Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = RC trap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5969 KB  
Article
W-Band Low-Noise Amplifier with Improved Stability Using Dual RC Traps in Bias Networks on a 0.1 μm GaAs pHEMT Process
by Seong-Hee Han and Dong-Wook Kim
Micromachines 2025, 16(2), 219; https://doi.org/10.3390/mi16020219 - 15 Feb 2025
Viewed by 1334
Abstract
This paper demonstrates that potential oscillations in various frequency bands of monolithic microwave integrated circuits (MMICs) can be effectively suppressed using well-designed dual RC traps in the bias networks. The proposed approach is applied to the design and development of a highly stable [...] Read more.
This paper demonstrates that potential oscillations in various frequency bands of monolithic microwave integrated circuits (MMICs) can be effectively suppressed using well-designed dual RC traps in the bias networks. The proposed approach is applied to the design and development of a highly stable W-band low-noise amplifier (LNA) MMIC for high-precision millimeter-wave applications. The amplifier is fabricated using the 0.1 µm GaAs pHEMT process from Win Semiconductors. The cascaded four-stage design consists of two low-noise-optimized stages, followed by two high-gain-tuned stages. Stability is enhanced through the integration of dual RC traps in the bias networks, which is rigorously evaluated using stability factors (K and μ) and network determinant function (NDF) encirclement analysis. In low-noise mode, the developed low-noise amplifier MMIC achieves a noise figure of 5.6−6.2 dB and a linear gain of 17.8−19.8 dB over the 90−98 GHz frequency range, while only consuming a DC power of 96 mW. In high-gain mode, it has a noise figure of 6.2−6.9 dB and a linear gain of 19.8−21.7 dB. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

13 pages, 3554 KB  
Article
The Quenching of Long-Wavelength Fluorescence by the Closed Reaction Center in Photosystem I in Thermostichus vulcanus at 77 K
by Parveen Akhtar, Ivo H. M. van Stokkum and Petar H. Lambrev
Int. J. Mol. Sci. 2024, 25(22), 12430; https://doi.org/10.3390/ijms252212430 - 19 Nov 2024
Cited by 1 | Viewed by 1062
Abstract
Photosystem I in most organisms contains long-wavelength or “Red” chlorophylls (Chls) absorbing light beyond 700 nm. At cryogenic temperatures, the Red Chls become quasi-traps for excitations as uphill energy transfer is blocked. One pathway for de-excitation of the Red Chls is via transfer [...] Read more.
Photosystem I in most organisms contains long-wavelength or “Red” chlorophylls (Chls) absorbing light beyond 700 nm. At cryogenic temperatures, the Red Chls become quasi-traps for excitations as uphill energy transfer is blocked. One pathway for de-excitation of the Red Chls is via transfer to the oxidized RC (P700+), which has broad absorption in the near-infrared region. This study investigates the excitation dynamics of Red Chls in Photosystem I from the cyanobacterium Thermostichus vulcanus at cryogenic temperatures (77 K) and examines the role of the oxidized RC in modulating their fluorescence kinetics. Using time-resolved fluorescence spectroscopy, the kinetics of Red Chls were recorded for samples with open (neutral P700) and closed (P700+) RCs. We found that emission lifetimes in the range of 710–720 nm remained unaffected by the RC state, while more red-shifted emissions (>730 nm) decayed significantly faster when the RC was closed. A kinetic model describing the quenching by the oxidized RC was constructed based on simultaneous fitting to the recorded fluorescence emission in Photosystem I with open and closed RCs. The analysis resolved multiple Red Chl forms and variable quenching efficiencies correlated with their spectral properties. Only the most red-shifted Chls, with emission beyond 730 nm, are efficiently quenched by P700+, with rate constants of up to 6 ns−1. The modeling results support the notion that structural and energetic disorder in Photosystem I can have a comparable or larger effect on the excitation dynamics than the geometric arrangement of Chls. Full article
(This article belongs to the Special Issue New Insights into Photosystem I (Second Edition))
Show Figures

