Numerical Investigation of Raman-Assisted Four-Wave Mixing in Tapered Fiber Raman Fiber Amplifier
Abstract
:1. Introduction
2. Numerical Model
2.1. RFA Model Considering the FWM Effect
2.2. Consider Tapered Fiber Parameters in the Model
3. Results and Discussion
3.1. Power Evolution in RFAs
3.2. Structural Optimization of Tapered Fiber
3.3. Influence of Seed Wavelengths on RFA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuznetsov, A.G.; Nemov, I.N.; Wolf, A.A.; Wolf, A.A.; Kablukov, S.I.; Babin, S.A.; Chen, Y.; Yao, T.; Leng, J.; Zhou, P. Beam cleaning effects in multimode GRIN-fiber Raman lasers and amplifiers. J. Phys. Conf. Ser. 2020, 1508, 12009. [Google Scholar] [CrossRef]
- Distler, V.; Möller, F.; Yildiz, B.; Plötner, M.; Walbaum, T.; Schreiber, T. Transverse mode instability threshold manipulation in a core-pumped raman amplifier. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 29 May 2021; p. SW2B.3. [Google Scholar]
- Rekas, M.; Schmidt, O.; Zimer, H.; Schreiber, T.; Eberhardt, R.; Tünnermann, A. Over 200 W average power tunable Raman amplifier based on fused silica step index fiber. Appl. Phys. B Lasers Opt. 2012, 107, 711–716. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, H.; Yang, X.; Gu, X.; Feng, Y. High-Power Single-Frequency 1336 nm Raman Fiber Amplifier. J. Light. Technol. 2016, 34, 4907–4911. [Google Scholar] [CrossRef]
- Choudhury, V.; Arun, S.; Prakash, R.; Supradeepa, V.R. High-power continuous-wave supercontinuum generation in highly nonlinear fibers pumped with high-order cascaded Raman fiber amplifiers. Appl. Opt. 2018, 57, 5978–5982. [Google Scholar] [CrossRef]
- Qi, W.; Zhou, J.; Cao, X.; Cheng, Z.; Jiang, H.; Cui, S.; Feng, Y. Cascaded nonlinear optical gain modulation for coherent femtosecond pulse generation. Opt. Express 2022, 30, 8889–8897. [Google Scholar] [CrossRef]
- Deheri, R.; Dash, S.; Supradeepa, V.R.; Balaswamy, V. Cascaded Raman fiber lasers with ultrahigh spectral purity. Opt. Lett. 2022, 47, 3499–3502. [Google Scholar] [CrossRef]
- Zhou, J.; Pan, W.; Qi, W.; Cao, X.; Cheng, Z.; Feng, Y. Ultrafast Raman fiber laser: A review and prospect. PhotoniX 2022, 3, 18. [Google Scholar] [CrossRef]
- Grimes, A.; Hariharan, A.; Nicholson, J.W. Progress on high power Raman fiber lasers at 1.48 and 1.7 μm. In Fiber Lasers XVIII: Technology and Systems; SPIE: Bellingham, WA, USA, 2021. [Google Scholar]
- Kuznetsov, A.G.; Kablukov, S.I.; Wolf, A.A.; Nemov, I.N.; Tyrtyshnyy, V.A.; Myasnikov, D.V.; Babin, S.A. 976 nm all-fiber Raman laser with high beam quality at multimode laser diode pumping. Laser Phys. Lett. 2019, 16, 105102. [Google Scholar] [CrossRef]
- Emori, Y.; Tanaka, K.; Headley, C.; Fujisaki, A. High-power cascaded raman fiber laser with 41-W output power at 1480-nm band. In Proceedings of the 2007 Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 6–11 May 2007; IEEE: Piscadaway, NJ, USA, 2007. [Google Scholar]
- Zhang, L.; Dong, J.; Feng, Y. High-Power and High-Order Random Raman Fiber Lasers. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–6. [Google Scholar] [CrossRef]
