Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = ROS quenchers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4914 KiB  
Article
Development and Validation of the Particle into Nitroxide Quencher System with BPEAnit Probe for High-Sensitivity Reactive Oxygen Species Detection in Atmospheric Monitoring
by Ruiwen Wang, Jiawen Li, Hao Wang, Shuo Deng, Congrong He, Branka Miljevic, Zoran Ristovski and Boguang Wang
Sensors 2025, 25(4), 1129; https://doi.org/10.3390/s25041129 - 13 Feb 2025
Cited by 1 | Viewed by 788
Abstract
Reactive oxygen species (ROS) play an important role in atmospheric pollution, and their detection is essential for assessing air quality and health risks. This study developed and validated a standardized methodology for using the BPEAnit probe in a specially designed particle-into-liquid sampler, the [...] Read more.
Reactive oxygen species (ROS) play an important role in atmospheric pollution, and their detection is essential for assessing air quality and health risks. This study developed and validated a standardized methodology for using the BPEAnit probe in a specially designed particle-into-liquid sampler, the Particle Into Nitroxide Quencher (PINQ), to measure reactive oxygen species in atmospheric monitoring applications. The method demonstrated high sensitivity, with a detection limit of 0.03 nmol·m−3, robust linearity (R2 = 0.9999), and negligible system residue, ensuring accurate ROS quantification. Comparative analyses of startup conditions revealed superior baseline stability under cold start conditions despite the longer stabilization time required. The auto-oxidation of the BPEAnit probe, measured at a rate of 3.01 nmol·m−3 per hour, was identified as a critical factor for long-term monitoring, highlighting the necessity of standardized procedures to mitigate the drift effect. The study established the system’s suitability for urban air quality assessments and public health risk evaluations, offering insights into its limitations and operational challenges. Future advancements could focus on enhancing probe stability and expanding the method’s utility in diverse operational environments, thereby broadening its applicability to diverse monitoring scenarios. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

17 pages, 2128 KiB  
Review
Acetyl Zingerone: A Photostable Multifunctional Skincare Ingredient That Combats Features of Intrinsic and Extrinsic Skin Aging
by Thomas A. Meyer, William R. Swindell and Ratan K. Chaudhuri
Antioxidants 2023, 12(6), 1168; https://doi.org/10.3390/antiox12061168 - 29 May 2023
Cited by 12 | Viewed by 5142
Abstract
The cumulative damage skin sustains from exposure to environmental stressors throughout life exerts significant effects on skin aging and cancer development. One of the main ways by which environmental stressors mediate their effects within skin is through induction of reactive oxygen species (ROS). [...] Read more.
The cumulative damage skin sustains from exposure to environmental stressors throughout life exerts significant effects on skin aging and cancer development. One of the main ways by which environmental stressors mediate their effects within skin is through induction of reactive oxygen species (ROS). In this review, we chronicle the multiple properties by which acetyl zingerone (AZ) as a skincare ingredient can benefit skin (1) by helping manage overproduction of ROS through multiple routes as an antioxidant, physical quencher and selective chelator, (2) by fortifying protection after UV exposure ends to prevent the type of epidermal DNA damage that correlates with development of skin cancer, (3) by modulating matrisome activity and nurturing the integrity of the extracellular matrix (ECM) within the dermis and (4) through its proficient ability to neutralize singlet oxygen, by stabilizing the ascorbic acid precursor tetrahexyldecyl ascorbate (THDC) in the dermal microenvironment. This activity improves THDC bioavailability and may blunt pro-inflammatory effects of THDC, such as activation of type I interferon signaling. Moreover, AZ is photostable and can sustain its properties during UV exposure, in contrast to α-tocopherol. All these properties of AZ translate into measurable clinical benefits to improve the visual appearance of photoaged facial skin and to strengthen the skin’s own defenses against sun damage. Full article
(This article belongs to the Special Issue Natural Antioxidants: Multiple Mechanisms for Skin Protection)
Show Figures