Figure 1

16 pages, 4987 KB  
Article
Bamboo-Based Carbon/Co/CoO Heterojunction Structures Based on a Multi-Layer Periodic Matrix Array Can Be Used for Efficient Electromagnetic Attenuation
by He Han, Hui Chen, Rui Wang and Zhichao Lou
Materials 2024, 17(21), 5239; https://doi.org/10.3390/ma17215239 - 28 Oct 2024
Cited by 6 | Viewed by 1332
Abstract
With the popularization of wireless communication, radar, and electronic devices, the hidden harm of electromagnetic radiation is becoming increasingly serious. The design of green biomass carbon-based interface heterojunctions based on lightweight porous materials can effectively protect against electromagnetic radiation hazards. In this work, [...] Read more.
With the popularization of wireless communication, radar, and electronic devices, the hidden harm of electromagnetic radiation is becoming increasingly serious. The design of green biomass carbon-based interface heterojunctions based on lightweight porous materials can effectively protect against electromagnetic radiation hazards. In this work, we constructed an anisotropic heterojunction interface with magnetic and dielectric coupling based on a honeycomb-like periodic matrix multi-layer array repeating unit. The removal of lignin components from bamboo through oxidation enriches the impregnation pores and uniform adsorption sites of the magnetic medium. Further, in situ pyrolysis promotes the formation of a large number of electric dipoles at the interface between the magnetic medium and dielectric coupling inside the periodic cell carbon skeleton, enhancing interface polarization and relaxation. Local carrier traps and uneven electromagnetic density enhance dielectric and hysteresis losses, resulting in excellent impedance matching. Therefore, the obtained bamboo-based carbon multiphase composite absorbent has satisfactory electromagnetic loss characteristics. At a thickness of 1.55 mm, the effective absorption bandwidth reaches 5.1 GHz, and the minimum reflection loss (RL) value reaches −54.7 dB. In addition, the far-field radar simulation results show that the sample has an excellent RCS (radar cross-section) reduction of 33.3 dB·m2. This work provides new directions for the diversified development of green biomass and the optimization of the design of magnetic and dielectric coupling in periodic array structures. Full article
Show Figures

Graphical abstract

20 pages, 4491 KB  
Article
Crop-Specific Responses to Cold Stress and Priming: Insights from Chlorophyll Fluorescence and Spectral Reflectance Analysis in Maize and Soybean
by Maja Mazur, Maja Matoša Kočar, Antun Jambrović, Aleksandra Sudarić, Mirna Volenik, Tomislav Duvnjak and Zvonimir Zdunić
Plants 2024, 13(9), 1204; https://doi.org/10.3390/plants13091204 - 25 Apr 2024
Cited by 11 | Viewed by 2733
Abstract
This study aimed to investigate the impact of cold stress and priming on photosynthesis in the early development of maize and soybean, crops with diverse photosynthetic pathways. The main objectives were to determine the effect of cold stress on chlorophyll a fluorescence parameters [...] Read more.
This study aimed to investigate the impact of cold stress and priming on photosynthesis in the early development of maize and soybean, crops with diverse photosynthetic pathways. The main objectives were to determine the effect of cold stress on chlorophyll a fluorescence parameters and spectral reflectance indices, to determine the effect of cold stress priming and possible stress memory and to determine the relationship between different parameters used in determining the stress response. Fourteen maize inbred lines and twelve soybean cultivars were subjected to control, cold stress, and priming followed by cold stress in a walk-in growth chamber. Measurements were conducted using a portable fluorometer and a handheld reflectance instrument. Cold stress induced an overall downregulation of PSII-related specific energy fluxes and efficiencies, the inactivation of RCs resulting in higher energy dissipation, and electron transport chain impairment in both crops. Spectral reflectance indices suggested cold stress resulted in pigment differences between crops. The effect of priming was more pronounced in maize than in soybean with mostly a cumulatively negative effect. However, priming stabilized the electron trapping efficiency and upregulated the electron transfer system in maize, indicating an adaptive response. Overall, this comprehensive analysis provides insights into the complex physiological responses of maize and soybean to cold stress, emphasizing the need for further genotype-specific cold stress response and priming effect research. Full article
(This article belongs to the Special Issue Adaptive Strategies of Plants to Stress Factors)
Show Figures

