Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = RANK-RANKL complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1037 KB  
Review
Osteoporosis in Patients with Pre-Existing Diabetes Mellitus and in Women with Estrogen Deficiency: A Molecular and Cellular Perspective
by Chin-Yen Pang, Li-Ru Chen and Kuo-Hu Chen
Int. J. Mol. Sci. 2026, 27(3), 1453; https://doi.org/10.3390/ijms27031453 - 31 Jan 2026
Viewed by 189
Abstract
Osteoporosis is a prevalent metabolic bone disorder characterized by reduced bone mass, compromised microarchitecture, and increased fracture risk. Its pathogenesis extends beyond simple bone mineral density (BMD) loss and reflects complex disruptions in bone remodeling governed by osteoblast–osteoclast coupling and systemic metabolic factors. [...] Read more.
Osteoporosis is a prevalent metabolic bone disorder characterized by reduced bone mass, compromised microarchitecture, and increased fracture risk. Its pathogenesis extends beyond simple bone mineral density (BMD) loss and reflects complex disruptions in bone remodeling governed by osteoblast–osteoclast coupling and systemic metabolic factors. This review lays particular emphasis on diabetes mellitus-related osteoporosis (DOP) and estrogen deficiency-induced osteoporosis (EDOP), discussing bone remodeling between osteoclastogenesis and osteoblast differentiation regulated by key signaling pathways, including the RANKL/RANK/OPG, Wnt/β-catenin, BMP–Smad, Hedgehog, and inflammatory cytokine networks. This review then explores how chronic hyperglycemia, insulin deficiency or resistance, oxidative stress, ferroptosis, advanced glycation end products, and low-grade inflammation disrupt bone homeostasis in diabetes, resulting in impaired bone quality and elevated fracture risk, particularly in type 2 diabetes. In parallel, we discuss the genomic and non-genomic actions of estrogen in maintaining skeletal integrity and elucidate how estrogen deficiency accelerates bone resorption and suppresses bone formation through altered cytokine signaling, oxidative stress, and impaired mechanotransduction. Advances in diagnostic strategies beyond BMD, including trabecular bone score, high-resolution peripheral quantitative computed tomography, and emerging biomarkers, are reviewed. Finally, this review summarizes current and emerging therapeutic approaches tailored to DOP and EDOP, emphasizing the need for mechanism-based, individualized management. A deeper understanding of these shared and distinct pathways may facilitate improved risk stratification and the development of targeted interventions for osteoporosis. Full article
(This article belongs to the Special Issue Hormone Metabolism and Signaling in Human Health and Disease)
Show Figures

Figure 1

12 pages, 558 KB  
Review
Bone Disease in Cystic Fibrosis: Insights into Etiopathogenesis and Advances in Treatment Management
by Paola Giordano, Giovanna Linguiti, Giuseppina Leonetti, Rosa Maria Pia Casolino, Vanja Granberg and Maria Felicia Faienza
J. Clin. Med. 2025, 14(16), 5657; https://doi.org/10.3390/jcm14165657 - 10 Aug 2025
Cited by 1 | Viewed by 1128
Abstract
Cystic fibrosis (CF) is a multisystemic genetic disorder caused by dysfunctional CF transmembrane conductance regulator (CFTR) protein, leading to impaired chloride and bicarbonate transport. Advances in care have increased patient lifetime, revealing chronic complications such as CF-related bone disease (CFBD), characterized by low [...] Read more.
Cystic fibrosis (CF) is a multisystemic genetic disorder caused by dysfunctional CF transmembrane conductance regulator (CFTR) protein, leading to impaired chloride and bicarbonate transport. Advances in care have increased patient lifetime, revealing chronic complications such as CF-related bone disease (CFBD), characterized by low bone mineral density and increased fracture risk. CFBD results from a complex interplay of factors including chronic inflammation, nutritional deficiencies, hormonal imbalances, and impaired glucose metabolism. Pro-inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6, and IL-8) promote osteoclastogenesis, disrupting bone remodeling via the RANK/RANKL/OPG pathway. In vivo murine and in vitro studies have elucidated the pathogenic mechanisms underlying CFBD, highlighting CFTR’s role in bone cell function. Diagnosis is based on clinical evaluation, bone densitometry, and laboratory assessments of bone metabolism markers. In this narrative review we highlight the recent scientific evidence on the etiopathogenesis and the current strategies for management of CFBD. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