Figure 1

11 pages, 2489 KiB  
Article
Mitochondria-Stimulating and Antioxidant Effects of Slovak Propolis Varieties on Bovine Spermatozoa
by Eva Tvrdá, Július Árvay, Michal Ďuračka and Miroslava Kačániová
Oxygen 2023, 3(2), 179-189; https://doi.org/10.3390/oxygen3020013 - 26 Apr 2023
Cited by 1 | Viewed by 2088
Abstract
Propolis is a natural honeybee product, which is known for its beneficial pharmacological effects and use in traditional medicine. This study aspired to investigate the chemical and antioxidant properties of five propolis specimens, followed by the analysis of their in vitro impact on [...] Read more.
Propolis is a natural honeybee product, which is known for its beneficial pharmacological effects and use in traditional medicine. This study aspired to investigate the chemical and antioxidant properties of five propolis specimens, followed by the analysis of their in vitro impact on bovine spermatozoa vitality and oxidative profile. Semen samples from 10 breeding bulls were incubated in the absence or presence of 50 µg/mL propolis extracts, and selected sperm quality parameters including motility, mitochondrial activity, cAMP concentration, NAD+/NADH ratio, reactive oxygen species (ROS) and superoxide production were assessed at 2 h and 24 h. Sperm motion behavior and mitochondrial function were stabilized particularly in the presence of propolis collected from Hrabské and Litpovský Hrádok, Slovakia. At the same time, all propolis specimens acted as significant ROS quenchers and stabilized the oxidative milieu of the sperm cultures. Our data suggest that propolis may stabilize the mitochondrial function of spermatozoa while preventing excessive oxidative insults, thereby showing the potential to sustain the sperm motility of extended semen. Full article
(This article belongs to the Special Issue Feature Papers in Oxygen Volume Ⅱ)
Show Figures

Figure 1

17 pages, 3528 KiB  
Article
Zn Supplementation Mitigates Drought Effects on Cotton by Improving Photosynthetic Performance and Antioxidant Defense Mechanisms
by Touhidur Rahman Anik, Mohammad Golam Mostofa, Md. Mezanur Rahman, Md. Arifur Rahman Khan, Protik Kumar Ghosh, Sharmin Sultana, Ashim Kumar Das, Md. Saddam Hossain, Sanjida Sultana Keya, Md. Abiar Rahman, Nusrat Jahan, Aarti Gupta and Lam-Son Phan Tran
Antioxidants 2023, 12(4), 854; https://doi.org/10.3390/antiox12040854 - 1 Apr 2023
Cited by 13 | Viewed by 2968
Abstract
Drought is recognized as a paramount threat to sustainable agricultural productivity. This threat has grown more severe in the age of global climate change. As a result, finding a long-term solution to increase plants’ tolerance to drought stress has been a key research [...] Read more.
Drought is recognized as a paramount threat to sustainable agricultural productivity. This threat has grown more severe in the age of global climate change. As a result, finding a long-term solution to increase plants’ tolerance to drought stress has been a key research focus. Applications of chemicals such as zinc (Zn) may provide a simpler, less time-consuming, and effective technique for boosting the plant’s resilience to drought. The present study gathers persuasive evidence on the potential roles of zinc sulphate (ZnSO4·7H2O; 1.0 g Kg−1 soil) and zinc oxide (ZnO; 1.0 g Kg−1 soil) in promoting tolerance of cotton plants exposed to drought at the first square stage, by exploring various physiological, morphological, and biochemical features. Soil supplementation of ZnSO4 or ZnO to cotton plants improved their shoot biomass, root dry weight, leaf area, photosynthetic performance, and water-use efficiency under drought stress. Zn application further reduced the drought-induced accumulations of H2O2 and malondialdehyde, and electrolyte leakage in stressed plants. Antioxidant assays revealed that Zn supplements, particularly ZnSO4, reduced reactive oxygen species (ROS) accumulation by increasing the activities of a range of ROS quenchers, such as catalase, ascorbate peroxidase, glutathione S-transferase, and guaiacol peroxidase, to protect the plants against ROS-induced oxidative damage during drought stress. Increased leaf relative water contents along with increased water-soluble protein contents may indicate the role of Zn in improving the plant’s water status under water-deficient conditions. The results of the current study also suggested that, in general, ZnSO4 supplementation more effectively increased cotton drought tolerance than ZnO supplementation, thereby suggesting ZnSO4 as a potential chemical to curtail drought-induced detrimental effects in water-limited soil conditions. Full article
(This article belongs to the Special Issue Antioxidant Mechanisms in Plants)
Show Figures