- Balaswamy, V.; Harshitha, S.; Siddharth, R.; Supradeepa, V.R. High power, ultra-high spectral purity, broadly wavelength tunable cascaded Raman fiber laser. In Fiber Lasers XVI: Technology and Systems; SPIE: Bellingham, WA, USA, 2019; p. 108970N. [Google Scholar]
- Balaswamy, V.; Aparanji, S.; Arun, S.; Ramachandran, S.; Supradeepa, V.R. High-power, widely wavelength tunable, grating-free Raman fiber laser based on filtered feedback. Opt. Lett. 2019, 44, 279–282. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C.; Jiang, H.; Qi, Y.; He, B.; Zhou, J.; Gu, X.; Feng, Y. Kilowatt Ytterbium-Raman fiber laser. Opt. Express 2014, 22, 18483–18489. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Yan, P.; Li, D.; Sun, J.; Wang, X.; Huang, Y.; Gong, M. Bidirectional pumped high power Raman fiber laser. Opt. Express 2016, 24, 6758–6768. [Google Scholar] [CrossRef]
- Glick, Y.; Shamir, Y.; Aviel, M.; Sintov, Y.; Goldring, S.; Shafir, N.; Pearl, S. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness enhancement. Opt. Lett. 2018, 43, 4755–4758. [Google Scholar] [CrossRef]
- Qi, T.; Yang, Y.; Li, D.; Yan, P.; Gong, M.; Xiao, Q. Kilowatt-Level Supercontinuum Generation in Random Raman Fiber Laser Oscillator With Full-Open Cavity. J. Light. Technol. 2022, 40, 7159–7166. [Google Scholar] [CrossRef]
- Qi, T.; Li, D.; Fu, G.; Yang, Y.; Li, G.; Wang, L.; Du, S.; Yan, P.; Gong, M.; Xiao, Q. Amplification of random lasing enables a 10-kW-level high-spectral-purity Yb–Raman fiber laser. Opt. Lett. 2023, 48, 1794–1797. [Google Scholar] [CrossRef]
- Liu, W.; Ma, P.; Zhou, P.; Jiang, Z. Effects of four-wave-mixing in high-power Raman fiber amplifiers. Opt. Express 2020, 28, 593–606. [Google Scholar] [CrossRef]
- Rehan, M.; Chowdhury, R.; Biswas, P.; Kang, M.S.; Varshney, S.K. Low-threshold Cascaded Raman Scattering and Intermodal Four-wave Mixing in Cascaded Multimode Fiber System. J. Light. Technol. 2024, 42, 1–7. [Google Scholar] [CrossRef]
- Nazemosadat, E.; Pourbeyram, H.; Mafi, A. Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers. J. Opt. Soc. Am. B 2016, 33, 144–150. [Google Scholar] [CrossRef]
- Babin, S.A.; Churkin, D.V.; Ismagulov, A.E.; Kablukov, S.I.; Podivilov, E.V. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser. J. Opt. Soc. Am. B 2007, 24, 1729–1738. [Google Scholar] [CrossRef]
- Vanholsbeeck, F.; Emplit, P.; Coen, S. Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain. Opt. Lett. 2003, 28, 1960–1962. [Google Scholar] [CrossRef]
- Kim, J.; Dupriez, P.; Codemard, C.; Nilsson, J.; Sahu, J.K. Suppression of Stimulated Raman Scattering in a High Power Yb-doped Fiber Amplifier Using a W-type Core with Fundamental Mode Cut-off. Opt. Express 2006, 13, 5103–5113. [Google Scholar] [CrossRef]
- Ji, J.; Codemard, C.A.; Nilsson, J. Analysis of Spectral Bendloss Filtering in a Cladding-Pumped W-Type Fiber Raman Amplifier. J. Light. Technol. 2010, 28, 2179–2186. [Google Scholar] [CrossRef]