20 pages, 1783 KB  
Review
Beyond Muscle Weakness: Unraveling Endocrine and Metabolic Dysfunctions in Duchenne Muscular Dystrophy, a Narrative Review
by Giuseppe Cannalire, Giacomo Biasucci, Vanessa Sambati, Tommaso Toschetti, Arianna Maria Bellani, Anna-Mariia Shulhai, Federica Casadei, Erika Rita Di Bari, Francesca Ferraboschi, Cecilia Parenti, Maria Carmela Pera, Susanna Esposito and Maria Elisabeth Street
Biomedicines 2025, 13(7), 1613; https://doi.org/10.3390/biomedicines13071613 - 1 Jul 2025
Cited by 1 | Viewed by 3377
Abstract
Background: Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular disorder caused by mutations in the DMD gene, leading to progressive muscle degeneration, loss of ambulation, and multi-systemic complications. Beyond its impact on mobility, DMD is associated with significant endocrine and metabolic dysfunctions [...] Read more.
Background: Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular disorder caused by mutations in the DMD gene, leading to progressive muscle degeneration, loss of ambulation, and multi-systemic complications. Beyond its impact on mobility, DMD is associated with significant endocrine and metabolic dysfunctions that develop over time. Objective: To provide a comprehensive analysis of growth disturbances, endocrine dysfunctions, and metabolic complications in DMD including bone metabolism, considering the underlying mechanisms, clinical implications, and management strategies for daily clinical guidance. Methods: In this narrative review, an evaluation of the literature was conducted by searching the Medline database via the PubMed, Scopus, and Web of Science interfaces. Results: Growth retardation is a hallmark feature of DMD, with patients exhibiting significantly shorter stature compared to their healthy peers. This is exacerbated by long-term glucocorticoid therapy, which disrupts the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and delays puberty. Obesity prevalence follows a biphasic trend, with increased risk in early disease stages due to reduced mobility and corticosteroid use, followed by a decline in body mass index (BMI) in later stages due to muscle wasting. Metabolic complications, including insulin resistance, altered lipid metabolism, and hepatic steatosis, further characterize disease burden. Osteoporosis and increased fracture risk, primarily due to reduced mechanical loading and glucocorticoid-induced bone resorption, are major concerns, needing early screening and intervention. The RANK/RANKL/OPG signaling pathway has emerged as a critical factor in bone deterioration, providing potential therapeutic targets for improving skeletal health. Conclusions: Growth and endocrine disorders in DMD are complex and multifactorial, requiring proactive monitoring and early intervention. Addressing these issues requires a multidisciplinary approach integrating endocrine, nutritional, and bone health management. Further research is essential to refine treatment strategies that mitigate growth and metabolic disturbances while preserving overall patient well-being. Full article
(This article belongs to the Special Issue Musculoskeletal Diseases: From Molecular Basis to Therapy (Volume II))
Show Figures