Figure 1

19 pages, 1747 KB  
Article
The Mechanisms of Different Light Supply Patterns in the Nutrient Uptake and Chlorophyll Fluorescence of Hydroponic Lettuce
by Yanwei Liu, Ni Cao, Xiaolan Shi, Fei Meng, Yingjie Zhou, Haidong Wang and Qiliang Yang
Agronomy 2023, 13(7), 1910; https://doi.org/10.3390/agronomy13071910 - 20 Jul 2023
Cited by 5 | Viewed by 2846
Abstract
Vertical agriculture has developed rapidly in recent years, pushing artificial light planting to new heights. Under indoor artificial light, the light supply mode has practical significance in studying the impact of lighting conditions on plants. This experiment involved five intermittent light supply modes [...] Read more.
Vertical agriculture has developed rapidly in recent years, pushing artificial light planting to new heights. Under indoor artificial light, the light supply mode has practical significance in studying the impact of lighting conditions on plants. This experiment involved five intermittent light supply modes (with a light period of 16 h and a dark period of 8 h (16/8) as the control group, with a light period of 8 h and a dark period of 4 h repeated twice a day (8/4), a light period of 4 h and a dark period of 2 h repeated four times a day (4/2), a light period of 2 h and a dark period of 1 h repeated eight times a day (2/1), and a light period of 1 h and a dark period of 0.5 h repeated 16 times a day (1/0.5) (as the experimental groups). A total of ten treatments were combined before the continuous light supply mode (B) and after the continuous light supply mode (A). Through experimental settings, we explored the response mechanisms to intermittent and continuous light supply modes as they pertain to lettuce growth, nutrient content, photosynthetic parameters, and light stress. Through research, it was found that continuous light supply significantly increased plant height, root length, aboveground dry and fresh weight, and the underground dry and fresh weight of lettuce. The treatments with a light period 4 h/dark period 2 h (4/2) and a light period 8 h/dark period 4 h (8/4) significantly increased the N, P, K, and Cu contents. Additionally, continuous light supply helped stabilize the Mg, Ca, and Mn contents across all treatment groups. Stomatal closure has been found to cause a decrease in the rate of net photosynthesis, transpiration, and intercellular CO2 concentration. The energy absorbed by antenna pigments is significantly increased when participating in photochemical reactions; however, continuous light supply has been observed to reduce the absorption flux per reaction center (ABS/RC), trapped energy flux per reaction center (TR0/RC), electron transport flux per reaction center (ET0/RC), and the probability that a trapped exciton moves an electron into the electron transport chain beyond QA (at t = 0) (ET0/TR0). Conversely, the electron transport flux per cross section (ET0/CS) has been found to increase significantly. In summary, among the intermittent light supply treatment groups, the 2/1 treatment group showed the best response to growth indicators, nutrient absorption, and photosynthesis, and could improve the quality of lettuce without adding additional light energy. Continuous light supply in the short term can improve the growth and nutrient absorption of lettuce; both of the two light supply modes produced light stress on lettuce, and this light stress caused by non-circadian rhythm forced the lettuce to increase its photochemical quenching (qI) and electro transport flux crossover (ET0/CS). This paper may provide a theoretical reference for the use of light supply modes in plant factories to improve vegetable yield, and for the study of the response mechanism of light stress under non-circadian rhythm. Full article
Show Figures

Figure 1

17 pages, 14693 KB  
Article
A Soft-Start-Based Method for Active Suppression of Magnetizing Inrush Current in Transformers
by Chunyan Li, Yi Yang, Wenyan Li and Haixiao Li
Electronics 2023, 12(14), 3114; https://doi.org/10.3390/electronics12143114 - 18 Jul 2023
Cited by 6 | Viewed by 2945
Abstract
The occurrence of high-amplitude magnetizing inrush current during the energization of a transformer without load poses significant challenges to the stable operation of both the transformer and the power grid, potentially leading to malfunctions in relay protection devices. This paper analyzes the underlying [...] Read more.
The occurrence of high-amplitude magnetizing inrush current during the energization of a transformer without load poses significant challenges to the stable operation of both the transformer and the power grid, potentially leading to malfunctions in relay protection devices. This paper analyzes the underlying mechanisms of transformer inrush current and presents a novel approach utilizing a soft-start-based method for effectively suppressing inrush currents. The proposed method employs an inrush current suppressor comprising anti-parallel thyristors and filters to mitigate the adverse effects caused by the inrush current. A comparative study is conducted to evaluate the filtering efficacy of three types of filters incorporated in the inrush current suppressor: an LCLC damping filter, a high-order single trap filter and a high-order double trap filter. Through careful analysis and optimization, the high-order double trap filter with parallel RC damping damper is selected as the optimal configuration. To ensure effective suppression, it is necessary to incorporate a filter at the termination point of the anti-parallel thyristor. Additionally, a closed-loop control strategy is implemented to ensure a smooth start and actively suppress the magnetizing inrush current. To validate the effectiveness of the proposed method, comprehensive simulations are performed using Matlab/Simulink. The results demonstrate the successful suppression of inrush current and the maintenance of stable operation for the transformer. This inrush suppression method does not require considering the influence of residual magnetism and the grounding mode of the transformer’s neutral point. It is also suitable for various transformer structures and wiring methods, which makes it highly applicable. Full article
Show Figures