Figure 1

12 pages, 1280 KiB  
Article
Are Reactive Oxygen Species (ROS) the Main Mechanism by Which Copper Ion Treatment Degrades the DNA of Mycobacterium avium subsp. paratuberculosis Suspended in Milk?
by Marcela Villegas, Carlos Tejeda, Reydoret Umaña, Esperanza C. Iranzo and Miguel Salgado
Microorganisms 2022, 10(11), 2272; https://doi.org/10.3390/microorganisms10112272 - 16 Nov 2022
Cited by 6 | Viewed by 2433
Abstract
Background: Mycobacterium avium subsp. paratuberculosis (MAP) is the causal agent of paratuberculosis. This pathogen is able to survive adverse environmental conditions, including the pasteurization process. Copper, a well-studied metal, is considered an important antibacterial tool, since it has been shown to inactivate even [...] Read more.
Background: Mycobacterium avium subsp. paratuberculosis (MAP) is the causal agent of paratuberculosis. This pathogen is able to survive adverse environmental conditions, including the pasteurization process. Copper, a well-studied metal, is considered an important antibacterial tool, since it has been shown to inactivate even MAP in treated milk through unknown mechanisms. The aim of the present study is to show the effect of copper ions, and reactive oxygen species (ROS) generated in response to oxidative stress, on the damage to MAP DNA when exposed to a copper ion challenge in cow’s milk. Methodology: Spiked milk with different MAP bacterial loads was supplemented with blocking agents. These were either the copper chelators ethylenediaminetetraacetic acid (EDTA) and batocuproin (BCS) or the ROS quenchers D-mannitol, gallic acid and quercetin. The DNA protection, MAP viability and ROS production generated after exposure to a copper challenge were then measured. Results: In a bacterial load of 104 cells mL−1, blocking effects by both the copper chelators and all the ROS quenchers offered significant protection to MAP DNA. In a concentration of 102 cells mL−1, only D-mannitol and a mix of quenchers significantly protected the viability of the bacteria, and only at a concentration of 106 cells mL−1 was there a lower production of ROS when supplementing milk with gallic acid, quercetin and the mix of quenchers. Conclusion: Based on these findings, it may be concluded that MAP DNA damage can be attributed to the combined effect of the direct copper ions and ROS generated. Nevertheless, taking into account the antioxidant environment that milk provides, the direct effect of copper could play a prominent role. Full article
(This article belongs to the Topic Redox in Microorganisms)
Show Figures

