1010 nm Directly LD-Pumped 6kW Monolithic Fiber Laser Employing Long-Tapered Yb3+-Doped Fiber
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. 4.6 kW Output by Counter-Pumped 1010 nm LD
3.2. 6 kW Output by the Bidirectional Pumped 1010 nm LD
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zervas, M.N.; Codemard, C.A. High Power Fiber Lasers: A Review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [Google Scholar] [CrossRef]
- Nilsson, J.; David, N.P. High-power fiber lasers. Science 2011, 332, 921–922. [Google Scholar] [CrossRef] [PubMed]
- Mingareev, I.; Weirauch, F.; Olowinsky, A.; Shah, L.; Kadwani, P.; Richardson, M. Welding of polymers using a 2 μm thulium fiber laser. Opt Laser Technol. 2012, 44, 2095–2099. [Google Scholar] [CrossRef]
- Lin, A.; Xiao, Q.; Ni, L.; Li, D.; Peng, K.; Qi, T.; Yu, J.; Tian, J.; Leng, X.; Wu, Y.; et al. Domestic YDF active fiber realizes single fiber 20 kW laser output. Chin. J. Lasers 2011, 48, 0916003. [Google Scholar]
- Xi, X.; Yang, B.; Zhang, H.; Pan, Z.; Huang, L.; Wang, P.; Yang, H.; Shi, C.; Yan, Z.; Chen, Z.; et al. 20 kW monolithic fiber amplifier directly pumped by LDs. High Power Laser Part Beams 2023, 35, 021001-1–021001-2. [Google Scholar]
- Wang, Y.; Kitahara, R.; Kiyoyama, W.; Shirakura, Y.; Kurihara, T.; Nakanish, Y.; Yamamoto, T.; Nakayama, M.; Ikoma, S.; Shima, K. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad. Fiber Lasers XVII Technol. Syst. 2020, 11260, 273–278. [Google Scholar]
- Tino, E.; Stefan, H.; Enrico, S.; Thomas, V.A.; Thomas, G.; Christian, W.; Thomas, S.; Jens, L.; Andreas, T. Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 2010, 35, 94–96. [Google Scholar]
- Jauregui, C.; Christoph, S.; Jens, L. Transverse mode instability. Adv. Opt. Photonics 2020, 12.2, 429–484. [Google Scholar] [CrossRef]
- Hansen, K.R.; Alkeskjold, T.T.; Broeng, J.; Laegsgaard, J. Theoretical analysis of mode instability in high-power fiber amplifiers. Opt. Express 2013, 21, 1944–1971. [Google Scholar] [CrossRef]
- Ward, B.; Robin, C.; Dajani, I. Origin of thermal modal instabilities in large mode area fiber amplifiers. Opt Express 2012, 20, 11407–11422. [Google Scholar] [CrossRef]
- Jauregui, C.; Eidam, T.; Otto, H.-J.; Stutzki, F.; StutzkiJansen, F.; Limpert, J.; Tünnermann, A. Physical origin of mode instabilities in highpower fiber laser systems. Opt. Express 2012, 20, 12912–12925. [Google Scholar] [CrossRef] [PubMed]
- Jauregui, C.; Stihler, C.; Tünnermann, A.; Limpert, J. Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold. Opt. Express 2018, 26, 10691–10704. [Google Scholar] [CrossRef]
- Huang, Z.; Shu, Q.; Luo, Y.; Tao, R.; Feng, X.; Liu, Y.; Lin, H.; Wang, J.; Jing, F. 3.5 kW narrow-linewidth monolithic fiber amplifier at 1064 nm by employing a confined doping fiber. J. Opt. Soc. Am. B 2021, 38, 2945–2952. [Google Scholar] [CrossRef]
- Beier, F.; Hupel, C.; Nold, J.; Kuhn, S.; Hein, S.; Ihring, J.; Sattler, B.; Haarlammert, N.; Schreiber, T.; Eberhardt, R.; et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier. Opt. Express 2016, 24, 6011–6020. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Rong, T.; Zhang, H.; Yang, B.; Wang, X.; Zhou, P.; Xu, X.; Lu, Q. Experimental study of output characteristics of bi-directional pumping high power fiber amplifier in different pumping schemes. IEEE. Photonics J. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Smith, A.; Smith, J. Steady-periodic method for modeling mode instability in fiber amplifiers. Opt Express 2013, 21, 2606–2623. [Google Scholar] [CrossRef]
