 2024
Viewed by 1010
Abstract
Graded-index (GRIN) fibers are often used for making high-power Raman amplifiers. We employ numerical and semi-analytical techniques to model such amplifiers and include not only the signal’s amplification and pump’s depletion but also various nonlinear interactions between the signal and pump beams and [...] Read more.
Graded-index (GRIN) fibers are often used for making high-power Raman amplifiers. We employ numerical and semi-analytical techniques to model such amplifiers and include not only the signal’s amplification and pump’s depletion but also various nonlinear interactions between the signal and pump beams and the self-imaging effects within the GRIN fiber. We solve the coupled nonlinear equations of the pump and signal beams numerically. We also employ the variational technique to obtain simpler equations that can be solved much faster than the full model and still agree with it in most cases of practical interest. We discuss the evolution dynamics of the pump and signal beams, along with a novel process of energy exchange between the two beams because of self-imaging inside the GRIN fiber. The dependence of the signal’s amplification on various input parameters is analyzed in detail to optimize the device’s design and enhance the signal’s amplification for a given pump power and fiber length. Based on our analysis, we establish a resonant condition for the maximum energy transfer from the pump to the signal being amplified. We further show that the periodic self-imaging of the pump and signal beams inside a GRIN fiber leads to higher output powers compared to step-index fibers. Full article
Show Figures

Figure 1

11 pages, 4795 KiB  
Article
Numerical Investigation of Raman-Assisted Four-Wave Mixing in Tapered Fiber Raman Fiber Amplifier
by Shanmin Huang, Yang Zhang, Xiulu Hao, Chenchen Fan, Xiao Chen, Jun Ye, Tianfu Yao, Hanwei Zhang, Liangjin Huang, Jinyong Leng, Jiangming Xu, Zhiyong Pan and Pu Zhou
Photonics 2024, 11(11), 1059; https://doi.org/10.3390/photonics11111059 - 12 Nov 2024
Cited by 1 | Viewed by 1274
Abstract
The generation of unwanted higher-order Raman effects is the main factor restricting the power scaling of Raman fiber amplifiers (RFAs). This phenomenon arises from an interplay of physical processes, including stimulated Raman scattering (SRS), four-wave mixing (FWM), and the intricate temporal and spectral [...] Read more.
The generation of unwanted higher-order Raman effects is the main factor restricting the power scaling of Raman fiber amplifiers (RFAs). This phenomenon arises from an interplay of physical processes, including stimulated Raman scattering (SRS), four-wave mixing (FWM), and the intricate temporal and spectral dynamics. Tapered fibers have demonstrated excellent nonlinear effects suppression characteristics due to the varying core diameter along the fiber, which is widely used in ytterbium-doped fiber lasers. In this paper, a comprehensive numerical investigation is conducted on the core-pumping tapered fiber RFAs considering Raman-assisted FWM. The higher-order Raman power in the tapered fiber is always kept at a low level, showing a weak Raman-assisted FWM effect. A numerical investigation is conducted to study the impact of the tapering ratio, the lengths of the thin part, tapered region, and thick part on the higher-order Raman threshold of RFAs. Furthermore, the impact of phase mismatch variations caused by changes in the seed wavelength, on the output signal power and nonlinear effects is analyzed. This paper presents, for the first time, a study on core-pumped RFAs using tapered fibers, providing a novel perspective on enhancing the power of RFAs. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in Solid-State Lasers)
Show Figures

