Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = RDH

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1370 KiB  
Article
Joint Data Hiding and Partial Encryption of Compressive Sensed Streams
by Cristina-Elena Popa, Constantin-Cristian Damian and Daniela Coltuc
Information 2025, 16(7), 513; https://doi.org/10.3390/info16070513 - 20 Jun 2025
Viewed by 246
Abstract
This paper proposes a method to secure Compressive Sensing (CS) streams. It involves protecting part of the measurements with a secret key and inserting code into the remaining measurements. The secret key is generated via a cryptographically secure pseudorandom number generator (CSPRNG) and [...] Read more.
This paper proposes a method to secure Compressive Sensing (CS) streams. It involves protecting part of the measurements with a secret key and inserting code into the remaining measurements. The secret key is generated via a cryptographically secure pseudorandom number generator (CSPRNG) and XORed with the measurements to be inserted. For insertion, we use a reversible data hiding (RDH) scheme, which is a prediction error expansion algorithm modified to match the statistics of CS measurements. The reconstruction from the embedded stream results in a visibly distorted image. The image distortion is controlled by the number of embedded levels. In our tests, embedding on 10 levels results in ≈18 dB distortion for images of 256×256 pixels reconstructed with the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). A particularity of the presented method is on-the-fly insertion, which makes it appropriate for the sequential acquisition of measurements with a single-pixel camera. On-the-fly insertion avoids the buffering of CS measurements for the subsequent standard encryption and generation of a thumbnail image. Full article
(This article belongs to the Section Information Theory and Methodology)
Show Figures

Figure 1

16 pages, 2496 KiB  
Article
High Bendability of Short RNA-DNA Hybrid Duplex Revealed by Single-Molecule Cyclization and Molecular Dynamics Simulations
by Bin Wu, Fujia Tian, Yajun Yang, Liang Dai and Xinghua Zhang
Biomolecules 2025, 15(5), 724; https://doi.org/10.3390/biom15050724 - 15 May 2025
Viewed by 759
Abstract
R-loops are nucleic acid structures composed of an RNA-DNA hybrid (RDH) duplex and a displaced single-stranded DNA (ssDNA), which are fundamentally involved in key biological functions, including transcription and the preservation of genome stability. In an R-loop, the RDH duplex is bent by [...] Read more.
R-loops are nucleic acid structures composed of an RNA-DNA hybrid (RDH) duplex and a displaced single-stranded DNA (ssDNA), which are fundamentally involved in key biological functions, including transcription and the preservation of genome stability. In an R-loop, the RDH duplex is bent by the folded secondary structures of the displaced ssDNA. Previous experiments and simulations indicated the high bendability of DNA below the persistence length. However, the bendability of a short RDH duplex remains unclear. Here, we report that an RDH duplex exhibits higher bendability than a DNA duplex on the short length scale using single-molecule cyclization experiments. Our molecular dynamics simulations show that an RDH duplex has larger intrinsic curvature and structural fluctuations and more easily forms kinks than DNA, which promote the bending flexibility of RDH from unlooped structures. Interestingly, we found that an RDH duplex composed of a C-rich DNA strand and a G-rich RNA strand shows significantly higher bendability than that composed of a G-rich DNA strand and a C-rich RNA strand in the same CpG island promoter regions, which may contribute to the formation of an R-loop. These findings shape our understanding towards biological processes involving R-loops through the high and sequence-dependent bendability of an RDH duplex. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