Figure 1

41 pages, 5959 KB  
Review
Biomarker-Driven Approaches to Bone Metastases: From Molecular Mechanisms to Clinical Applications
by Youssef Elshimy, Abdul Rahman Alkhatib, Bilal Atassi and Khalid S. Mohammad
Biomedicines 2025, 13(5), 1160; https://doi.org/10.3390/biomedicines13051160 - 10 May 2025
Cited by 5 | Viewed by 5604
Abstract
Bone metastases represent a critical complication in oncology, frequently indicating advanced malignancy and substantially reducing patient quality of life. This review provides a comprehensive analysis of the complex interactions between tumor cells and the bone microenvironment, emphasizing the relevance of the “seed and [...] Read more.
Bone metastases represent a critical complication in oncology, frequently indicating advanced malignancy and substantially reducing patient quality of life. This review provides a comprehensive analysis of the complex interactions between tumor cells and the bone microenvironment, emphasizing the relevance of the “seed and soil” hypothesis, the RANK/RANKL/OPG signaling axis, and Wnt signaling pathways that collectively drive metastatic progression. The molecular and cellular mechanisms underlying the formation of osteolytic and osteoblastic lesions are examined in detail, with a particular focus on their implications for bone metastases associated with breast, prostate, lung, and other cancers. A central component of this review is the categorization of pathological biomarkers into four types: diagnostic, prognostic, predictive, and monitoring. We provide a comprehensive evaluation of circulating tumor cells (CTCs), bone turnover markers (such as TRACP-5b and CTX), advanced imaging biomarkers (including PET/CT and MRI), and novel genomic signatures. These biomarkers offer valuable insights for early detection, enhanced risk stratification, and optimized therapeutic decision-making. Furthermore, emerging strategies in immunotherapy and bone-targeted treatments are discussed, highlighting the potential of biomarker-guided precision medicine to enhance personalized patient care. The distinctiveness of this review lies in its integrative approach, combining fundamental pathophysiological insights with the latest developments in biomarker discovery and therapeutic innovation. By synthesizing evidence across various cancer types and biomarker categories, we provide a cohesive framework aimed at advancing both the scientific understanding and clinical management of bone metastases. Full article
(This article belongs to the Special Issue Pathological Biomarkers in Precision Medicine)
Show Figures

Figure 1

20 pages, 965 KB  
Review
Role of Masticatory Force in Modulating Jawbone Immunity and Bone Homeostasis: A Review
by Yue Song, Yao Jiao, Yitong Liu and Lijia Guo
Int. J. Mol. Sci. 2025, 26(10), 4478; https://doi.org/10.3390/ijms26104478 - 8 May 2025
Viewed by 2219
Abstract
Mastication exerts a significant influence on both the structural and immunological environment of the jawbone. The mechanical stress generated during chewing initiates bone remodeling through the coordinated activities of osteoclasts and osteoblasts, with these processes being modulated by immune cell responses. This review [...] Read more.
Mastication exerts a significant influence on both the structural and immunological environment of the jawbone. The mechanical stress generated during chewing initiates bone remodeling through the coordinated activities of osteoclasts and osteoblasts, with these processes being modulated by immune cell responses. This review summarizes the interaction between masticatory forces and jawbone immunity, focusing on key mechanisms such as mechanotransduction in osteocytes, macrophage polarization, and the activation of T cells. The review also delves into the role of the receptor activator of nuclear factor κ-B ligand (RANKL), receptor activator of nuclear factor κ-B (RANK), and osteoprotegerin (OPG) signaling pathway, highlighting its critical function in bone resorption and immune regulation. Additionally, the review summarizes how masticatory forces modulate the immune response through changes in immune cells, particularly focusing on cytokines, and the involvement of hormonal and molecular pathways. These findings provide valuable insights into the complex interplay between mechanical forces and immune cells, with implications for bone health. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