Figure 1

7 pages, 1613 KiB  
Communication
1010 nm Directly LD-Pumped 6kW Monolithic Fiber Laser Employing Long-Tapered Yb3+-Doped Fiber
by Mingye Yang, Peng Wang, Xiaoyong Xu, Hanshuo Wu, Zhiyong Pan, Yun Ye, Zhiping Yan, Xiaoming Xi, Hanwei Zhang and Xiaolin Wang
Photonics 2024, 11(11), 1033; https://doi.org/10.3390/photonics11111033 - 2 Nov 2024
Viewed by 1455
Abstract
Utilizing long-wavelength laser diodes (LDs) for pumping to achieve high-power fiber laser output is an effective method for attaining high quantum efficiency and excellent thermal management. In this work, we report on a Master Oscillator Power Amplifier (MOPA)-structured long-tapered Yb3+-doped fiber [...] Read more.
Utilizing long-wavelength laser diodes (LDs) for pumping to achieve high-power fiber laser output is an effective method for attaining high quantum efficiency and excellent thermal management. In this work, we report on a Master Oscillator Power Amplifier (MOPA)-structured long-tapered Yb3+-doped fiber laser directly pumped by long-wavelength laser diodes. By shifting the center wavelength of the pump source to 1010 nm, the heat generation within the fiber laser is effectively controlled, thereby increasing the transverse mode instability (TMI) threshold. Additionally, the use of a long-tapered fiber enlarges the mode area and suppresses stimulated Raman scattering (SRS) effects that typically arise from increased fiber length. As a result, an output of 6030 W is achieved with an optical-to-optical (O–O) efficiency of 83.7%, a SRS suppression ratio exceeding 50 dB, and no occurrence of dynamic TMI. This approach provides a valuable reference for optimizing long-wavelength pumping to suppress nonlinear effects and also holds potential for wide-temperature operational applications. Full article
(This article belongs to the Special Issue High-Power Fiber Lasers)
Show Figures

Figure 1

11 pages, 3614 KiB  
Article
Theoretical Study on Transverse Mode Instability in Raman Fiber Amplifiers Considering Mode Excitation
by Shanmin Huang, Xiulu Hao, Haobo Li, Chenchen Fan, Xiao Chen, Tianfu Yao, Liangjin Huang and Pu Zhou
Micromachines 2024, 15(10), 1237; https://doi.org/10.3390/mi15101237 - 7 Oct 2024
Viewed by 1344
Abstract
Raman fiber lasers (RFLs), which are based on the stimulated Raman scattering effect, generate laser beams and offer distinct advantages such as flexibility in wavelength, low quantum defects, and absence from photo-darkening. However, as the power of the RFLs increases, heat generation emerges [...] Read more.
Raman fiber lasers (RFLs), which are based on the stimulated Raman scattering effect, generate laser beams and offer distinct advantages such as flexibility in wavelength, low quantum defects, and absence from photo-darkening. However, as the power of the RFLs increases, heat generation emerges as a critical constraint on further power scaling. This escalating thermal load might result in transverse mode instability (TMI), thereby posing a significant challenge to the development of RFLs. In this work, a static model of the TMI effect in a high-power Raman fiber amplifier based on stimulated thermal Rayleigh scattering is established considering higher-order mode excitation. The variations of TMI threshold power with different seed power levels, fundamental mode purities, higher-order mode losses, and fiber lengths are investigated, while a TMI threshold formula with fundamental mode pumping is derived. This work will enrich the theoretical model of TMI and extend its application scope in TMI mitigation strategies, providing guidance for understanding and suppressing TMI in the RFLs. Full article
(This article belongs to the Special Issue High Power Fiber Laser Technology)
Show Figures