Figure 1

14 pages, 1512 KiB  
Article
Dwarf Kiwi (Actinidia arguta Miq.), a Source of Antioxidants for a Healthy and Sustainable Diet
by Patricia Garcia-Herrera, Helayne A. Maieves, Erika N. Vega, María Luisa Perez-Rodriguez, Virginia Fernandez-Ruiz, Amaia Iriondo-DeHond, Maria Dolores del Castillo and Maria Cortes Sanchez-Mata
Molecules 2022, 27(17), 5495; https://doi.org/10.3390/molecules27175495 - 26 Aug 2022
Cited by 11 | Viewed by 4141
Abstract
The feasibility of using dwarf kiwi fruits (Actinia arguta Miq.) as a healthy and sustainable food, compared to other types of commercial kiwi fruits, was evaluated in the present study. The overall antioxidant capacity of these fruits was assessed by either extraction-dependent [...] Read more.
The feasibility of using dwarf kiwi fruits (Actinia arguta Miq.) as a healthy and sustainable food, compared to other types of commercial kiwi fruits, was evaluated in the present study. The overall antioxidant capacity of these fruits was assessed by either extraction-dependent methods (ABTS, ORAC) or the direct method called Quick, Easy, New, CHEap, Reproducible (QUENCHER) (DPPH, FRAP, Folin–Ciocalteu), applied for the first time to analyze kiwi fruits. With this methodology, all the molecules with antioxidant capacity are measured together in a single step, even those with high molecular weight or poor solubility in aqueous extraction systems, such as antioxidant dietary fiber. The effect of kiwi extracts on physiological and induced intracellular reactive oxygen species (ROS) production on IEC-6 cells was also analyzed, as well as total phenolic content (TPC) by Fast Blue BB, flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. A. arguta fruits showed the highest values in all the antioxidant assays, being remarkably higher than the other kiwi species for Q-FRAP and Q-DPPH. Dwarf kiwi showed the highest potential in reducing physiological ROS and the highest values of TPC (54.57 mgGAE/g), being hydroxybenzoic acids the main phenolic family found (2.40 mgGAE/g). Therefore, dwarf kiwi fruits are a natural source of antioxidants compared to conventional kiwi fruits, being a sustainable and healthy alternative to diversify fruits in the diet. Full article
(This article belongs to the Special Issue Plant Foods Ingredients as Functional Foods and Nutraceuticals)
Show Figures

Figure 1

19 pages, 2321 KiB  
Article
Triplet-Energy Quenching Functions of Antioxidant Molecules
by Carlos Angelé-Martínez, Leticia Christina Pires Goncalves, Sanjay Premi, Felipe A. Augusto, Meg A. Palmatier, Saroj K. Amar and Douglas E. Brash
Antioxidants 2022, 11(2), 357; https://doi.org/10.3390/antiox11020357 - 11 Feb 2022
Cited by 17 | Viewed by 4713
Abstract
UV-like DNA damage is created in the dark by chemiexcitation, in which UV-activated enzymes generate reactive oxygen and nitrogen species that create a dioxetane on melanin. Thermal cleavage creates an electronically excited triplet-state carbonyl whose high energy transfers to DNA. Screening natural compounds [...] Read more.
UV-like DNA damage is created in the dark by chemiexcitation, in which UV-activated enzymes generate reactive oxygen and nitrogen species that create a dioxetane on melanin. Thermal cleavage creates an electronically excited triplet-state carbonyl whose high energy transfers to DNA. Screening natural compounds for the ability to quench this energy identified polyenes, polyphenols, mycosporine-like amino acids, and related compounds better known as antioxidants. To eliminate false positives such as ROS and RNS scavengers, we then used the generator of triplet-state acetone, tetramethyl-1,2-dioxetane (TMD), to excite the triplet-energy reporter 9,10-dibromoanthracene-2-sulfonate (DBAS). Quenching measured as reduction in DBAS luminescence revealed three clusters of 50% inhibitory concentration, ~50 μM, 200–500 μM, and >600 μM, with the former including sorbate, ferulic acid, and resveratrol. Representative triplet-state quenchers prevented chemiexcitation-induced “dark” cyclobutane pyrimidine dimers (dCPD) in DNA and in UVA-irradiated melanocytes. We conclude that (i) the delocalized pi electron cloud that stabilizes the electron-donating activity of many common antioxidants allows the same molecule to prevent an electronically excited species from transferring its triplet-state energy to targets such as DNA and (ii) the most effective class of triplet-state quenchers appear to operate by energy diversion instead of electron donation and dissipate that energy by isomerization. Full article
(This article belongs to the Special Issue Free Radicals, Antioxidants and Melanoma: Where Do We Stand?)
Show Figures