12 pages, 969 KB  
Review
The Pathogenetic Role of RANK/RANKL/OPG Signaling in Osteoarthritis and Related Targeted Therapies
by Gabriele Di Cicco, Emanuela Marzano, Andrea Mastrostefano, Dario Pitocco, Rodrigo Simões Castilho, Roberto Zambelli, Antonio Mascio, Tommaso Greco, Virginia Cinelli, Chiara Comisi, Giulio Maccauro and Carlo Perisano
Biomedicines 2024, 12(10), 2292; https://doi.org/10.3390/biomedicines12102292 - 10 Oct 2024
Cited by 19 | Viewed by 7419
Abstract
Background: Osteoarthritis (OA) is the most common degenerative joint disease and affects millions of people worldwide, particularly the elderly population. The pathophysiology of OA is complex and involves multiple factors. Methods: Several studies have emphasized the crucial role of inflammation in this process. [...] Read more.
Background: Osteoarthritis (OA) is the most common degenerative joint disease and affects millions of people worldwide, particularly the elderly population. The pathophysiology of OA is complex and involves multiple factors. Methods: Several studies have emphasized the crucial role of inflammation in this process. The receptor activator of NF-κB ligand (RANKL), the receptor activator of NF-κB (RANK), and osteoprotegerin (OPG) trigger a signaling cascade that leads to the excessive production of RANKL in the serum. Conclusions: The aim of this narrative review is (i) to assess the role of the RANK/RANKL/OPG signaling pathway in the context of OA progression, focusing especially on the physiopathology and on all the mechanisms leading to the activation of the inflammatory cascade, and (ii) to evaluate all the potential therapeutic strategies currently available that restore balance to bone formation and resorption, reducing structural abnormalities and relieving pain in patients with OA. Full article
(This article belongs to the Special Issue Advanced Research on Muscle and Bone Diseases)
Show Figures

Figure 1

14 pages, 2271 KB  
Article
Changes in RANKL, OPG, and 25(OH)D Levels in Children with Leukemia from Diagnosis to Remission
by Salvador Atilano-Miguel, Lourdes Barbosa-Cortés, Rocío Ortiz-Muñiz, Jorge Maldonado-Hernández, Jorge A. Martin-Trejo, Maricela Rodríguez-Cruz, Lourdes Balcázar-Hernández, Karina A. Solís-Labastida, Benito A. Bautista-Martínez, Azalia Juárez-Moya, Zayra Hernández-Piñón, Raeline A. Galindo-Rodríguez, Adriana Chávez-Anaya, Rosa E. Valdez-Avilez, Juan M. Domínguez-Salgado, Judith Villa-Morales and María E. Rodríguez-Palacios
Cancers 2024, 16(16), 2811; https://doi.org/10.3390/cancers16162811 - 10 Aug 2024
Cited by 3 | Viewed by 1980
Abstract
Background: The receptor activator of the nuclear factor-kB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) pathway is a determining pathway in the balance between bone formation and resorption, and disruptions in this complex can affect bone metabolism. Methods: This study analyzes the changes in RANKL, OPG, [...] Read more.
Background: The receptor activator of the nuclear factor-kB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) pathway is a determining pathway in the balance between bone formation and resorption, and disruptions in this complex can affect bone metabolism. Methods: This study analyzes the changes in RANKL, OPG, and 25(OH)D levels; the RANKL/OPG ratio; and other bone turnover markers (BTMs) from diagnosis to complete remission in children with acute lymphoblastic leukemia (ALL). This is a prospective observational cohort study, carried out at the Instituto Mexicano del Seguro Social, Mexico City, including 33 patients (4–17 years) with newly diagnosed B-cell ALL. The patients were treated with the HP09 chemotherapy protocol. Children who had previously been treated with corticosteroids were excluded. A peripheral blood sample at diagnosis and remission was collected to determine the 25(OH)D and BTM concentrations. Results: Increased RANKL (p = 0.001) and osteocalcin (p < 0.001) levels and RANKL/OPG ratio (<0.001) and a decreased OPG level (p = 0.005) were observed at remission, predominantly in the high-risk (HR) relapse and vitamin D deficiency groups. A negative association between RANKL and OPG (r = −0.454, p = 0.008) was observed. Conclusions: we suggest that the RANKL/OPG ratio could serve as a bone remodeling marker in ALL patients. Full article
Show Figures