Figure 1

21 pages, 3626 KB  
Article
In Vitro Antiglycation and Methylglyoxal Trapping Effect of Peppermint Leaf (Mentha × piperita L.) and Its Polyphenols
by Izabela Fecka, Katarzyna Bednarska and Adam Kowalczyk
Molecules 2023, 28(6), 2865; https://doi.org/10.3390/molecules28062865 - 22 Mar 2023
Cited by 9 | Viewed by 4019
Abstract
The most significant reactive α-dicarbonyl RCS involved in the pathomechanism of glycation and related diseases is methylglyoxal (MGO). Hyperglycemia promotes the generation of MGO and leads to the formation of advanced glycation end products (AGEs). Therefore, MGO trapping and glycation inhibition appear to [...] Read more.
The most significant reactive α-dicarbonyl RCS involved in the pathomechanism of glycation and related diseases is methylglyoxal (MGO). Hyperglycemia promotes the generation of MGO and leads to the formation of advanced glycation end products (AGEs). Therefore, MGO trapping and glycation inhibition appear to be important therapeutic targets in prediabetes, diabetes, and in the early prevention of hyperglycemic complications. Peppermint leaf is commonly used as herbal tea, rich in polyphenols. Eriocitrin, its predominant component, in a double-blind, randomized controlled study reversed the prediabetic condition in patients. However, the antiglycation activity of this plant material and its polyphenols has not been characterized to date. Therefore, the aim of this study was to evaluate the ability of a peppermint leaf dry extract and its polyphenols to inhibit non-enzymatic protein glycation in a model with bovine serum albumin (BSA) and MGO as a glycation agent. Peppermint polyphenols were also evaluated for their potential to trap MGO in vitro, and the resulting adducts were analyzed by UHPLC-ESI-MS. To relate chemical composition to glycation inhibitory activity, the obtained peppermint extract was subjected to qualitative and quantitative analysis. The capability of peppermint leaf polyphenols to inhibit glycation (27.3–77.2%) and form adducts with MGO was confirmed. In the case of flavone aglycones, mono- and di-adducts with MGO were observed, while eriodictyol and eriocitrin effectively produced only mono-adducts. Rosmarinic acid and luteolin-7-O-glycosides did not reveal this action. IC50 of the peppermint leaf dry extract was calculated at 2 mg/mL, equivalent to a concentration of 1.8 μM/mL of polyphenols, including ~1.4 μM/mL of flavonoids and ~0.4 μM/mL of phenolic acids. The contribution of the four major components to the anti-AGE activity of the extract was estimated at 86%, including eriocitrin 35.4%, rosmarinic acid 25.6%, luteolin-7-O-rutinoside 16.9%, luteolin-7-O-β-glucuronoside 8.1%, and others 14%. The effect of peppermint dry extract and polyphenols in inhibiting MGO-induced glycation in vitro was comparable to that of metformin used as a positive control. Full article
Show Figures

Graphical abstract

10 pages, 2241 KB  
Article
Modeling the Effects of Threading Dislocations on Current in AlGaN/GaN HEMT
by Censong Liu, Jie Wang, Zhanfei Chen, Jun Liu and Jiangtao Su
Micromachines 2023, 14(2), 305; https://doi.org/10.3390/mi14020305 - 24 Jan 2023
Cited by 1 | Viewed by 2319
Abstract
The aim of this paper is to model the effects of threading dislocations on both gate and drain currents of AlGaN/GaN high electron mobility transistors (HEMTs). The fraction of filled traps increases with the threading dislocations, while the trapping effects cause a decrease [...] Read more.
The aim of this paper is to model the effects of threading dislocations on both gate and drain currents of AlGaN/GaN high electron mobility transistors (HEMTs). The fraction of filled traps increases with the threading dislocations, while the trapping effects cause a decrease in drain current and an increase in gate leakage current. To model the drain current drop, the two simplified RC subcircuits with diodes are proposed to capture the charge trapping/detrapping characteristics. The trap voltages Vg_trap and Vd_trap generated by RC networks are fed back into the model to capture the effects of traps on drain current. Considering acceptor-decorated dislocations, we present a novel Poole–Frenkel (PF) model to precisely describe the reverse leakage gate current, which plays a dominant role in the gate leakage current. The proposed model, which uses physical parameters only, is implemented in Verilog-A. It is in excellent agreement with the experimental data. Full article
(This article belongs to the Special Issue GaN-Based Semiconductor Devices, Volume II)
Show Figures