Figure 1

7 pages, 2081 KiB  
Communication
Improving the Performance of Bidirectional Communication System Using Second-Order Raman Amplifiers
by Zhongshuai Feng, Peili He, Wei Li, Kaijing Hu, Fei Tong and Xingrui Su
Photonics 2024, 11(9), 879; https://doi.org/10.3390/photonics11090879 - 19 Sep 2024
Viewed by 990
Abstract
In order to achieve low-cost scalability, the same-wavelength bidirectional (SWB) fiber communication system is a better solution. We present a detailed investigation of the performance of the different orders Raman amplifiers in same-wavelength bidirectional fiber communication systems. We discuss how to suppress the [...] Read more.
In order to achieve low-cost scalability, the same-wavelength bidirectional (SWB) fiber communication system is a better solution. We present a detailed investigation of the performance of the different orders Raman amplifiers in same-wavelength bidirectional fiber communication systems. We discuss how to suppress the main factor affecting system performance which is Rayleigh scattering noise (RSN). By using different Raman amplifiers to construct different quasi-lossless transmission, the performance changes in the same-wavelength bidirectional fiber optic communication system were studied. On this basis, multi-channel and same-wavelength single fiber bidirectional system experiments were conducted to compare the performance of second-order Raman systems and first-order Raman systems. The results indicate that the Rayleigh scattering suppression effect of second-order Raman systems is better, and compared to first-order Raman systems, the average signal-to-noise ratio (SNR) can be increased by 2.88 dB. Full article
(This article belongs to the Special Issue Advancements in Optical Sensing and Communication Technologies)
Show Figures

Figure 1

8 pages, 6566 KiB  
Communication
A 3.2 kW Single Stage Narrow Linewidth Fiber Amplifier Emitting at 1050 nm
by Xiaoxi Liu, Xin Tian, Binyu Rao, Baolai Yang, Xiaoming Xi and Zefeng Wang
Micromachines 2024, 15(7), 871; https://doi.org/10.3390/mi15070871 - 30 Jun 2024
Cited by 2 | Viewed by 1611
Abstract
In this paper, we have demonstrated a narrow linewidth high power fiber laser emitting at a short wavelength of ~1050 nm. The fiber laser is based on a structure of master oscillator power amplification (MOPA) with an optimized fiber Bragg-grating-based laser cavity as [...] Read more.
In this paper, we have demonstrated a narrow linewidth high power fiber laser emitting at a short wavelength of ~1050 nm. The fiber laser is based on a structure of master oscillator power amplification (MOPA) with an optimized fiber Bragg-grating-based laser cavity as the seed. Both stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) effects have been effectively suppressed by using a long passive fiber between the seed and the amplifier. Based on the fiber amplifier, we have ultimately boosted the narrow linewidth laser from ~40 W to 3.2 kW with a slope efficiency of 85.1% and a 3-dB linewidth of ~0.1 nm. The SRS suppression ratio of the laser is ~29.7 dB at maximum power. Due to our fiber mode control strategies, the beam quality always stays near-diffraction-limited while amplifying, and the measured M2 factor is ~1.4 at the maximum power. Further increase in output power is limited by the SBS effect. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing)
Show Figures

Figure 1

19 pages, 6478 KiB  
Article
Construction of PCR-SERS Method for Detection of Vibrio parahaemolyticus
by Antuo Hu, Xiaoting Song, Xiaojie Sun, Zhaoxin Lu, Xinmei Liu, Xiaomei Bie and Jun Yang
Foods 2024, 13(11), 1743; https://doi.org/10.3390/foods13111743 - 1 Jun 2024
Viewed by 1785
Abstract
A paper-based surface enhancement of a Raman scattering substrate consisting of silver-nanowires stacked on glass-fiber filter paper was prepared. At the same time, the DNA-embedding molecule Eva Green was introduced as a signaling molecule for surface-enhanced Raman scattering (SERS) detection. Polymerase chain reaction [...] Read more.
A paper-based surface enhancement of a Raman scattering substrate consisting of silver-nanowires stacked on glass-fiber filter paper was prepared. At the same time, the DNA-embedding molecule Eva Green was introduced as a signaling molecule for surface-enhanced Raman scattering (SERS) detection. Polymerase chain reaction (PCR) was used to amplify target genes and the method was developed into a rapid molecular diagnostic system. The total detection time of the developed detection method was 40 min, including 30 min of PCR amplification and 10 min of SERS measurement. After 30 PCR cycles, bacterial DNA with an initial concentration of 20 fg/μL and a bacterial suspension with an initial concentration of 7.2 × 101 CFUs/mL could be detected. When the enrichment culture time was 4 h, target bacteria with an initial contamination inoculation volume of 1.5 CFUs/mL could be detected in artificially contaminated samples. The method is fast and highly sensitive, and has not been applied to the detection of V. parahaemolyticus. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