Figure 1

20 pages, 3114 KB  
Review
The Manganese–Bone Connection: Investigating the Role of Manganese in Bone Health
by Gulaim Taskozhina, Gulnara Batyrova, Gulmira Umarova, Zhamilya Issanguzhina and Nurgul Kereyeva
J. Clin. Med. 2024, 13(16), 4679; https://doi.org/10.3390/jcm13164679 - 9 Aug 2024
Cited by 36 | Viewed by 8444
Abstract
The complex relationship between trace elements and skeletal health has received increasing attention in the scientific community. Among these minerals, manganese (Mn) has emerged as a key element affecting bone metabolism and integrity. This review examines the multifaceted role of Mn in bone [...] Read more.
The complex relationship between trace elements and skeletal health has received increasing attention in the scientific community. Among these minerals, manganese (Mn) has emerged as a key element affecting bone metabolism and integrity. This review examines the multifaceted role of Mn in bone health, including its effects on bone regeneration, mineralization, and overall skeletal strength. This review article is based on a synthesis of experimental models, epidemiologic studies, and clinical trials of the mechanisms of the effect of Mn on bone metabolism. Current research data show that Mn is actively involved in the processes of bone remodeling by modulating the activity of osteoblasts and osteoclasts, as well as the main cells that regulate bone formation and resorption. Mn ions have a profound effect on bone mineralization and density by intricately regulating signaling pathways and enzymatic reactions in these cells. Additionally, Mn superoxide dismutase (MnSOD), located in bone mitochondria, plays a crucial role in osteoclast differentiation and function, protecting osteoclasts from oxidative damage. Understanding the nuances of Mn’s interaction with bone is essential for optimizing bone strategies, potentially preventing and managing skeletal diseases. Key findings include the stimulation of osteoblast proliferation and differentiation, the inhibition of osteoclastogenesis, and the preservation of bone mass through the RANK/RANKL/OPG pathway. These results underscore the importance of Mn in maintaining bone health and highlight the need for further research into its therapeutic potential. Full article
Show Figures

Figure 1

13 pages, 1874 KB  
Article
Effects of the DL76 Antagonist/Inverse Agonist of Histamine H3 Receptors on Experimental Periodontitis in Rats: Morphological Studies
by Mariusz Geremek, Bogna Drozdzowska, Dorota Łażewska, Katarzyna Kieć-Kononowicz and Jerzy Jochem
Pharmaceuticals 2024, 17(6), 792; https://doi.org/10.3390/ph17060792 - 17 Jun 2024
Viewed by 1652
Abstract
Background: Periodontitis preceded by gingivitis is the most common form of periodontal disease and occurs due to the interaction of microorganisms present in the complex bacterial aggregates of dental plaque biofilm and their metabolism products with periodontal tissues. Histamine is a heterocyclic biogenic [...] Read more.
Background: Periodontitis preceded by gingivitis is the most common form of periodontal disease and occurs due to the interaction of microorganisms present in the complex bacterial aggregates of dental plaque biofilm and their metabolism products with periodontal tissues. Histamine is a heterocyclic biogenic amine acting via four types of receptors. Histamine H3 receptors act as presynaptic auto/heteroreceptors to regulate the release of histamine and other neurotransmitters. Aim: Since the nervous system is able to regulate the progression of the inflammatory process and bone metabolism, the aim of this study was to investigate the effects of DL76, which acts as an antagonist/inverse agonist of H3 receptors, on the course of experimental periodontitis. Materials and methods: This study was conducted in 24 mature male Wistar rats weighing 245–360 g, aged 6–8 weeks. A silk ligature was placed on the second maxillary molar of the right maxilla under general anesthesia. From the day of ligating, DL76 and 0.9% NaCl solutions were administered subcutaneously for 28 days in the experimental and control groups, respectively. After the experiment, histopathological, immunohistochemical and radiological examinations were performed. Results: Ligation led to the development of the inflammatory process with lymphocytic infiltration, increased epithelial RANKL and OPG expression as well as bone resorption. DL76 evoked a reduction in (1) lymphocytic infiltration, (2) RANKL and OPG expression as well as (3) bone resorption since the medians of the mesial and distal interdental spaces in the molars with induced periodontitis were 3.56-fold and 10-fold lower compared to the corresponding values in saline-treated animals with periodontitis. Conclusion: DL76 is able to inhibit the progression of experimental periodontitis in rats, as demonstrated by a reduction in the inflammatory cell infiltration, a decrease in the RANKL/RANK OPG pathway expression and a reduction in the alveolar bone resorption. Full article
(This article belongs to the Special Issue Histamine Receptor Ligands in Medicinal Chemistry)
Show Figures