- Taru, T.; Hou, J.; Knight, J.C. Raman Gain Suppression in All-solid Photonic Bandgap Fiber. In Proceedings of the 33rd European Conference and Exhibition of Optical Communication, Basel, Switzerland, 16–20 September 2007; pp. 1–2. [Google Scholar]
- Gu, G.; Kong, F.; Hawkins, T.; Parsons, J.; Jones, M.; Dunn, C.; Kalichevsky-Dong, M.T.; Saitoh, K.; Dong, L. Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers. Opt. Express 2014, 22, 13962–13968. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Sui, Y.; Liu, X.; Bai, Z.; Fan, Z. Hundreds of picosecond pulses amplifier based on Yb-doped tapered fiber for the generation of 100 W average output power. Infrared Phys. Technol. 2024, 137, 105143. [Google Scholar] [CrossRef]
- Mikhailov, E.K.; Bobkov, K.K.; Levchenko, A.E.; Velmiskin, V.V.; Khudyakov, D.V.; Aleshkina, S.S.; Zaushitsyna, T.S.; Bubnov, M.M.; Lipatov, D.S.; Likhachev, M.E. Picosecond Pulse Tapered Fiber Amplifier Operated near 1030 nm with Peak Power up to 1 MW. Photonics 2023, 10, 1385. [Google Scholar] [CrossRef]
- Bobkov, K.K.; Levchenko, A.E.; Kashaykina, T.A.; Aleshkina, S.S.; Bubnov, M.M.; Lipatov, D.S.; Laptev, A.Y.; Gur’yanov, A.N.; Leventoux, Y.; Granger, G.; et al. Scaling of average power in sub-MW peak power Yb-doped tapered fiber picosecond pulse amplifiers. Opt. Express 2021, 29, 1722–1735. [Google Scholar] [CrossRef]
- Petrov, A.; Odnoblyudov, M.; Gumenyuk, R.; Minyonok, L.; Chumachenko, A.; Filippov, V. Picosecond Yb-doped tapered fiber laser system with 1.26 MW peak power and 200 W average output power. Sci. Rep. 2020, 10, 17781. [Google Scholar] [CrossRef]
- Trikshev, A.I.; Kurkov, A.S.; Tsvetkov, V.B.; Filatova, S.A.; Kertulla, J.; Filippov, V.; Chamorovskiy, Y.K.; Okhotnikov, O.G. A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier. Laser Phys. Lett. 2013, 10, 65101. [Google Scholar] [CrossRef]
- Bobkov, K.; Andrianov, A.; Koptev, M.; Muravyev, S.; Levchenko, A.; Velmiskin, V.; Aleshkina, S.; Semjonov, S.; Lipatov, D.; Guryanov, A. Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier. Opt. Express 2017, 25, 26958–26972. [Google Scholar] [CrossRef]
- Kerttula, J.; Filippov, V.; Chamorovskii, Y.; Ustimchik, V.; Golant, K.; Okhotnikov, O.G. Tapered fiber amplifier with high gain and output power. Laser Phys. 2012, 22, 1734–1738. [Google Scholar] [CrossRef]
- Shi, C.; Wang, X.; Zhou, P.; Xu, X. Theoretical study of stimulated Raman scattering in long tapered fiber amplifier. Chin. Opt. Lett. 2017, 15, 34–38. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, H.; Xi, X.; Liu, W.; Li, R.; Pan, Z.; Yang, H.; Yan, Z.; Chen, Z.; Huang, L.; et al. 10 kW tandem pumping fiber amplifier with good beam quality based on tapered ytterbium-doped fiber. Opt. Express 2023, 31, 40980–40990. [Google Scholar] [CrossRef] [PubMed]
- Filippov, V.; Chamorovskii, Y.; Kerttula, J.; Golant, K.; Pessa, M.; Okhotnikov, O.G. Double Clad Tapered Fiber for High Power Applications. Opt. Express 2008, 16, 1929–1944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, P.; Xiao, H.; Leng, J.; Tao, R.; Wang, X.; Xu, J.; Xu, X.; Liu, Z. Toward high-power nonlinear fiber amplifier. High Power Laser Sci. Eng. 2018, 6, e51. [Google Scholar] [CrossRef]