Figure 1

29 pages, 4230 KB  
Article
Mesoscale Eddies in the Black Sea and Their Impact on River Plumes: Numerical Modeling and Satellite Observations
by Konstantin Korotenko, Alexander Osadchiev and Vasiliy Melnikov
Remote Sens. 2022, 14(17), 4149; https://doi.org/10.3390/rs14174149 - 24 Aug 2022
Cited by 9 | Viewed by 3081
Abstract
The Northeast Caucasian Current (NCC) is the northeastern part of the cyclonic Rim Current (RC) in the Black Sea. As it sometimes approaches the narrow shelf very closely, topographically generated cyclonic eddies (TGEs) can be triggered. These eddies contribute to intense, along- and [...] Read more.
The Northeast Caucasian Current (NCC) is the northeastern part of the cyclonic Rim Current (RC) in the Black Sea. As it sometimes approaches the narrow shelf very closely, topographically generated cyclonic eddies (TGEs) can be triggered. These eddies contribute to intense, along- and cross-shelf transport of trapped water with enhanced self-cleaning effects of the coastal zone. Despite intense studies of eddy dynamics in the Black Sea, the mechanisms of the generation of such coastal eddies, their unpredictability, and their capacity to capture and transport impurities are still poorly understood. We applied a 3-D low-dissipation model DieCAST/Die2BS coupled with a Lagrangian particle transport model supported by analysis of optical satellite images to study generation and evolution of TGEs and their effect on river plumes unevenly distributed along the northeastern Caucasian coast. Using the Furrier and wavelet analyses of kinetic energy time series, it was revealed that the occurrence of mesoscale TGEs ranges from 10 up to 50 days. We focused on one particular isolated anticyclonic TGE that emerged in late fall as a result of instability of the RC impinging on the abrupt submarine area adjoining the Pitsunda and Iskuria capes. Being shed, the eddy with a 30-km radius traveled along the coast as a coherent structure during ~1.5 months at a velocity of ~3 km/day and vertical vorticity normalized by the Coriolis parameter ~(0.1 ÷ 1.2). This eddy captured water from river plumes localized along the coast and then ejected it to the open sea, providing an intense cross-shelf transport of riverine matter. Full article
(This article belongs to the Special Issue Recent Advancements in Remote Sensing for Ocean Current)
Show Figures

Figure 1

22 pages, 2276 KB  
Article
3He/4He Signature of Magmatic Fluids from Telica (Nicaragua) and Baru (Panama) Volcanoes, Central American Volcanic Arc
by Andrea L. Rizzo, Philippe Robidoux, Alessandro Aiuppa and Andrea Di Piazza
Appl. Sci. 2022, 12(9), 4241; https://doi.org/10.3390/app12094241 - 22 Apr 2022
Cited by 7 | Viewed by 2776
Abstract
Constraining the magmatic 3He/4He signature of fluids degassed from a magmatic system is crucial for making inferences on its mantle source. This is especially important in arc volcanism, where variations in the composition of the wedge potentially induced by slab [...] Read more.
Constraining the magmatic 3He/4He signature of fluids degassed from a magmatic system is crucial for making inferences on its mantle source. This is especially important in arc volcanism, where variations in the composition of the wedge potentially induced by slab sediment fluids must be distinguished from the effects of magma differentiation, degassing, and crustal contamination. The study of fluid inclusions (FIs) trapped in minerals of volcanic rocks is becoming an increasingly used methodology in geochemical studies that integrates the classical study of volcanic and geothermal fluids. Here, we report on the first noble gas (He, Ne, Ar) concentrations and isotopic ratios of FI in olivine (Ol) and pyroxene (Px) crystals separated from eruptive products of the Telica and Baru volcanoes, belonging to the Nicaraguan and Panamanian arc-segments of Central America Volcanic arc (CAVA). FIs from Telica yield air corrected 3He/4He (Rc/Ra) of 7.2–7.4 Ra in Ol and 6.1–7.3 in Px, while those from Baru give 7.1–8.0 Ra in Ol and 4.2–5.8 Ra in Px. After a data quality check and a comparison with previous 3He/4He measurements carried out on the same volcanoes and along CAVA, we constrained a magmatic Rc/Ra signature of 7.5 Ra for Telica and of 8.0 Ra for Baru, both within the MORB range (8 ± 1 Ra). These 3He/4He differences also reflect variations in the respective arc-segments, which cannot be explained by radiogenic 4He addition due to variable crust thickness, as the mantle beneath Nicaragua and Panama is at about 35 and 30 km, respectively. We instead highlight that the lowest 3He/4He signature observed in the Nicaraguan arc segment reflects a contamination of the underlying wedge by slab sediment fluids. Rc/Ra values up to 9.0 Ra are found at Pacaya volcano in Guatemala, where the crust is 45 km thick, while a 3He/4He signature of about 8.0 Ra was measured at Turrialba volcano in Costa Rica, which is similar to that of Baru, and reflects possible influence of slab melting, triggered by a change in subduction conditions and the contemporary subduction of the Galapagos hot-spot track below southern Costa Rica and western Panama. Full article
(This article belongs to the Special Issue Volcano Monitoring: From the Magma Reservoir to Eruptive Processes)
Show Figures