Graphical abstract

12 pages, 252 KiB  
Review
Appropriate Technologies to Accompany Sunscreens in the Battle Against Ultraviolet, Superoxide, and Singlet Oxygen
by Paolo U. Giacomoni
Antioxidants 2020, 9(11), 1091; https://doi.org/10.3390/antiox9111091 - 6 Nov 2020
Cited by 9 | Viewed by 3186
Abstract
The interaction of ultraviolet radiation with biological matter results in direct damage such as pyrimidine dimers in DNA. It also results in indirect damage provoked by the production of reactive oxygen species (ROS) catalyzed by photosensitizers. Photosensitizers can be endogenous (e.g., tryptophan) or [...] Read more.
The interaction of ultraviolet radiation with biological matter results in direct damage such as pyrimidine dimers in DNA. It also results in indirect damage provoked by the production of reactive oxygen species (ROS) catalyzed by photosensitizers. Photosensitizers can be endogenous (e.g., tryptophan) or exogenous (e.g., TiO2 and other photostable UVA sunscreens). Direct damage triggers an inflammatory response and the oxidative and proteolytic bursts that characterize its onset. The inflammatory reaction multiplies the effects of one single photon. Indirect damage, such as the peroxidative cascade in membrane lipids, can extend to thousands of molecular modifications per absorbed photon. Sunscreens should therefore be formulated in the presence of appropriate antioxidants. Superoxide and singlet oxygen are the main ROS that need to be tackled: this review describes some of the molecular, biochemical, cellular, and clinical consequences of exposure to UV radiation as well as some results associated with scavengers and quenchers of superoxide and singlet oxygen, as well as with inhibitors of singlet oxygen production. Full article
16 pages, 1810 KiB  
Article
Application of a Fluorescent Probe for the Online Measurement of PM-Bound Reactive Oxygen Species in Chamber and Ambient Studies
by Reece Brown, Svetlana Stevanovic, Zachary Brown, Mingfu Cai, Shengzhen Zhou, Wei Song, Xinming Wang, Branka Miljevic, Jun Zhao, Steven Bottle and Zoran Ristovski
Sensors 2019, 19(20), 4564; https://doi.org/10.3390/s19204564 - 21 Oct 2019
Cited by 5 | Viewed by 3560
Abstract
This manuscript details the application of a profluorescent nitroxide (PFN) for the online quantification of radical concentrations on particulate matter (PM) using an improved Particle Into Nitroxide Quencher (PINQ). A miniature flow-through fluorimeter developed specifically for use with the 9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) probe was [...] Read more.
This manuscript details the application of a profluorescent nitroxide (PFN) for the online quantification of radical concentrations on particulate matter (PM) using an improved Particle Into Nitroxide Quencher (PINQ). A miniature flow-through fluorimeter developed specifically for use with the 9,10-bis(phenylethynyl)anthracene-nitroxide (BPEAnit) probe was integrated into the PINQ, along with automated gas phase corrections through periodic high efficiency particle arrestor (HEPA) filtering. The resulting instrument is capable of unattended sampling and was operated with a minimum time resolution of 2.5 min. Details of the fluorimeter design and examples of data processing are provided, and results from a chamber study of side-stream cigarette smoke and ambient monitoring campaign in Guangzhou, China are presented. Primary cigarette smoke was shown to have both short-lived (t1/2 = 27 min) and long-lived (t1/2 = indefinite) PM-bound reactive oxygen species (ROS) components which had previously only been observed in secondary organic aerosol (SOA). Full article
(This article belongs to the Special Issue Fluorescence-Based Sensors)
Show Figures