11 pages, 2499 KiB  
Article
Cascaded All-Fiber Gas Raman Laser Oscillator in Deuterium-Filled Hollow-Core Photonic Crystal Fibers
by Hao Li, Wenxi Pei, Xuanxi Li, Luohao Lei, Jing Shi, Zhiyue Zhou and Zefeng Wang
Nanomaterials 2024, 14(8), 661; https://doi.org/10.3390/nano14080661 - 11 Apr 2024
Cited by 1 | Viewed by 1454
Abstract
Hollow-core photonic crystal fibers (HC-PCFs) provide an ideal transmission medium and experimental platform for laser–matter interaction. Here, we report a cascaded all-fiber gas Raman laser based on deuterium (D2)-filled HC-PCFs. D2 is sealed into a gas cavity formed by a [...] Read more.
Hollow-core photonic crystal fibers (HC-PCFs) provide an ideal transmission medium and experimental platform for laser–matter interaction. Here, we report a cascaded all-fiber gas Raman laser based on deuterium (D2)-filled HC-PCFs. D2 is sealed into a gas cavity formed by a 49 m-long HC-PCF and solid-core fibers, and two homemade fiber Bragg gratings (FBGs) with the Raman and pump wavelength, respectively, are further introduced. When pumped by a pulsed fiber amplifier at 1540 nm, the pure rotational stimulated Raman scattering of D2 occurs inside the cavity. The first-order Raman laser at 1645 nm can be obtained, realizing a maximum power of ~0.8 W. An all-fiber cascaded gas Raman laser oscillator is achieved by adding another 1645 nm high-reflectivity FBG at the output end of the cavity, reducing the peak power of the cascaded Raman threshold by 11.4%. The maximum cascaded Raman power of ~0.5 W is obtained when the pump source is at its maximum, and the corresponding conversion efficiency inside the cavity is 21.4%, which is 1.8 times that of the previous configuration. Moreover, the characteristics of the second-order Raman lasers at 1695 nm and 1730 nm are also studied thoroughly. This work provides a significant method for realizing all-fiber cascaded gas Raman lasers, which is beneficial for expanding the output wavelength of fiber gas lasers with a good stability and compactivity. Full article
Show Figures

Figure 1

11 pages, 1817 KiB  
Article
Enhanced bi-LSTM for Modeling Nonlinear Amplification Dynamics of Ultra-Short Optical Pulses
by Karina Saraeva and Anastasia Bednyakova
Photonics 2024, 11(2), 126; https://doi.org/10.3390/photonics11020126 - 29 Jan 2024
Cited by 3 | Viewed by 1506
Abstract
Fiber amplifiers are essential devices for optical communication and laser physics, yet the intricate nonlinear dynamics they exhibit pose significant challenges for numerical modeling. In this study, we propose using a bi-LSTM neural network to predict the evolution of optical pulses along a [...] Read more.
Fiber amplifiers are essential devices for optical communication and laser physics, yet the intricate nonlinear dynamics they exhibit pose significant challenges for numerical modeling. In this study, we propose using a bi-LSTM neural network to predict the evolution of optical pulses along a fiber amplifier, accounting for the dynamically changing gain profile and the Raman scattering. The neural network can learn information from both past and future data, adhering to the fundamental principles of physics governing pulse evolution over time. We conducted experiments with a diverse range of initial pulse parameters, covering the variation in the ratio between dispersion and nonlinear length, ranging from 0.25 to 250. This deliberate choice has resulted in a wide variety of propagation regimes, ranging from smooth attractor-like to noise-like behaviors. Through a comprehensive evaluation of the neural network performance, we demonstrated its ability to generalize across the various propagation regimes. Notably, our results showcase a relative speedup of 2000 times for evaluating the intensity evolution map using our proposed neural network compared to the NLSE numerical solution employing the split-step Fourier method. Full article
Show Figures