- Feve, J.-P. Phase-matching and mitigation of four-wave mixing in fibers with positive gain. Opt. Express 2007, 15, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Pidishety, S.; Feng, Y.; Hong, S.; Demas, J.; Sidharthan, R.; Yoo, S.; Ramachandran, S.; Srinivasan, B.; Nilsson, J. Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber. Opt. Express 2018, 26, 23295–23304. [Google Scholar] [CrossRef] [PubMed]
- Filippov, V.; Kerttula, J.; Okhotnikov, O.G. Tapered fiber lasers and amplifiers. In Fiber Lasers, 1st ed.; Wiley-VCH: Weinheim, Germany, 2012; pp. 177–232. [Google Scholar]
- Zervas, M.N.; Codemard, C.A. High Power Fiber Lasers: A Review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics, 5th ed.; Academic Press: Boston, MA, USA, 2013; p. 297. [Google Scholar]
Wavelength, nm | β in the Thin Part, m−1 | β in the Thick Part, m−1 |
---|---|---|
1070 | 8,596,483.4 | 8,600,420.3 |
1120 | 8,212,370.1 | 8,216,308.3 |
1175 | 7,828,244.0 | 7,832,173.1 |
Parameter | Value | Parameter | Value |
---|---|---|---|
ncore | 1.465 | α | 3 dB/km |
NA | 0.08 | gR | 6.3 × 10−14 m/W |
Thin end core diameter | 10 μm | n2 | 2.3 × 10−20 m2/W |
Thin end cladding diameter | 125 μm |
Fiber | Tapering Ratio | Thin Part Length, m | Tapered Region Length, m | Thick Part Length, m | Fiber Length, m |
---|---|---|---|---|---|
1 | 2 | 30 | 10 | 50 | 90 |
2 | 2 | 40 | 10 | 25 | 75 |
3 | 2.5 | 40 | 10 | 40 | 90 |
4 | 3 | 50 | 10 | 20 | 70 |
Seed wavelength, nm | 1110 | 1120 | 1130 |
Frequency separation with pump, THz | 10.0 | 12.5 | 14.8 |
Higher-order Raman wavelength, nm | 1167 | 1178 | 1189 |
Raman-assisted FWM wavelength, nm | 1153 | 1175 | 1197 |
Raman gain coefficient of signal | 0.73 gR | gR | 0.97 gR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Zhang, Y.; Hao, X.; Fan, C.; Chen, X.; Ye, J.; Yao, T.; Zhang, H.; Huang, L.; Leng, J.; et al. Numerical Investigation of Raman-Assisted Four-Wave Mixing in Tapered Fiber Raman Fiber Amplifier. Photonics 2024, 11, 1059. https://doi.org/10.3390/photonics11111059
Huang S, Zhang Y, Hao X, Fan C, Chen X, Ye J, Yao T, Zhang H, Huang L, Leng J, et al. Numerical Investigation of Raman-Assisted Four-Wave Mixing in Tapered Fiber Raman Fiber Amplifier. Photonics. 2024; 11(11):1059. https://doi.org/10.3390/photonics11111059
Chicago/Turabian StyleHuang, Shanmin, Yang Zhang, Xiulu Hao, Chenchen Fan, Xiao Chen, Jun Ye, Tianfu Yao, Hanwei Zhang, Liangjin Huang, Jinyong Leng, and et al. 2024. "Numerical Investigation of Raman-Assisted Four-Wave Mixing in Tapered Fiber Raman Fiber Amplifier" Photonics 11, no. 11: 1059. https://doi.org/10.3390/photonics11111059
APA StyleHuang, S., Zhang, Y., Hao, X., Fan, C., Chen, X., Ye, J., Yao, T., Zhang, H., Huang, L., Leng, J., Xu, J., Pan, Z., & Zhou, P. (2024). Numerical Investigation of Raman-Assisted Four-Wave Mixing in Tapered Fiber Raman Fiber Amplifier. Photonics, 11(11), 1059. https://doi.org/10.3390/photonics11111059