Figure 1

14 pages, 1346 KB  
Article
Physiological Response to Short-Term Heat Stress in the Leaves of Traditional and Modern Plum (Prunus domestica L.) Cultivars
by Marija Viljevac Vuletić, Ines Mihaljević, Vesna Tomaš, Daniela Horvat, Zvonimir Zdunić and Dominik Vuković
Horticulturae 2022, 8(1), 72; https://doi.org/10.3390/horticulturae8010072 - 13 Jan 2022
Cited by 14 | Viewed by 4024
Abstract
The aim of this study was to evaluate physiological responses to short-term heat stress in the leaves of traditional (Bistrica) and modern (Toptaste) plum cultivars. In this study, detached plum leaves were incubated at 25 °C (control) and 40 °C (stress). After 1 [...] Read more.
The aim of this study was to evaluate physiological responses to short-term heat stress in the leaves of traditional (Bistrica) and modern (Toptaste) plum cultivars. In this study, detached plum leaves were incubated at 25 °C (control) and 40 °C (stress). After 1 h of exposure to heat (40 °C), chlorophyll a fluorescence transients were measured, and several biochemical parameters were analyzed. Elevated temperature caused heat stress in both plum cultivars, seen as a decrease in water content (WT), but in the leaves of the cultivar Bistrica, an accumulation of proline and phenols, as well as an accumulation of photosynthetic pigments, suggest the activation of a significant response to unfavorable conditions. Conversely, in the leaves of Toptaste, a significant accumulation of malondialdehyde (MDA) and an activation of guaiacol peroxidase (GPOD), all together with a decreased soluble proteins content, indicate an inadequate response to maintaining homeostasis in the leaf metabolism. The impact of an elevated temperature on photosynthesis was significant in both plum cultivars as reflected in the decrease in performance indexes (PIABS and PItotal) and the maximum quantum yield of PSII (Fv/Fm), with significantly pronounced changes found in Toptaste. Unlike the traditional plum cultivar, Bistrica, in the modern cultivar, Toptaste, short-term heat stress increased the minimal fluorescence (F0) and absorption (ABS/RC), as well as Chl b in total chlorophylls. Additionally, the inactivation of RCs (RC/ABS) suggests that excitation energy was not trapped efficiently in the electron chain transport, which resulted in stronger dissipation (DI0/RC) and the formation of ROSs. Considering all presented results, it can be presumed that the traditional cultivar Bistrica has better tolerance to heat stress than the modern cultivar Toptaste. The cultivar, Bistrica, can be used as a basis in further plum breeding programs, as a source of tolerance for high temperature stress. Full article
Show Figures