Figure 1

15 pages, 2384 KiB  
Article
Picosecond Pulse Tapered Fiber Amplifier Operated near 1030 nm with Peak Power up to 1 MW
by Egor K. Mikhailov, Konstantin K. Bobkov, Andrey E. Levchenko, Vladimir V. Velmiskin, Dmitry V. Khudyakov, Svetlana S. Aleshkina, Tatiana S. Zaushitsyna, Mikhail M. Bubnov, Denis S. Lipatov and Mikhail E. Likhachev
Photonics 2023, 10(12), 1385; https://doi.org/10.3390/photonics10121385 - 16 Dec 2023
Cited by 4 | Viewed by 2052
Abstract
We demonstrated an optimization of a picosecond fiber amplifier based on Yb-doped tapered fiber in a spectral range of 1030 nm. Nonlinear effects limiting peak power scaling (stimulated Raman scattering and four-wave mixing) were studied and factors affecting their threshold were established, such [...] Read more.
We demonstrated an optimization of a picosecond fiber amplifier based on Yb-doped tapered fiber in a spectral range of 1030 nm. Nonlinear effects limiting peak power scaling (stimulated Raman scattering and four-wave mixing) were studied and factors affecting their threshold were established, such as gain, diameter profile along the length of taper, output mode field diameter, and numerical aperture of a pump. By determining the optimal amplification regime and manufacturing advanced tapered fibers, we amplified 13 ps pulses to a record-high peak power of 1 MW at a wavelength of 1029 nm directly at the output of the fiber at an average power of 13.8 W. Four-wave mixing was the limiting factor, and the total fraction of deleterious components in the output spectrum was ~2%. The quality of the output beam was close to being diffraction limited (M2 < 1.2). Full article
(This article belongs to the Special Issue High Power Fiber Laser and Amplifiers)
Show Figures

Figure 1

12 pages, 5561 KiB  
Article
Polarization Dependent Gain Stability of Raman Amplification Single-Core Feedback Structure Based on Consistency of Long-Axis Azimuths Variation
by Fengzhen Yu, Yixiao Ma, Kun Jia, Xin Lai, Qian Xiao and Bo Jia
Photonics 2023, 10(12), 1294; https://doi.org/10.3390/photonics10121294 - 23 Nov 2023
Viewed by 1473
Abstract
The law of the polarization state of Raman fiber amplifier switch in single-core feedback structures is unknown. In this paper, two kinds of optical paths with single-core feedback structures are constructed, namely the Raman amplified Faraday rotating mirror single-core feedback structure (RFA-FRMOP) and [...] Read more.
The law of the polarization state of Raman fiber amplifier switch in single-core feedback structures is unknown. In this paper, two kinds of optical paths with single-core feedback structures are constructed, namely the Raman amplified Faraday rotating mirror single-core feedback structure (RFA-FRMOP) and the Raman amplified ordinary flat mirror single-core feedback structure (RFA-RMOP). In the process of optical signal amplification involving Raman fiber amplifiers, the polarization dependent gain (PDG) generated by Raman switches is affected by the polarization state, and RFA-FRMOP shows better stability. Surprisingly, polarization analysis of the RFA-FRMOP structure shows that both the ellipticity angle and the long-axis azimuth of the output feedback structure changed less than that of the signal entering the feedback structure. The consistency of the long-axis azimuth variation is the main characteristic of the RFA-FRMOP structure. It is found that the variation of the azimuth of the long axis of the RFA-FRMOP structure is obviously greater than that of the ellipticity. These conclusions provide a theoretical basis for the polarization dependent application of Raman fiber amplifiers in single-core feedback structures. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