23 pages, 1557 KiB  
Article
Dual Partial Reversible Data Hiding Using Enhanced Hamming Code
by Cheonshik Kim, Ching-Nung Yang and Lu Leng
Appl. Sci. 2025, 15(10), 5264; https://doi.org/10.3390/app15105264 - 8 May 2025
Viewed by 362
Abstract
Traditional reversible data hiding (RDH) methods prioritize the exact recovery of the original cover image; however, this rigidity often hinders both capacity and design flexibility. This study introduces a partial reversible data hiding (PRDH) framework that departs from conventional standards by allowing reversibility [...] Read more.
Traditional reversible data hiding (RDH) methods prioritize the exact recovery of the original cover image; however, this rigidity often hinders both capacity and design flexibility. This study introduces a partial reversible data hiding (PRDH) framework that departs from conventional standards by allowing reversibility relative to a generated cover image rather than the original. The proposed system leverages a dual-image structure and an enhanced HC(7,4) Hamming code to synthesize virtual pixels, enabling efficient and low-distortion syndrome-based encoding. Notably, it achieves embedding rates up to 1.5 bpp with PSNR values exceeding 48 dB. While the proposed method avoids auxiliary data, its reliability hinges on paired image availability, which is a consideration for real-world deployment. Demonstrated resilience to RS-based steganalysis suggests viability in sensitive domains such as embedding structured metadata in diagnostic medical imagery. Nonetheless, further evaluation across more diverse image types and attack scenarios is necessary in order to confirm its generalizability. Full article
(This article belongs to the Special Issue Digital Image Processing: Technologies and Applications)
Show Figures

Figure 1

16 pages, 3772 KiB  
Article
Effect of MiRNA 204-5P Mimics and Lipopolysaccharide-Induced Inflammation on Transcription Factor Levels, Cell Maintenance, and Retinoic Acid Signaling in Primary Limbal Epithelial Cells
by Maryam Amini, Tanja Stachon, Shao-Lun Hsu, Zhen Li, Ning Chai, Fabian N. Fries, Berthold Seitz, Swarnali Kundu, Shweta Suiwal and Nóra Szentmáry
Int. J. Mol. Sci. 2025, 26(8), 3809; https://doi.org/10.3390/ijms26083809 - 17 Apr 2025
Viewed by 551
Abstract
MicroRNA-204-5p (miR-204-5p) is a critical regulator of differentiation, structural maintenance, and inflammation in limbal epithelial cells (LECs). This study examined the role of miR-204-5p in modulating the gene expression related to transcription factors, cell structure, extracellular matrix remodeling, and retinoic acid signaling under [...] Read more.
MicroRNA-204-5p (miR-204-5p) is a critical regulator of differentiation, structural maintenance, and inflammation in limbal epithelial cells (LECs). This study examined the role of miR-204-5p in modulating the gene expression related to transcription factors, cell structure, extracellular matrix remodeling, and retinoic acid signaling under normal and lipopolysaccharide (LPS)-induced inflammatory conditions. Using qPCR, we analyzed the mRNA levels of FOSL2, FOXC1, Meis2, PPARγ, ABCG2, PTGES2, IL-1β, IL-6, KRT3, KRT12, MMP2, MMP9, RARA, RARB, RXRA, RXRB, CRABP2, RBP1, RDH10, ADH7, ADH1A1, FABP5, CYP1B1, and CYP26A1, while changes in protein levels were assessed via Western blot or ELISA. Our data revealed that the overexpression of miR-204-5p reduced the mRNA levels of FOXC1, KRT12, and RDH10 under normal and inflammatory conditions (p ≤ 0.039). Additionally, it decreased FOSL2 and RXRA mRNA under normal conditions (p = 0.006, p = 0.011) and KRT3 and FABP5 mRNA under inflammatory conditions (p = 0.010, p = 0.001). The IL-6 mRNA expression was significantly increased following the LPS treatment in cells overexpressing miR-204-5p (p = 0.029). A protein analysis revealed significant reductions in FOXC1 and KRT3 in the miR-204-5p-transfected cells during LPS-induced inflammation (p = 0.020, p = 0.030). These findings suggest that miR-204-5p modulates genes critical to the differentiation, migration, and inflammatory response of LECs. The modulation of FOXC1 and KRT3 by miR-204-5p highlights these proteins as novel targets under inflammatory conditions. Full article
(This article belongs to the Special Issue Recent Advances in Molecular and Cellular Research in Ophthalmology)
Show Figures