Graphical abstract

19 pages, 1257 KB  
Review
Glycogen Synthase Kinase-3 Beta (GSK3β) as a Potential Drug Target in Regulating Osteoclastogenesis: An Updated Review on Current Evidence
by Sok Kuan Wong
Biomolecules 2024, 14(4), 502; https://doi.org/10.3390/biom14040502 - 21 Apr 2024
Cited by 7 | Viewed by 3923
Abstract
Glycogen synthase kinase 3-beta (GSK3β) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3β in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition [...] Read more.
Glycogen synthase kinase 3-beta (GSK3β) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3β in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3β enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3β is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (β)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3β has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3β may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3β inhibitors as bone-protecting agents. Some studies demonstrated that GSK3β inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3β silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3β on osteoclastogenesis and bone resorption. Full article
Show Figures

Figure 1

14 pages, 686 KB  
Review
Molecular and Biological Aspects of Orthodontic Tooth Movement: Possibilities for Bioengineering Intervention: A Narrative Review
by Ioannis A. Tsolakis, Isidora Christopoulou, Symeon Sitaras, Ioannis Lyros, Aliki Rontogianni, Maria Dalampira and Apostolos I. Tsolakis
Bioengineering 2023, 10(11), 1275; https://doi.org/10.3390/bioengineering10111275 - 2 Nov 2023
Cited by 12 | Viewed by 11304
Abstract
Background: The current review’s goal is to examine, with a critical eye, the effect of various biomedical parameters on orthodontic tooth movement in an attempt to provide the reader with related mechanisms of this issue focusing on certain key points. Methods: This critical [...] Read more.
Background: The current review’s goal is to examine, with a critical eye, the effect of various biomedical parameters on orthodontic tooth movement in an attempt to provide the reader with related mechanisms of this issue focusing on certain key points. Methods: This critical review was conducted using the following keywords in the search strategy: “biomedical molecules”, “biomarkers”, “orthodontics”, “orthodontic tooth movement”, “acceleration”, “gene therapy”, and “stem cells”. Cochrane Library, Medline (PubMed), and Scopus were the databases that were used for the electronic search. Studies published until June 2023 were considered. Results: The use of biomedical approaches in orthodontic tooth movement has been investigated via different procedures and applications. Surgical approaches, biomarkers affecting orthodontic tooth movement, different biological events and mechanisms, RANK, RANK-L, OPG molecular triad, and vibration methods are the basic parameters of biomedical interventions that are examined in the present review. Conclusions: The biomedical approach seems to offer a variety of applications to control orthodontic tooth movement. The scarcity of human studies, as well as the high cost and complexity of these methods, currently limit the available accurate data concerning this issue. Full article
(This article belongs to the Special Issue Advances in Dental and Maxillofacial Tissue Engineering)
Show Figures