Figure 1

24 pages, 9180 KiB  
Article
The Therapeutic Implications of Tea Polyphenols against Dopamine (DA) Neuron Degeneration in Parkinson’s Disease (PD)
by Zhi Dong Zhou, Shao Ping Xie, Wuan Ting Saw, Patrick Ghim Hoe Ho, Hong Yan Wang, Lei Zhou, Yi Zhao and Eng King Tan
Cells 2019, 8(8), 911; https://doi.org/10.3390/cells8080911 - 16 Aug 2019
Cited by 98 | Viewed by 7450
Abstract
Accumulative evidence indicated that the pathologically accumulated metal ions (iron species and Mn3+) and abnormally up-regulated monoamine oxidase B (MAOB) activity induced oxidation of endogenous dopamine (DA) can lead to mitochondria impairment, lysosome dysfunction, proteasome inhibition, and selective DA neuron vulnerability, [...] Read more.
Accumulative evidence indicated that the pathologically accumulated metal ions (iron species and Mn3+) and abnormally up-regulated monoamine oxidase B (MAOB) activity induced oxidation of endogenous dopamine (DA) can lead to mitochondria impairment, lysosome dysfunction, proteasome inhibition, and selective DA neuron vulnerability, which is implicated in the pathogenesis of Parkinson’s disease (PD). The DA oxidation can generate deleterious reactive oxygen species (ROS) and highly reactive DA quinones (DAQ) to induce DA-related toxicity, which can be alleviated by DA oxidation suppressors, ROS scavengers, DAQ quenchers, and MAOB inhibitors. On the other hand, the nuclear factor erythroid 2-related factor 2 (Nrf2)-Keap1 and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) anti-oxidative and proliferative signaling pathways play roles in anti-oxidative cell defense and mitochondria biogenesis, which is implicated in DA neuron protections. Therefore, agents with capabilities to suppress DA-related toxicity including inhibition of DA oxidation, scavenge of ROS, detoxification of DAQ, inhibition of MAOB, and modulations of anti-oxidative signaling pathways can be protective to DA neurons. Accumulative evidence shows that tea or coffee consumptions and smoking are related to deceased PD prevalence with unknown mechanisms. In this study, we investigate the protective capabilities of tea polyphenols and other PD relevant agents to inhibit DA-related toxicity and protect against environmental or genetic factors induced DA neuron degeneration in vitro and in vivo. We find that tea polyphenols can significantly suppress DA-related toxicity to protect DA neurons. The tea polyphenols can protect DA neurons via inhibition of DA oxidation, conjugation with DAQ, scavenge of ROS, inhibition of MAOB, and modulations of Nrf2-Keap1 and PGC-1α anti-oxidative signaling pathways. The tea polyphenols with more phenolic hydroxyl groups and ring structures have stronger protective functions. The protective capabilities of tea polyphenols is further strengthened by evidence that phenolic hydroxyl groups can directly conjugate with DAQ. However, GSH and other sulfhydyl groups containing agents have weaker capabilities to abrogate DA oxidation, detoxify ROS and DAQ and inhibit MAOB; whereas nicotine (NICO) and caffeine (CAF) can only modulate Nrf2-Keap1 and PGC-1α pathways to protect DA neurons weakly. The tea polyphenols are identified to protect against overexpression of mutant A30P α-synuclein (α-syn) induced DA neuron degeneration and PD-like symptoms in transgenic Drosophila. Based on achievements from current studies, the excellent and versatile protective capabilities of tea polyphenols are highlighted, which will contribute and benefit to future anti-PD therapy. Full article
(This article belongs to the Special Issue The Molecular and Cellular Basis for Parkinson's Disease 2019)
Show Figures