Figure 1

14 pages, 6079 KB  
Article
The Effects of Foliar Application of Phenoxy and Imidazoline Family Herbicides on the Limitation of Primary Photosynthetic Processes in Galega orientalis L.
by Jaroslav Lang, Barbora Zikmundová, Josef Hájek, Miloš Barták and Peter Váczi
Agronomy 2022, 12(1), 96; https://doi.org/10.3390/agronomy12010096 - 31 Dec 2021
Cited by 5 | Viewed by 2580
Abstract
Fodder galega (Galega orientalis) is a perennial, wintering plant with great potential for agricultural development. The species has a large yield potential and exceptional adaptability to various environmental conditions. The sensitivity of G. orientalis to herbicides, however, as well as the [...] Read more.
Fodder galega (Galega orientalis) is a perennial, wintering plant with great potential for agricultural development. The species has a large yield potential and exceptional adaptability to various environmental conditions. The sensitivity of G. orientalis to herbicides, however, as well as the photosynthetic performance of the species, are generally unknown. Our study aimed to evaluate the effects of the application of selected phenoxy herbicides (MCPA, MCPB) and the imidazoline family herbicide (IMA) on the parameters of primary photosynthetic processes as understood through fast chlorophyll fluorescence kinetics (OJIP). The effect of cultivation temperature was also investigated in the plants grown at 5, 18 and 25 °C. Time courses of OJIP-derived parameters describing photosystem II functioning after foliar application revealed that the plants showed negative responses to the herbicides in the order MCPB–MCPA–IMA within 24 h after the application. The application of herbicides decreased the values of maximum chlorophyll fluorescence (FM) and increased minimum fluorescence (F0), which led to a reduction in the maximal efficiency of PSII (FV/FM). Applications of MCPA and MCPB decreased variable chlorophyll fluorescence at 2 ms (VJ), 30 ms (VI) and VP, as well as the performance index (PIABS), which is considered a vitality proxy. The application increased absorption flux (ABS/RC), trapped energy flux (TRo/RC) and dissipated energy flux (DIo/RC). The effects were more pronounced in plants grown at 18 and 25 °C. The study revealed that the OJIP-derived parameters sensitively reflected an early response of G. orientalis to the foliar application of herbicides. Negative responses of PSII were more apparent in MCPA- and MCPB- exposed plants than IMA-exposed plants. Full article
Show Figures

Figure 1

18 pages, 5368 KB  
Article
Resource Partitioning of Scots Pine (Pinus sylvestris L.) by Pine Shoot Beetles in Stands under Stress Conditions
by Andrzej Borkowski
Forests 2021, 12(10), 1336; https://doi.org/10.3390/f12101336 - 29 Sep 2021
Cited by 4 | Viewed by 2014
Abstract
The pine shoot beetles Tomicus piniperda L. and T. minor Hartwig are sympatric species that occur on Scots pine in two habitats. Feeding by the beetles in tree crowns causes significant losses in tree growth and disturbs the crown’s proper development. A review [...] Read more.
The pine shoot beetles Tomicus piniperda L. and T. minor Hartwig are sympatric species that occur on Scots pine in two habitats. Feeding by the beetles in tree crowns causes significant losses in tree growth and disturbs the crown’s proper development. A review of the subject literature showed that there had been no previous studies of interspecific competition in stands with different degrees of crown damage. The aim of this work was to assess the resource partitioning of stems by the two species in stands with damaged and undamaged crowns. Data were collected in the years 1992–2008 in stands containing Scots pine located at different distances from timber yards. A total of 259 natural traps were laid, and measurements of height and diameter at breast height were made for 900 pines. The surface area of each stem was divided into 20 equal sections by making a division lengthwise (into units) and laterally (into an upper and lower part). In total, 90,501 egg galleries of pine shoot beetles were counted on 9560 stem sections. Feeding by pine shoot beetles in the crowns of pines reduces site productivity and the nutritional suitability of stems. The results of niche segregation indicate pine shoot beetles exhibited spatial specialization in the use of resources. prefers the thicker part of the stem, and T. minor the thinner part. The population of T. piniperda on the trap logs was described using a multiple linear regression model with three explanatory variables. As a result of regression modelling, from the set of variables representing characteristics of habitats, trees and trap logs and the parameters of infestation, the following explanatory variables were selected: range of colonisation of a trap log (rc), site quality class (sqc), and crown undamaged (cu). The explanatory variables included in the MLRM model explain to a significant degree (p < 0.05) the niche breadth of T. piniperda on trap logs. In all validated plots, the mean real and model values for the niche of T. piniperda on the trap logs are similar (p > 0.5), confirming the high accuracy of the developed model. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