Figure 1

24 pages, 3068 KiB  
Article
Enhanced Dual Reversible Data Hiding Using Combined Approaches
by Cheonshik Kim, Ching-Nung Yang and Lu Leng
Appl. Sci. 2025, 15(6), 3279; https://doi.org/10.3390/app15063279 - 17 Mar 2025
Viewed by 548
Abstract
This paper proposes a reversible data hiding technique based on two cover images. The proposed method enhances performance by utilizing Hamming coding (HC), arithmetic coding (AC), and an improved Exploiting Modification Direction (EMD) technique. Since AC provides lossless compression for binary data, it [...] Read more.
This paper proposes a reversible data hiding technique based on two cover images. The proposed method enhances performance by utilizing Hamming coding (HC), arithmetic coding (AC), and an improved Exploiting Modification Direction (EMD) technique. Since AC provides lossless compression for binary data, it is widely used in image compression and helps maximize the efficiency of data transmission and storage. The EMD technique is recognized as an efficient data hiding method. However, it has a significant limitation: it does not allow for the restoration of the original cover image after data extraction. Additionally, EMD has a data hiding capacity limit of approximately 1.2 bpp. To address these limitations, an improved reversible data hiding technique is proposed. In this study, HC and AC are integrated with an improved EMD technique to enhance data hiding performance, achieving higher embedding capacity while ensuring the complete restoration of the original cover image. In the proposed method, Hamming coding is applied for data encoding and arithmetic coding is used for compression to increase efficiency. The compressed data are then embedded using the improved EMD technique, enabling the receiver to fully restore the original cover image. Experimental results demonstrate that the proposed method achieves an average PSNR of 66 dB and a data embedding capacity of 1.5 bpp, proving to be a promising approach for secure and efficient data hiding applications. Full article
(This article belongs to the Special Issue Multimedia Smart Security)
Show Figures

Figure 1

23 pages, 5772 KiB  
Article
Infimum and Supremum of Thresholds for Reversible Data Hiding
by Chaiyaporn Panyindee
Electronics 2025, 14(5), 1017; https://doi.org/10.3390/electronics14051017 - 3 Mar 2025
Cited by 1 | Viewed by 580
Abstract
Reversible data hiding typically relies on two main techniques: prediction-error expansion and histogram shifting. These techniques complement each other to facilitate effective data embedding by defining non-positive and non-negative thresholds, thereby reducing distortion. The goal is to minimize overflow and underflow pixels by [...] Read more.
Reversible data hiding typically relies on two main techniques: prediction-error expansion and histogram shifting. These techniques complement each other to facilitate effective data embedding by defining non-positive and non-negative thresholds, thereby reducing distortion. The goal is to minimize overflow and underflow pixels by constraining thresholds appropriately. Managing these pixels remains challenging as they must be mapped within the payload. While double modification testing can eliminate the location map for some images, it is highly complex and struggles with images near intensity limits. In this paper, we show that the non-positive and non-negative thresholds for each predicted value are bounded by their infimum and supremum. By restricting the thresholds to these bounds, we maximize the number of embeddable pixels while minimizing the location map size. Moreover, our approach enables the rapid determination of the first operating thresholds and the development of encoding and decoding formulas for RDH without modification. Performance comparisons with established algorithms demonstrate the advantages of our proposed method. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

11 pages, 3819 KiB  
Article
Improved CNN Prediction Based Reversible Data Hiding for Images
by Yingqiang Qiu, Wanli Peng and Xiaodan Lin
Entropy 2025, 27(2), 159; https://doi.org/10.3390/e27020159 - 3 Feb 2025
Cited by 1 | Viewed by 1110
Abstract
This paper proposes a reversible data hiding (RDH) scheme for images with an improved convolutional neural network (CNN) predictor (ICNNP) that consists of three modules for feature extraction, pixel prediction, and complexity prediction, respectively. Due to predicting the complexity of each pixel with [...] Read more.
This paper proposes a reversible data hiding (RDH) scheme for images with an improved convolutional neural network (CNN) predictor (ICNNP) that consists of three modules for feature extraction, pixel prediction, and complexity prediction, respectively. Due to predicting the complexity of each pixel with the ICNNP during the embedding process, the proposed scheme can achieve superior performance compared to a CNNP-based scheme. Specifically, an input image is first split into two sub-images, i.e., a “Circle” sub-image and a “Square” sub-image. Meanwhile, each sub-image is applied to predict another one with the ICNNP. Then, the prediction errors of pixels are sorted based on the predicted pixel complexities. In light of this, some sorted prediction errors with less complexity are selected to be efficiently applied for low-distortion data embedding with a traditional histogram-shifting technique. Experimental results show that the proposed ICNNP can achieve better rate-distortion performance than the CNNP, demonstrating its effectiveness. Full article
Show Figures