Graphical abstract

15 pages, 1285 KB  
Review
The RANK–RANKL–OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer
by Diego De Leon-Oliva, Silvestra Barrena-Blázquez, Laura Jiménez-Álvarez, Oscar Fraile-Martinez, Cielo García-Montero, Laura López-González, Diego Torres-Carranza, Luis M. García-Puente, Sara T. Carranza, Miguel Ángel Álvarez-Mon, Melchor Álvarez-Mon, Raul Diaz and Miguel A. Ortega
Medicina 2023, 59(10), 1752; https://doi.org/10.3390/medicina59101752 - 30 Sep 2023
Cited by 76 | Viewed by 15885
Abstract
The RANK–RANKL–OPG system is a complex signaling pathway that plays a critical role in bone metabolism, mammary epithelial cell development, immune function, and cancer. RANKL is a ligand that binds to RANK, a receptor expressed on osteoclasts, dendritic cells, T cells, and other [...] Read more.
The RANK–RANKL–OPG system is a complex signaling pathway that plays a critical role in bone metabolism, mammary epithelial cell development, immune function, and cancer. RANKL is a ligand that binds to RANK, a receptor expressed on osteoclasts, dendritic cells, T cells, and other cells. RANKL signaling promotes osteoclast differentiation and activation, which leads to bone resorption. OPG is a decoy receptor that binds to RANKL and inhibits its signaling. In cancer cells, RANKL expression is often increased, which can lead to increased bone resorption and the development of bone metastases. RANKL-neutralizing antibodies, such as denosumab, have been shown to be effective in the treatment of skeletal-related events, including osteoporosis or bone metastases, and cancer. This review will provide a comprehensive overview of the functions of the RANK–RANKL–OPG system in bone metabolism, mammary epithelial cells, immune function, and cancer, together with the potential therapeutic implications of the RANK–RANKL pathway for cancer management. Full article
Show Figures

Figure 1

17 pages, 11413 KB  
Article
Therapeutic Potential of BMP7 in the Treatment of Osteoporosis Caused by the Interaction between Inflammation and Corticosteroids in Inflammatory Bowel Disease
by Ivana Smoljan, Dijana Detel, Suncica Buljevic, Igor Erjavec and Ivana Marić
Biomedicines 2023, 11(8), 2161; https://doi.org/10.3390/biomedicines11082161 - 1 Aug 2023
Cited by 8 | Viewed by 2446
Abstract
Individuals with inflammatory bowel disease (IBD) have an increased risk of bone impairment, which is a process controlled by the RANKL/RANK/OPG system, mostly due to chronic inflammation and corticosteroid treatment. Bone morphogenic protein 7 (BMP7) has a complex role in maintaining inflammation and [...] Read more.
Individuals with inflammatory bowel disease (IBD) have an increased risk of bone impairment, which is a process controlled by the RANKL/RANK/OPG system, mostly due to chronic inflammation and corticosteroid treatment. Bone morphogenic protein 7 (BMP7) has a complex role in maintaining inflammation and bone remodeling but little is known about its anti-inflammatory potential in chronic colitis. We investigated the effect of systemically administered BMP7 and corticosteroids on the severity of inflammation, macrophage differentiation, and bone regeneration in a chronic IBD model. Methods: Chronic colitis was induced in male Sprague Dawley rats via weekly administration of 2,4,6-trinitrobenzenesulfonic acid over 21 days following BMP7 or corticosteroid treatment for five days. The levels of serum and colon tissue inflammatory cytokines, RANKL/OPG system, as well as markers of macrophage polarization, were detected using RT-PCR, ELISA, or immunohistochemistry. Long bone and spine analyses were performed using microcomputed tomography (micro-CT). Results: The administration of BMP7 reduced the adverse effects of colitis and led to elevated OPG and RANK in the colon with a simultaneous decrease in TNF-α and an increase in IL-10 and TGF-β. Decreased expression of the M2 macrophage marker CD163 was found in the BMP7-treated rats compared with the colitis group, whereas the number of M1 marker iNOS-positive cells did not differ between the groups. As a result of the BMP7 treatment, morphometric parameters of trabecular bone increased, and increased trabecular separation noted in the colitis group did not appear. Conclusions: We showed that BMP7 suppressed the inflammatory response in chronic colitis, mainly by shifting the cytokine balance and by triggering alterations in the RANKL/OPG system rather than through a macrophage polarization imbalance. In addition, considering the demonstrated effect of BMP7 on bone morphology and structure, it can be suggested that BMP7 plays a role in the managing of osteoporosis in chronic colitis, and thus, its therapeutic potential in the treatment of IBD should be further evaluated. Full article
Show Figures