Figure 1

21 pages, 3062 KiB  
Article
Molecular Antioxidant Properties and In Vitro Cell Toxicity of the p-Aminobenzoic Acid (PABA) Functionalized Peptide Dendrimers §
by Marta Sowinska, Maja Morawiak, Marta Bochyńska-Czyż, Andrzej W. Lipkowski, Elżbieta Ziemińska, Barbara Zabłocka and Zofia Urbanczyk-Lipkowska
Biomolecules 2019, 9(3), 89; https://doi.org/10.3390/biom9030089 - 5 Mar 2019
Cited by 34 | Viewed by 5092
Abstract
Background: Exposure to ozone level and ultraviolet (UV) radiation is one of the major concerns in the context of public health. Numerous studies confirmed that abundant free radicals initiate undesired processes, e.g. carcinogenesis, cells degeneration, etc. Therefore, the design of redox-active molecules with [...] Read more.
Background: Exposure to ozone level and ultraviolet (UV) radiation is one of the major concerns in the context of public health. Numerous studies confirmed that abundant free radicals initiate undesired processes, e.g. carcinogenesis, cells degeneration, etc. Therefore, the design of redox-active molecules with novel structures, containing radical quenchers molecules with novel structures, and understanding their chemistry and biology, might be one of the prospective solutions. Methods: We designed a group of peptide dendrimers carrying multiple copies of p-aminobenzoic acid (PABA) and evaluated their molecular antioxidant properties in 1,1′-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) tests. Cytotoxicity against human melanoma and fibroblast cells as well as against primary cerebral granule cells (CGC) alone and challenged by neurotoxic sodium glutamate and production of reactive oxygen species (ROS) in presence of dendrimers were measured. Results: PABA-terminated dendrimers express enhanced radical and radical cation scavenging properties in relation to PABA alone. In cellular tests, the dendrimers at 100 μM fully suppress and between 20–100 μM reduce proliferation of the human melanoma cell line. In concentration 20 μM dendrimers generate small amount of the reactive oxygen species (<25%) but even in their presence human fibroblast and mouse cerebellar granule cells remain intact Moreover, dendrimers at 0.2–20 µM concentration (except one) increased the percentage of viable fibroblasts and CGC cells treated with 100 μM glutamate. Conclusions: Designed PABA-functionalized peptide dendrimers might be a potential source of new antioxidants with cationic and neutral radicals scavenging potency and/or new compounds with marked selectivity against human melanoma cell or glutamate-stressed CGC neurons. The scavenging level of dendrimers depends strongly on the chemical structure of dendrimer and the presence of other groups that may be prompted into radical form. The present studies found different biological properties for dendrimers constructed from the same chemical fragments but the differing structure of the dendrimer tree provides once again evidence that the structure of dendrimer can have a significant impact on drug–target interactions. Full article
Show Figures

Figure 1

12 pages, 3307 KiB  
Article
A Fluorescent Cy7-Mercaptopyridine for the Selective Detection of Glutathione over Homocysteine and Cysteine
by Shin A Yoon, Wantae Kim, Amit Sharma, Peter Verwilst, Miae Won and Min Hee Lee
Sensors 2018, 18(9), 2897; https://doi.org/10.3390/s18092897 - 1 Sep 2018
Cited by 9 | Viewed by 5564
Abstract
We describe a near-infrared (NIR) fluorescent probe 1 for the selective detection of GSH over Hcy and Cys under physiological conditions. Probe 1 was composed of Cy7 as a NIR dye and 2-mercaptopyridine as a GSH-reactive site and fluorescence quencher. In the presence [...] Read more.
We describe a near-infrared (NIR) fluorescent probe 1 for the selective detection of GSH over Hcy and Cys under physiological conditions. Probe 1 was composed of Cy7 as a NIR dye and 2-mercaptopyridine as a GSH-reactive site and fluorescence quencher. In the presence of GSH, the 2-mercaptopyridine functionality of probe 1 was replaced by the thiolate group of GSH through a nucleophilic substitution reaction with a fluorescence increase at 818 nm. The probe was found to be highly selective for GSH over Hcy, Cys, and other tested potential interferants, including ROS and metal ions. In addition, probe 1 successfully displayed fluorescence changes in response to changing the GSH concentrations in MDA-MB-231 cells in the presence of external agents i.e., N-acetyl-l-cysteine (NAC; as GSH inducer) or buthionine sulfoximine (BSO; as GSH inhibitor). We envision that probe 1 will serve as a promising sensing tool for monitoring the changes of the GSH level and the understanding of the roles of GSH under physiological and pathological conditions. Full article
(This article belongs to the Special Issue Colorimetric and Fluorescent Sensors 2018)
Show Figures