Figure 1

14 pages, 2696 KiB  
Article
Phenotypic and Genetic Heterogeneity of a Pakistani Cohort of 15 Consanguineous Families Segregating Variants in Leber Congenital Amaurosis-Associated Genes
by Zainab Akhtar, Sumaira Altaf, Yumei Li, Sana Bibi, Jamal Shah, Kiran Afshan, Meng Wang, Hafiz Muhammad Jafar Hussain, Nadeem Qureshi, Rui Chen and Sabika Firasat
Genes 2024, 15(12), 1646; https://doi.org/10.3390/genes15121646 - 21 Dec 2024
Viewed by 1671
Abstract
Background: Leber congenital amaurosis (LCA) is a congenital onset severe form of inherited retinal dystrophy (IRD) and a common cause of pediatric blindness. Disease-causing variants in at least 14 genes are reported to predispose LCA phenotype. LCA is inherited as an autosomal recessive [...] Read more.
Background: Leber congenital amaurosis (LCA) is a congenital onset severe form of inherited retinal dystrophy (IRD) and a common cause of pediatric blindness. Disease-causing variants in at least 14 genes are reported to predispose LCA phenotype. LCA is inherited as an autosomal recessive disease. It can be an isolated eye disorder or as part of a syndrome, such as Senior Loken or Joubert syndrome. Sequencing studies from consanguineous populations have proven useful for novel variants identification; thus, the present study aimed to explore the genetic heterogeneity of 15 consanguineous Pakistani families, each segregating a severe IRD phenotype using targeted next generation sequencing. Methods: This study enrolled 15 consanguineous families, each with multiple affected cases of retinal dystrophy phenotype. DNA was extracted from blood samples. Targeted panel sequencing of 344 known genes for IRDs was performed, followed by Sanger sequencing for segregation analysis. Results: Data analysis revealed a total of eight reported (c.316C>T and c.506G>A in RDH12; c.864dup and c.1012C>T in SPATA7, as well as c.1459T>C, c.1062_1068del, c.1495+1G>A, c.998G>A in the CRB1, LCA5, TULP1, and IFT140 genes, respectively) and four novel homozygous (c.720+1G>T in LCA5, c.196G>C in LRAT, c.620_625del in PRPH2, and c.3411_3414del in CRB1) variants segregating with disease phenotype in each respective family. Furthermore, a novel heterozygous variant of CRB1 gene, i.e., c.1935delC in compound heterozygous condition was found segregating with disease phenotype in one large family with multiple consanguinity loops. Conclusion: Comprehensive molecular diagnosis of 15 consanguineous Pakistani families led to the identification of a total of 5 novel variants contributing to genetic heterogeneity of LCA-associated genes and helped to provide genetic counseling to the affected families. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

12 pages, 10772 KiB  
Article
Quercetin Alleviates All-Trans-Retinal-Induced Photoreceptor Apoptosis and Retinal Degeneration by Inhibiting the ER Stress-Related PERK Signaling
by Bo Yang, Kunhuan Yang, Ruitong Xi, Jingmeng Chen and Yalin Wu
Int. J. Mol. Sci. 2024, 25(24), 13624; https://doi.org/10.3390/ijms252413624 - 19 Dec 2024
Cited by 2 | Viewed by 1469
Abstract
All-trans-retinal (atRAL)-induced photoreceptor atrophy and retinal degeneration are hallmark features of dry age-related macular degeneration (AMD) and Stargardt disease type 1 (STGD1). The toxicity of atRAL is closely related to the generation of reactive oxygen species (ROS). Quercetin, a natural product, [...] Read more.
All-trans-retinal (atRAL)-induced photoreceptor atrophy and retinal degeneration are hallmark features of dry age-related macular degeneration (AMD) and Stargardt disease type 1 (STGD1). The toxicity of atRAL is closely related to the generation of reactive oxygen species (ROS). Quercetin, a natural product, is known for its potent antioxidant properties; however, its effects in mitigating atRAL-mediated retinal damage remains unclear. This study investigated the protective effects of quercetin against atRAL-induced photoreceptor damage. Using atRAL-loaded 661W photoreceptor cells, we evaluated cell viability, ROS generation, and endoplasmic reticulum (ER) stress under quercetin treatment. Quercetin significantly restored the cell viability (to 70%) and reduced ROS generation in atRAL-treated 661W cells. Additionally, Western blot analysis demonstrated that quercetin mitigated protein kinase RNA-like ER kinase (PERK) signaling, preventing ER stress-induced apoptosis. Importantly, in Abca4−/−Rdh8−/− mice, an animal model of light-induced atRAL accumulation in the retina, quercetin treatment effectively alleviated light-exposed photoreceptor atrophy and retinal degeneration by attenuating PERK signaling. Thus, quercetin protected photoreceptor cells from atRAL-induced damage by inhibiting ROS generation and PERK signaling, which suggests its potential as a therapeutic agent for atRAL-related retinal degeneration. Full article
(This article belongs to the Special Issue Advanced Molecular Research on Retinopathy and Protection)
Show Figures