- Li, F.; Wang, P.; Wang, X.; Xi, X.; Wu, H.; Zhang, H.; Xi, F.; Chen, J. −50~50 ℃ ultra-wide temperature operation kilowatt-class fiber laser. High Power Laser Part Beams 2023, 35, 091013-1. [Google Scholar]
- Wang, P.; Meng, X.; Wu, H.; Ye, Y.; Yang, B.; Xi, X.; Shi, C.; Zhang, H.; Wang, X.; Xi, F.; et al. 2 kW fiber laser pumped by long-wavelength laser diodes. High Power Laser Part Beams 2024, 36, 031001-1. [Google Scholar]
- Hejaz, K.; Shayganmanesh, M.; Nasirabad, R.R.; Roohforouz, A.; Azizi, S.; Abedinajafi, A.; Vatani, V. Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers. Opt. Lett. 2017, 42, 5274–5277. [Google Scholar] [CrossRef]
- Nasirabad, R.R.; Azizi, S.; Paygan, D.; Tavassoli, M.; Abedinajafi, A.; Roohforouz, A.; Chenar, R.E.; Golshan, A.H.; Hejaz, K.; Vatani, V. 2.5 kW TMI-free co-pump Yb-doped fiber oscillator by 971.5 nm pumping wavelength. Opt. Laser Technol. 2023, 157, 108652. [Google Scholar] [CrossRef]
- Ustimchik, V.E.; Chamorovskii, Y.K.; Filippov, V.N.; Kerttula, J.; Ulanov, A.E.; Nikitov, S.A. Tapered double-clad optical fibers as gain medium for high power lasers and amplifiers. In Proceedings of the 2013 International Conference on Advanced Optoelectronics and Lasers (CAOL), Sudak, Ukraine, 9–13 September 2013. [Google Scholar]
- Filippov, V.; Ustimchik, V.; Chamorovskii, Y.; Golant, K.; Vorotynskii, A.; Okhotnikov, O.G. Impact of axial profile of the gain medium on the mode instability in lasers: Regular versus tapered fibers. In Proceedings of the European Conference on Lasers and Electro-Optics, Munich, Germany, 21–25 June 2015; Optica Publishing Group: Washington, DC, USA, 2015. [Google Scholar]
- Petrov, A.; Odnoblyudov, M.; Gumenyuk, R.; Minyonok, L.; Chumachenko, A.; Filippov, V. Picosecond Yb-doped tapered fiber laser system with 1.26 MW peak power and 200 W average output power. Sci. Rep. 2020, 10, 17781. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, T.; Zhao, J.; Rao, L. Influence of ambient temperature on the performance of the semiconductor laser. In Proceedings of the 15th International Conference on Optical Communications and Networks (ICOCN), Hangzhou, China, 24–27 September 2016. [Google Scholar]
Component | Output M2 | M2 Deterioration |
---|---|---|
SEED | 1.273 | 0 |
MFA + CLS | 1.545 | 0.272 |
MFA + CLS + FPSC | 2.066 | 0.521 |
MFA + CLS + FPSC + TYDF | 2.567 | 0.501 |
MFA + CLS + FPSC + TYDF + BPSC | 3.210 | 0.643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Wang, P.; Xu, X.; Wu, H.; Pan, Z.; Ye, Y.; Yan, Z.; Xi, X.; Zhang, H.; Wang, X. 1010 nm Directly LD-Pumped 6kW Monolithic Fiber Laser Employing Long-Tapered Yb3+-Doped Fiber. Photonics 2024, 11, 1033. https://doi.org/10.3390/photonics11111033
Yang M, Wang P, Xu X, Wu H, Pan Z, Ye Y, Yan Z, Xi X, Zhang H, Wang X. 1010 nm Directly LD-Pumped 6kW Monolithic Fiber Laser Employing Long-Tapered Yb3+-Doped Fiber. Photonics. 2024; 11(11):1033. https://doi.org/10.3390/photonics11111033
Chicago/Turabian StyleYang, Mingye, Peng Wang, Xiaoyong Xu, Hanshuo Wu, Zhiyong Pan, Yun Ye, Zhiping Yan, Xiaoming Xi, Hanwei Zhang, and Xiaolin Wang. 2024. "1010 nm Directly LD-Pumped 6kW Monolithic Fiber Laser Employing Long-Tapered Yb3+-Doped Fiber" Photonics 11, no. 11: 1033. https://doi.org/10.3390/photonics11111033
APA StyleYang, M., Wang, P., Xu, X., Wu, H., Pan, Z., Ye, Y., Yan, Z., Xi, X., Zhang, H., & Wang, X. (2024). 1010 nm Directly LD-Pumped 6kW Monolithic Fiber Laser Employing Long-Tapered Yb3+-Doped Fiber. Photonics, 11(11), 1033. https://doi.org/10.3390/photonics11111033