22 pages, 3562 KB  
Article
Potential of Vasoprotectives to Inhibit Non-Enzymatic Protein Glycation, and Reactive Carbonyl and Oxygen Species Uptake
by Katarzyna Bednarska and Izabela Fecka
Int. J. Mol. Sci. 2021, 22(18), 10026; https://doi.org/10.3390/ijms221810026 - 16 Sep 2021
Cited by 21 | Viewed by 3470
Abstract
Reactive carbonyl species (RCS) such as methylglyoxal (MGO) or glyoxal (GO) are the main precursors of the formation of advanced glycation end products (AGEs). AGEs are a major factor in the development of vascular complications in diabetes. Vasoprotectives (VPs) exhibit a wide range [...] Read more.
Reactive carbonyl species (RCS) such as methylglyoxal (MGO) or glyoxal (GO) are the main precursors of the formation of advanced glycation end products (AGEs). AGEs are a major factor in the development of vascular complications in diabetes. Vasoprotectives (VPs) exhibit a wide range of activities beneficial to cardiovascular health. The present study aimed to investigate selected VPs and their structural analogs for their ability to trap MGO/GO, inhibit AGE formation, and evaluate their antioxidant potential. Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) and diode-array detector (UHPLC-DAD) was used to investigate direct trapping capacity and kinetics of quenching MGO/GO, respectively. Fluorimetric and colorimetric measurements were used to evaluate antiglycation and antioxidant action. All tested substances showed antiglycative effects, but hesperetin was the most effective in RCS scavenging. We demonstrated that rutin, diosmetin, hesperidin, and hesperetin could trap both MGO and GO by forming adducts, whose structures we proposed. MGO-derived AGE formation was inhibited the most by hesperetin, and GO-derived AGEs by diosmetin. High reducing and antiradical activity was confirmed for quercetin, rutin, hesperetin, and calcium dobesilate. Therefore, in addition to other therapeutic applications, some VPs could be potential candidates as antiglycative agents to prevent AGE-related complications of diabetes. Full article
Show Figures

Figure 1

19 pages, 1439 KB  
Article
Methyl Jasmonate Protects the PS II System by Maintaining the Stability of Chloroplast D1 Protein and Accelerating Enzymatic Antioxidants in Heat-Stressed Wheat Plants
by Mehar Fatma, Noushina Iqbal, Zebus Sehar, Mohammed Nasser Alyemeni, Prashant Kaushik, Nafees A. Khan and Parvaiz Ahmad
Antioxidants 2021, 10(8), 1216; https://doi.org/10.3390/antiox10081216 - 28 Jul 2021
Cited by 78 | Viewed by 4605
Abstract
The application of 10 µM methyl jasmonate (MeJA) for the protection of wheat (Triticum aestivum L.) photosystem II (PS II) against heat stress (HS) was studied. Heat stress was induced at 42 °C to established plants, which were then recovered at 25 [...] Read more.
The application of 10 µM methyl jasmonate (MeJA) for the protection of wheat (Triticum aestivum L.) photosystem II (PS II) against heat stress (HS) was studied. Heat stress was induced at 42 °C to established plants, which were then recovered at 25 °C and monitored during their growth for the study duration. Application of MeJA resulted in increased enzymatic antioxidant activity that reduced the content of hydrogen peroxide (H2O2) and thiobarbituric acid reactive substances (TBARS) and enhanced the photosynthetic efficiency. Exogenous MeJA had a beneficial effect on chlorophyll fluorescence under HS and enhanced the pigment system (PS) II system, as observed in a JIP-test, a new tool for chlorophyll fluorescence induction curve. Exogenous MeJA improved the quantum yield of electron transport (ETo/CS) as well as electron transport flux for each reaction center (ET0/RC). However, the specific energy fluxes per reaction center (RC), i.e., TR0/RC (trapping) and DI0/RC (dissipation), were reduced by MeJA. These results indicate that MeJA affects the efficiency of PS II by stabilizing the D1 protein, increasing its abundance, and enhancing the expression of the psbA and psbB genes under HS, which encode proteins of the PS II core RC complex. Thus, MeJA is a potential tool to protect PS II and D1 protein in wheat plants under HS and to accelerate the recovery of the photosynthetic capacity. Full article
(This article belongs to the Special Issue Approaches in Enhancing Antioxidant Defense in Plants)
Show Figures

Figure 1

Back to TopTop