11 pages, 3490 KiB  
Article
A 5 kW Nearly-Single-Mode Monolithic Fiber Laser Emitting at ~1050 nm Employing Asymmetric Bi-Tapered Ytterbium-Doped Fiber
by Xiangming Meng, Fengchang Li, Baolai Yang, Peng Wang, Zhiping Yan, Yun Ye, Xiaoming Xi, Hanwei Zhang, Zhiyong Pan, Xiaolin Wang and Fengjie Xi
Photonics 2023, 10(10), 1158; https://doi.org/10.3390/photonics10101158 - 16 Oct 2023
Cited by 2 | Viewed by 2557
Abstract
Limited by stimulated Raman scattering (SRS), amplified spontaneous emission (ASE) and transverse mode instability (TMI), it is challenging to achieve high-power laser output in ytterbium-doped fiber (YDF) lasers with operating wavelengths less than 1060 nm. In high-power fiber lasers, bi-tapered YDF can provide [...] Read more.
Limited by stimulated Raman scattering (SRS), amplified spontaneous emission (ASE) and transverse mode instability (TMI), it is challenging to achieve high-power laser output in ytterbium-doped fiber (YDF) lasers with operating wavelengths less than 1060 nm. In high-power fiber lasers, bi-tapered YDF can provide a balance between the suppression of SRS and TMI. In this work, we designed and fabricated a new double-cladding asymmetric bi-tapered YDF to suppress ASE and SRS in the 1050 nm monolithic fiber laser. The asymmetric bi-tapered YDF has an input end with a core/cladding diameter of ~20/400 μm, a middle section with a core/cladding diameter of ~30/600 μm and an output end with a core/cladding diameter of ~25/500 μm. The working temperature of the non-wavelength-stabilized 976 nm laser diodes was optimized to improve the TMI threshold. An output power of over 5 kW with an efficiency of 83.1% and a beam quality factor M2 of about 1.47 were achieved. To the best of our knowledge, this represents the highest power nearly-single mode in 1050 nm fiber lasers. This work demonstrates the potential of asymmetric bi-tapered YDF for achieving a high-power laser with high beam quality in 1050 nm fiber lasers. Full article
(This article belongs to the Special Issue Specialty Optical Fibers and Their High-Power Applications)
Show Figures

Figure 1

10 pages, 3677 KiB  
Communication
Investigation of Optical Cavity Dynamics with Raman and Ytterbium-Doped Gain Media Integration
by Efrain Mejia-Beltran and Oscar J. Ballesteros-Llanos
Photonics 2023, 10(10), 1148; https://doi.org/10.3390/photonics10101148 - 12 Oct 2023
Viewed by 1563
Abstract
This study delves into a comprehensive examination of an optical cavity system that integrates Raman and Yb-doped gain media, with a focus on understanding their interactions. The research implies a characterization of each gain medium within the cavity while subjecting them to diverse [...] Read more.
This study delves into a comprehensive examination of an optical cavity system that integrates Raman and Yb-doped gain media, with a focus on understanding their interactions. The research implies a characterization of each gain medium within the cavity while subjecting them to diverse co-pumping conditions with the other. When the Raman-lasing cavity is co-pumped by exciting the Yb-doped section, the resulting composite laser exhibits significant threshold reductions and there is an optimal co-pumping regime that enhances energy transfer from pump to Stokes. As for the complementary cavity, where the Yb-doped gain is influenced by the co-pumped Raman gain, at moderate pump powers a light-controlling-light behavior phenomenon arises. Within this regime, the 1064 nm signal suppresses the Yb-generated 1115 nm signal, suggesting potential applications in intracavity optical modulation. For higher pump levels, a cooperative effect emerges whereby both lasers mutually enhance each other. Minor variations in the primary 974 nm pump power, even by just a few milliwatts, result in significant capabilities for switching or modulating the Stokes signal. Under these conditions of mutual enhancement, the hybrid optical system validates notable improvements regarding energy transfer efficiency and threshold reduction. This research provides valuable insights into the intricate dynamics of optical cavity systems and reveals promising avenues for applications in advanced optical modulation technologies. Full article
Show Figures

Figure 1

Back to TopTop