Figure 1

32 pages, 10774 KB  
Review
Phytochemical Compounds Involved in the Bone Regeneration Process and Their Innovative Administration: A Systematic Review
by Alina Hanga-Farcaș, Florina Miere (Groza), Gabriela Adriana Filip, Simona Clichici, Luminita Fritea, Laura Grațiela Vicaș, Eleonora Marian, Annamaria Pallag, Tunde Jurca, Sanda Monica Filip and Mariana Eugenia Muresan
Plants 2023, 12(10), 2055; https://doi.org/10.3390/plants12102055 - 22 May 2023
Cited by 38 | Viewed by 6644
Abstract
Bone metabolism is a complex process which is influenced by the activity of bone cells (e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL, Runx2); and the characteristic signaling pathways [...] Read more.
Bone metabolism is a complex process which is influenced by the activity of bone cells (e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL, Runx2); and the characteristic signaling pathways (e.g., RANKL/RANK, Wnt/β, Notch, BMP, SMAD). Some phytochemical compounds—such as flavonoids, tannins, polyphenols, anthocyanins, terpenoids, polysaccharides, alkaloids and others—presented a beneficial and stimulating effect in the bone regeneration process due to the pro-estrogenic activity, the antioxidant and the anti-inflammatory effect and modulation of bone signaling pathways. Lately, nanomedicine has emerged as an innovative concept for new treatments in bone-related pathologies envisaged through the incorporation of medicinal substances in nanometric systems for oral or local administration, as well as in nanostructured scaffolds with huge potential in bone tissue engineering. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Figure 1

14 pages, 505 KB  
Article
Analysis of Salivary Levels of IL-1β, IL17A, OPG and RANK-L in Periodontitis Using the 2017 Classification of Periodontal Diseases—An Exploratory Observational Study
by Marta Relvas, Ricardo Silvestre, Maria Gonçalves, Cristina Cabral, Ana Mendes-Frias, Luís Monteiro and Alexandra Viana da Costa
J. Clin. Med. 2023, 12(3), 1003; https://doi.org/10.3390/jcm12031003 - 28 Jan 2023
Cited by 13 | Viewed by 3109
Abstract
Periodontitis is a chronic disease with a high overall prevalence. It involves a complex interplay between the immune-inflammatory pathways and biofilm changes, leading to periodontal attachment loss. The aims of this study were (i) to assess whether the salivary IL-1β, IL-17A, RANK-L and [...] Read more.
Periodontitis is a chronic disease with a high overall prevalence. It involves a complex interplay between the immune-inflammatory pathways and biofilm changes, leading to periodontal attachment loss. The aims of this study were (i) to assess whether the salivary IL-1β, IL-17A, RANK-L and OPG levels have the potential to discriminate between the mild and severe periodontitis conditions; and (ii) to enable diagnostic/prognostic actions to differentiate between distinct levels of the disease. The analysis of the clinical parameters and the evaluation of the salivary immunomediators levels by means of a multiplex flow assay revealed a statistically significantly higher level of IL-1β in the periodontitis III/IV patients, as well as a higher level of RANK-L in the periodontitis III/IV and I/II patients, when compared to the healthy controls. Furthermore, the grade C periodontitis patients presented a significantly higher level of RANK-L compared to the grade B and grade A patients. In the grade C patients, IL-1β had a positive correlation with the PPD and CAL indices and RANK_L had a positive correlation with CAL. The evidence emerging from this study associates the salivary IL-1β and RANK-L levels with an advanced stage of periodontitis, stage III/IV, and with grade C, suggesting the possible cooperative action of both in the inflammatory and bone loss events. In addition to IL-1β, RANK-L could be considered a combined diagnostic biomarker for periodontitis. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

Back to TopTop