Figure 1

17 pages, 68807 KiB  
Article
Structural and Viscoelastic Properties of Bacterial Cellulose Composites: Implications for Prosthetics
by Natalia Pogorelova, Daniil Parshin, Anna Lipovka, Alexey Besov, Ilya Digel and Pyotr Larionov
Polymers 2024, 16(22), 3200; https://doi.org/10.3390/polym16223200 - 18 Nov 2024
Viewed by 1517
Abstract
This study investigates the morphological, mechanical, and viscoelastic properties of bacterial cellulose (BC) hydrogels synthesized by the microbial consortium Medusomyces gisevii. BC gel films were produced under static (S) or bioreactor (BioR) conditions. Additionally, an anisotropic sandwich-like composite BC film was developed [...] Read more.
This study investigates the morphological, mechanical, and viscoelastic properties of bacterial cellulose (BC) hydrogels synthesized by the microbial consortium Medusomyces gisevii. BC gel films were produced under static (S) or bioreactor (BioR) conditions. Additionally, an anisotropic sandwich-like composite BC film was developed and tested, consisting of a rehydrated (S-RDH) BC film synthesized under static conditions, placed between two BioR-derived BC layers. Sample characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), rheometry, and uniaxial stretching tests. To our knowledge, this is the first study to combine uniaxial and rheological tests for BC gels. AFM and SEM revealed that the organization of BC fibrils (80±20 nm in diameter) was similar to that of collagen fibers (96±31 nm) found in human dura mater, suggesting potential implications for neurosurgical practice. Stretching tests demonstrated that the drying and rehydration of BC films resulted in a 2- to 8-fold increase in rigidity compared to other samples. This trend was consistent across both small and large deformations, regardless of direction. Mechanically, the composite (BioR+S-RDH) outperformed BC hydrogels synthesized under static and bioreactor conditions by approx. 26%. The composite material (BioR+S-RDH) exhibited greater anisotropy in the stretching tests compared to S-RDH, but less than the BioR-derived hydrogels, which had anisotropy coefficients ranging from 1.29 to 2.03. BioR+S-RDH also demonstrated the most consistent viscoelastic behavior, indicating its suitability for withstanding shear stress and potential use in prosthetic applications. These findings should provide opportunities for further research and medical applications. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

18 pages, 2724 KiB  
Article
MRA-VSS: A Matrix-Based Reversible and Authenticable Visual Secret-Sharing Scheme Using Dual Meaningful Images
by Chia-Chen Lin, En-Ting Chu, Ya-Fen Chang and Ersin Elbasi
Mathematics 2024, 12(22), 3532; https://doi.org/10.3390/math12223532 - 12 Nov 2024
Viewed by 813
Abstract
Reversible data hiding (RDH) is an approach that emphasizes the imperceptibility of hidden confidential data and the restoration of the original cover image. To achieve these objectives at the same time, in this paper, we design a matrix-based crossover data hiding strategy and [...] Read more.
Reversible data hiding (RDH) is an approach that emphasizes the imperceptibility of hidden confidential data and the restoration of the original cover image. To achieve these objectives at the same time, in this paper, we design a matrix-based crossover data hiding strategy and then propose a novel matrix-based RDH scheme with dual meaningful image shadows, called MRA-VSS (matrix-based reversible and authenticable visual secret-sharing). Each pixel in a secret image is divided into two parts, and each part is embedded into a cover pixel pair by referring to the intersection point of four overlapping frames. During the share construction phase, not only partial information of the pixel in a secret image but also authentication codes are embedded into the corresponding cover pixel pair. Finally, two meaningful image shadows are derived. The experimental results confirm that our designed MRA-VSS successfully embeds pixels’ partial information and authentication code into cover pixel pairs at the cost of slight distortion during data hiding. Nevertheless, the robustness of our scheme under the steganalysis attack and the authentication capability of our scheme are also proven. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