Graphical abstract

17 pages, 1808 KiB  
Review
Photo Protection of Haematococcus pluvialis Algae by Astaxanthin: Unique Properties of Astaxanthin Deduced by EPR, Optical and Electrochemical Studies
by A. Ligia Focsan, Nikolay E. Polyakov and Lowell D. Kispert
Antioxidants 2017, 6(4), 80; https://doi.org/10.3390/antiox6040080 - 21 Oct 2017
Cited by 39 | Viewed by 9946
Abstract
Abstract The antioxidant astaxanthin is known to accumulate in Haematococcus pluvialis algae under unfavorable environmental conditions for normal cell growth. The accumulated astaxanthin functions as a protective agent against oxidative stress damage, and tolerance to excessive reactive oxygen species (ROS) is greater in [...] Read more.
Abstract The antioxidant astaxanthin is known to accumulate in Haematococcus pluvialis algae under unfavorable environmental conditions for normal cell growth. The accumulated astaxanthin functions as a protective agent against oxidative stress damage, and tolerance to excessive reactive oxygen species (ROS) is greater in astaxanthin-rich cells. The detailed mechanisms of protection have remained elusive, however, our Electron Paramagnetic Resonance (EPR), optical and electrochemical studies on carotenoids suggest that astaxanthin’s efficiency as a protective agent could be related to its ability to form chelate complexes with metals and to be esterified, its inability to aggregate in the ester form, its high oxidation potential and the ability to form proton loss neutral radicals under high illumination in the presence of metal ions. The neutral radical species formed by deprotonation of the radical cations can be very effective quenchers of the excited states of chlorophyll under high irradiation. Full article
(This article belongs to the Special Issue Carotenoids—Antioxidant Properties)
Show Figures

Figure 1

15 pages, 445 KiB  
Article
Scavenging Capacity of Marine Carotenoids against Reactive Oxygen and Nitrogen Species in a Membrane-Mimicking System
by Eliseu Rodrigues, Lilian R. B. Mariutti and Adriana Z. Mercadante
Mar. Drugs 2012, 10(8), 1784-1798; https://doi.org/10.3390/md10081784 - 20 Aug 2012
Cited by 115 | Viewed by 10369
Abstract
Carotenoid intake has been associated with the decrease of the incidence of some chronic diseases by minimizing the in vivo oxidative damages induced by reactive oxygen (ROS) and nitrogen species (RNS). The carotenoids are well-known singlet oxygen quenchers; however, their capacity to scavenge [...] Read more.
Carotenoid intake has been associated with the decrease of the incidence of some chronic diseases by minimizing the in vivo oxidative damages induced by reactive oxygen (ROS) and nitrogen species (RNS). The carotenoids are well-known singlet oxygen quenchers; however, their capacity to scavenge other reactive species, such as peroxyl radical (ROO), hydroxyl radical (HO), hypochlorous acid (HOCl) and anion peroxynitrite (ONOO), still needs to be more extensively studied, especially using membrane-mimicking systems, such as liposomes. Moreover, the identification of carotenoids possessing high antioxidant capacity can lead to new alternatives of drugs or nutritional supplements for prophylaxis or therapy of pathological conditions related to oxidative damages, such as cardiovascular diseases. The capacity to scavenge ROO, HO, HOCl and ONOO of seven carotenoids found in marine organisms was determined in liposomes based on the fluorescence loss of a fluorescent lipid (C11-BODIPY581/591) due to its oxidation by these reactive species. The carotenoid-bearing hydroxyl groups were generally more potent ROS scavengers than the carotenes, whilst β-carotene was the most efficient ONOO scavenger. The role of astaxanthin as an antioxidant should be highlighted, since it was a more potent scavenger of ROO, HOCl and ONOO than α-tocopherol. Full article
(This article belongs to the Special Issue Marine Carotenoids and Oxidative Stress)
Show Figures

Figure 1

Back to TopTop