11 pages, 1188 KiB  
Article
Whole-Exome Sequencing Improves Understanding of Inherited Retinal Dystrophies in Korean Patients
by Youngchan Park, Youngjin Kim, Insong Koh and Jong-Young Lee
Curr. Issues Mol. Biol. 2024, 46(10), 11021-11030; https://doi.org/10.3390/cimb46100654 - 29 Sep 2024
Cited by 1 | Viewed by 1494
Abstract
Retinitis pigmentosa (RP) encompasses a diverse range of hereditary, degenerative retinal ailments, presenting notable obstacles to molecular genetic diagnoses due to the intricate array of variants in different genes involved. This study enrolled 21 probands and their families who have been diagnosed with [...] Read more.
Retinitis pigmentosa (RP) encompasses a diverse range of hereditary, degenerative retinal ailments, presenting notable obstacles to molecular genetic diagnoses due to the intricate array of variants in different genes involved. This study enrolled 21 probands and their families who have been diagnosed with nonsyndromic RP but without a previous molecular diagnosis. We employed whole-exome sequencing (WES) to detect possible harmful gene variations in individuals with unknown-cause RP at the molecular level. WES allowed the identification of ten potential disease-causing variants in eight different genes. In 8 out of the total 21 patients, this method successfully identified the underlying molecular causes, such as putative pathogenic variants in genes including CRB1, KLHL7, PDE6B, RDH12, RP1, RPE65, USH2A, and RHO. A novel variant was identified in one of these genes, specifically PDE6B, providing valuable information on prospective targets for future enhanced gene therapeutic approaches. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

13 pages, 287 KiB  
Article
Musculoskeletal Disorders in the Clinical Practice of Dental Hygienists and Dentists, Prevention and Awareness among Italian Professionals: Focus on Enlarging Systems
by Andrea Butera, Carolina Maiorani, Giulia Fantozzi, Francesca Bergamante, Matteo Castaldi, Roberta Grassi, Cinzia Leuter, Andrea Scribante and Gianna Maria Nardi
Clin. Pract. 2024, 14(5), 1898-1910; https://doi.org/10.3390/clinpract14050150 - 12 Sep 2024
Cited by 2 | Viewed by 1898
Abstract
(1) Background: Musculoskeletal disorders of the upper limbs are a common medical condition among dental hygienists and dentists, making them a common occupational risk for dental professionals. The purpose of the work was to collect information about the dental professions and their habits [...] Read more.
(1) Background: Musculoskeletal disorders of the upper limbs are a common medical condition among dental hygienists and dentists, making them a common occupational risk for dental professionals. The purpose of the work was to collect information about the dental professions and their habits to highlight what can be good practices to be carried out to prevent any musculoskeletal disorders. (2) Methods: To identify habits and problems inherent in the professional activity of dental hygienists and dentists, a questionnaire was formulated on the use of enlarging systems. (3) Results: The questionnaire was completed by 241 dental professionals. As for the use of magnifiers, 72.6% of participants use them: among dental hygienists, 67.8% use magnifiers, among dentists, 80.9% use magnifiers; there is a statistically significant difference. There is no statistically significant difference between professions regarding muscle disorders. (4) Conclusions: For a clearer assessment, it would be appropriate to submit the questionnaire to a wider sample of professionals, to define better the correlation between musculoskeletal disorders, work activity and the type of enlarging systems used. Full article
14 pages, 1600 KiB  
Article
Moderate Aerobic Exercise Induces Homeostatic IgA Generation in Senile Mice
by Angel J. Hernández-Urbán, Maria-Elisa Drago-Serrano, Aldo A. Reséndiz-Albor, José A. Sierra-Ramírez, Fabiola Guzmán-Mejía, Rigoberto Oros-Pantoja and Marycarmen Godínez-Victoria
Int. J. Mol. Sci. 2024, 25(15), 8200; https://doi.org/10.3390/ijms25158200 - 27 Jul 2024
Cited by 1 | Viewed by 1707
Abstract
A T-cell-independent (TI) pathway activated by microbiota results in the generation of low-affinity homeostatic IgA with a critical role in intestinal homeostasis. Moderate aerobic exercise (MAE) provides a beneficial impact on intestinal immunity, but the action of MAE on TI-IgA generation under senescence [...] Read more.
A T-cell-independent (TI) pathway activated by microbiota results in the generation of low-affinity homeostatic IgA with a critical role in intestinal homeostasis. Moderate aerobic exercise (MAE) provides a beneficial impact on intestinal immunity, but the action of MAE on TI-IgA generation under senescence conditions is unknown. This study aimed to determine the effects of long-term MAE on TI-IgA production in young (3 month old) BALB/c mice exercised until adulthood (6 months) or aging (24 months). Lamina propria (LP) from the small intestine was obtained to determine B cell and plasma cell sub-populations by flow cytometry and molecular factors related to class switch recombination [Thymic Stromal Lymphopoietin (TSLP), A Proliferation-Inducing Ligand (APRIL), B Cell Activating Factor (BAFF), inducible nitric oxide synthase (iNOS), and retinal dehydrogenase (RDH)] and the synthesis of IgA [α-chain, interleukin (IL)-6, IL-21, and Growth Factor-β (TGF-β)]; and epithelial cells evaluated IgA transitosis [polymeric immunoglobulin receptor (pIgR), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), IL-4] by the RT-qPCR technique. The results were compared with data obtained from sedentary age-matched mice. Statistical analysis was computed with ANOVA, and p < 0.05 was considered to be a statistically significant difference. Under senescence conditions, MAE promoted the B cell and IgA+ B cells and APRIL, which may improve the intestinal response and ameliorate the inflammatory environment associated presumably with the downmodulation of pro-inflammatory mediators involved in the upmodulation of pIgR expression. Data suggested that MAE improved IgA and downmodulate the cytokine pro-inflammatory expression favoring homeostatic conditions in aging. Full article
Show Figures

Figure 1

20 pages, 22124 KiB  
Article
A Reversible Data-Hiding Method for Encrypted Images Based on Adaptive Quadtree Partitioning and MSB Prediction
by Ya Yue, Minqing Zhang, Fuqiang Di and Peizheng Lai
Appl. Sci. 2024, 14(14), 6376; https://doi.org/10.3390/app14146376 - 22 Jul 2024
Viewed by 1117
Abstract
To address the vulnerability of the widely used block permutation and co-XOR (BPCX) encryption algorithm in reversible data-hiding in the encrypted domain (RDH-ED), which is susceptible to known-plaintext attacks (KPAs), and to enhance embedding capacity, we propose a novel technique of reversible data-hiding [...] Read more.
To address the vulnerability of the widely used block permutation and co-XOR (BPCX) encryption algorithm in reversible data-hiding in the encrypted domain (RDH-ED), which is susceptible to known-plaintext attacks (KPAs), and to enhance embedding capacity, we propose a novel technique of reversible data-hiding in encrypted images (RDH-EI). This method incorporates adaptive quadtree partitioning and most significant bit (MSB) prediction. To counteract KPAs, we introduce pixel modulation specifically targeting pixels within blocks of the same level during the encryption phase. During data embedding, we utilize tagging bits to indicate the state of the pixel blocks, capitalizing on pixel redundancy within those blocks to augment embedding capacity. Our experimental results demonstrate that our method not only achieves reversibility and separability but also significantly boosts embedding capacity and method security. Notably, the average embedding rate across the 10,000 images tested stands at 2.4731, surpassing previous methods by 0.2106 and 0.037, respectively. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop