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Abstract: Bone metabolism is a complex process which is influenced by the activity of bone cells
(e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid
hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL,
Runx2); and the characteristic signaling pathways (e.g., RANKL/RANK, Wnt/β, Notch, BMP,
SMAD). Some phytochemical compounds—such as flavonoids, tannins, polyphenols, anthocyanins,
terpenoids, polysaccharides, alkaloids and others—presented a beneficial and stimulating effect
in the bone regeneration process due to the pro-estrogenic activity, the antioxidant and the anti-
inflammatory effect and modulation of bone signaling pathways. Lately, nanomedicine has emerged
as an innovative concept for new treatments in bone-related pathologies envisaged through the
incorporation of medicinal substances in nanometric systems for oral or local administration, as well
as in nanostructured scaffolds with huge potential in bone tissue engineering.

Keywords: bone regeneration; bone cells; bone biomarkers; bone signaling pathways; plant extracts;
phytochemicals compounds; nanometric systems; nanostructured scaffolds

1. Introduction

Bone is a complex tissue which has multiple functions and which presents a unique
structure that is in permanent renewal. Bone regeneration maintains the integrity of the
tissue and is coordinated by two processes: bone resorption carried out by osteoclasts,
through which the removal of aged cells takes place, and the formation of new bone tissue
by osteoblasts. The two processes are balanced [1]. The bone remodeling process is a
continuous and cyclic one that takes place at the level of a temporary anatomical structure
called the Basic Multicellular Unit (BMU) [2]. Bone remodeling at the BMU level takes place
in three phases: (i) The Initiation Phase involves the selection of osteoclastic precursors and
their differentiation into mature osteoclast cells and their activation for bone resorption;
(ii) The Inversion Phase involves the inhibition of osteoclast activity and their apoptosis, as
well as the differentiation of osteoblasts; (iii) The Terminal Phase involves the formation of
new bone tissue by osteoblasts [3].
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Bone formation or osteogenesis performed by the osteoblast and bone resorption or
osteolysis achieved by the osteoclast are the main processes that maintain bone homeostasis.
The balance between these two processes is regulated by hormonal and signaling pathways.

Parathyroid hormone (PTH) is one of the most important hormonal bone metabolism
regulators. The normal activity of PTH ensures the reabsorption of calcium at the bone
level. PTH binds to its receptor, type 1PTH receptor (PTHR1), which leads to the activation
of protein kinase A (PKA) or protein kinase C (PKC). Using these signaling pathways, PTH
can determine both bone formation and bone resorption [4]. PTHR1 is found on the surface
of several cells: osteoblasts, osteoclasts and renal tubule cells; its effect on osteoblasts is
a decrease in cell apoptosis, and on osteoclasts a decrease in sclerostin production [5,6].
The blood levels of PTH are directly influenced by the Ca2+ and vitamin D concentrations.
Low levels of vitamin D cause hyperparathyroidism [7]. Low levels of vitamin D lead to
rickets in children and osteomalacia in adults. Moreover, the use of vitamin D supplements
has been correlated with an increase in calcium levels and bone density and a reduction in
bone resorption and the risk of bone fractures [8,9].

In order to better understand bone metabolism, we will review the bone cells’ biomark-
ers involved in bone metabolism and bone regeneration and their main regulatory path-
ways. Additionally, the biomaterials used in bone regeneration; the plant extracts and
phytochemical compounds demonstrating a positive effect on the bone regeneration pro-
cess; and the pathogenetic mechanisms involved will all be described.

1.1. Bone Metabolism
1.1.1. The Main Cells of Bone Metabolism

Three main cell types are involved in the bone tissue constitution: the osteoblast,
responsible for new bone formation; the osteoclast, responsible for osteolysis and osteocytes;
and the mature osteoblasts, located in the bone matrix and responsible for coordinating
bone hemostasis.

Osteocytes: Osteocytes are cells located at the level of the bone matrix and which are
derived from mature osteoblasts [10]. They represent approximately 90–95% of bone cells,
have a long life of up to 25 years, are made up of the cell body and dendrites and are found
at the level of the lacuno-canalicular system, which allows their connection to adjacent
osteocytes, osteoblasts, osteoclasts, bone marrow, blood vessels and nerves [11]. Osteocytes
play a central role in bone homeostasis by acting as mechanical sensors and mechanical
transducers for the different stimuli to which the bone is subjected. They control through
chemical and hormonal responses both the process of osteolysis, by activating the cellular
differentiation process of osteoclasts, and that of osteogenesis, by forming young osteocytes
from osteoblasts [12,13].

Osteoblasts: Osteoblasts are small, mononucleated, cubic-shaped cells, but they can
also appear in a flat or cylindrical form, and they are derived from the mesenchymal
cells located in the bone marrow. Their differentiation takes place through the action of
a network of cytokines and transcription factors [14]. The mesenchymal cells located at
the level of the bone marrow have a multipotent character from their level and derive
several cell lines: adipocytes, chondrocytes and osteoblasts [15]. Osteoblastogenesis is
the cellular differentiation process of osteoblasts from mesenchymal cells. This process
takes place in three phases: proliferation, matrix maturation and mineralization. The
three phases are characterized by the expression of specific osteoblastic genetic markers
such as: osteocalcin (OCN), osteopontin (OPN), bone sialoprotein (BSP), collagen type I
(COL1A) and alkaline phosphatase (ALP). Osteoblastogenesis is controlled by hormonal
factors (parathormone and glucocorticoids); vitamin D3; specific signaling pathways (Wnt,
BMP, Hedgehog, Notch); circulating cytokines and transcription factors (Runx2 and Osx1);
fibroblast growth factor (FGF); and transforming growth factor β (TGFβ) [16].

Osteoclasts: Osteoclasts are the cells responsible for bone resorption. They are large,
multinucleated ones that are derived from hematopoietic cells, formed by the fusion of
mononuclear precursors of the monocyte-macrophage line. The cellular differentiation pro-
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cess requires the coordination of transcription factors with co-activating and co-repressing
factors [17]. In the process of cellular differentiation and maturation of osteoclasts, a central
role is played by the activator receptor of nuclear factor kB ligand (RANKL). Secreted by
osteoblasts, bone marrow cells and lymphocytes, RANKL is part of the tumor necrosis
factor family. RANKL interacts with the RANK receptor on the cells of preosteoclasts and
thus promotes their differentiation into osteoresorbing mature osteoclasts [18].

1.1.2. The Main Biomarkers of Bone Metabolism

Bone metabolism represents the sum of the biochemical processes through which
osteolysis and osteogenesis take place, and it represents both the metabolism of proteins and
of the minerals that enter the composition of the bone. The regulation of bone metabolism
is done by a series of hormonal or enzymatic biomarkers.

Parathyroid hormone (PTH): PTH influences the biochemical processes that take place
in bone remodeling. Low PTH values cause a decrease in bone circulatory markers—both
osteoforming and bone resorption markers—which causes a decrease in bone turnover.
By contrast, in hypoparathyroidism bone mineral density increases. The treatment of
hypoparathyroidism with human parathyroid hormone (hPTH) or recombinant human
parathyroid hormone (rhPTH) increases bone turnover, while bone mineral density shows
increases at the hip and spine level and decreases at the radiocarpal level [19].

Vitamin D: Vitamin D deficiency causes rickets in children and osteomalacia in adults, and
it is associated with the occurrence of osteoporosis and the increased risk of fractures. Recent
studies have demonstrated the effect of 25-hydroxy vitamin D3 and its metabolite 1α,25 hydroxy
vitamin D3 to differentiate mesenchymal stem cells of human origin towards osteoblasts [20].

Alkaline phosphatase: The bone isozyme is a glycoprotein attached to the cell membrane
of osteoblasts, from where it is released into circulation, and it is the main indicator
of osteogenesis. It participates in the synthesis of hydroxyapatite, providing inorganic
phosphate, pyrophosphate and monophosphoesters, and at the same time it hydrolyzes
pyrophosphate, which is an inhibitor of the mineralization process [21]. Tissue-nonspecific
alkaline phosphatase (TNSALP) is an enzyme essential in the bone mineralization process.
The mutation of the ALP gene is responsible for the synthesis of the TNSAPL enzyme and
leads to hypophosphatasia [22].

Osteocalcin: Osteocalcin is the most abundant non-collagenous protein at the bone
level. It is dependent on vitamin K and is produced by osteoblasts. It presents in its
structure three gamma-carboxyglutamic acids that have an affinity for the Ca2+ ion, which
will influence the bone remodeling and mineralization processes. It acts simultaneously as
an inhibitor of the hydroxyapatite growth and as a regulator of the activity of osteoclastic
precursors [23,24].

Osteopontin: Osteopontin is a phosphoprotein secreted at the bone level—especially
by osteoblasts—with a role in bone metabolism, in which it participates through endocrine,
neurological and immunological processes. It acts as a parathormone regulator, with low
osteopontin values blocking the PTH activity of stimulating alkaline phosphatase and
osteocalcin expression [25].

RANKL: RANKL is the receptor activator of NF-kB (RANK) ligand; it is a homotrimeric
protein secreted by osteoblasts with functions in osteoclastogenesis [26].

Osteoprotegerin (OPG): OPG is a glycoprotein secreted specifically by osteoblasts and
is a cytokine receptor of the Tumor Necrosis Factor (TNF). OPG acts as a “bait” receptor for
RANKL, inhibiting osteoclastogenesis and bone resorption [27].

Osterix: Osterix is a protein with a role in the differentiation of mesenchymal cells
into osteoblasts, which inhibits the formation of chondrocytes. At the osteoblastic level,
osterix indicates the genetic expression of osteopotin, osteonectin, type 1a1 collagen and
bone sialoprotein, which are all necessary for the process of bone mineralization at the level
of osteoblasts [28].
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Runx2: Runx2 is an essential protein in the maturation process of osteoblasts. Its
expression is weak in mesenchymal cells and strong in immature osteoblasts. Moreover, it
is essential in the differentiation of mesenchymal cells into osteoblasts [29].

1.1.3. The Main Signaling Pathways Specific to Bone Metabolism

Together with the hormonal regulation of bone homeostasis, an important role in
this process belongs to the signaling pathways., as they are involved in the processes of
embryonic bone development and bone repair [30].

RANKL/RANK/OPG: RANKL is produced by osteoblasts, and its binding to RANK
at the level of osteoclastic precursor cells determines the differentiation of this cell line,
favoring osteoclastogenesis. OPG secreted by osteoblasts is a “bait” receptor for RANKL,
preventing its binding to RANK and thereby preventing osteoclastogenesis and bone
resorption [26].

Wnt/β signaling: The Wnt pathway stimulates osteoblast activation and differentiation.
Canonical Wnt causes β-catenin translocation and stabilization in the cell nucleus, which
regulates gene transcription in response to Wnt signaling [31].

Notch: At the bone level, Notch receptors and their ligands are responsible for a mul-
titude of phenomena: osteoblastic differentiation, bone matrix mineralization, osteoclast
recruitment, cell fusion and osteoblast/osteoclast cell proliferation [32].

Bone morphogenetic proteins (BMPs): Part of the transforming growth factor β (TGFβ)
family, they are involved in the processes of bone formation through the differentiation
of osteoblasts. A central role in the BMP pathway signaling is played by SMAD 1, 5 and
8 proteins that interact with BMP receptors [33,34].

1.2. Biomaterials for Bone Regeneration

In many decades, a wide range of biomaterials have been developed to address bone
defects promoting bone regeneration through various mechanisms, such as mechanical
support, osteoconduction, osteoinduction, vascularization, neurotization, antibacterial
effect, etc. [35]. Autologous bone grafts were considered the “gold standard” material for
bone defects, but due to some disadvantages (limited quantity, long surgical procedures
and morbidity), they have been replaced by synthetic bone grafts. Therefore, a plethora
of emerging biomaterials possessing specific advantageous characteristics have been de-
signed [36]. According to their dimensional structure and dimension size (as nanoscale),
the biomaterials have been classified in zero-, one-, two-, three- and four-dimensional
biomaterials [35]. Often, different classes of biomaterials have been combined, leading to
hybrid composite biomaterials with synergic properties for bone tissue regeneration.

Zero-dimensional biomaterials have all three dimensions confined at nanoscale with a
high surface-to-volume ratio, including some carbon-based nanomaterials (fullerene, nan-
odiamonds, carbon dots) and inorganic nanoparticles (NPs) (AuNPs, AgNPs, iron oxide
NPs, etc.). They have presented great benefits for bone regeneration, such as biomineraliza-
tion, osteogenic differentiation, good mechanical performance and biocompatibility [35].

One-dimensional biomaterials (two dimensions are nanosized) presenting high length-to-
diameter ratio and unique nanotopography refer to nanowires (silicon nanowire—SiNW)
and nanotubes (Titanium oxide nanotubes—TiO2NTs, carbon nanotubes—CNTs). They
have modulated osteogenic and chondrogenic cell adhesion, proliferation and differentia-
tion, and have also facilitated mineralization and demonstrated exceptional bone tissue
compatibility [35].

Two-dimensional biomaterials (one dimension is in the nanoscale range), being character-
ized by a high diameter-to-thickness ratio, include graphene and its derivatives (graphene
oxide, reduced graphene oxide). Their exceptional osteoinductive properties (in vitro and
in vivo), along with their enhanced mechanical properties and favorable biocompatibility and
facilitated mineralization, have been attributed to graphene due to various interactions with
biomolecules and physical stress (affecting cytoskeletal tension and inducing cytoskeletal
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reorganization). Other nanofilm coatings (calcium phosphate coatings, black phosphorus (BP)
nanofilms) have been applied to facilitate the integration of biomaterial [35].

Three-dimensional biomaterials (all dimensions are larger than the nanoscale) are the
most widely used implants in clinics and include metallic (titanium and its alloy, silver, mag-
nesium, niobium, strontium, stainless steel, cobalt, tantalum) [37]; bioceramic (bioactive
bioceramics: calcium phosphate ceramics, hydroxyapatite, bioglass; bioinert bioceramics:
alumina, zirconia, silicon carbide) [38]; and polymeric scaffolds and hydrogels. The disad-
vantages of metal-based scaffolds (poor biodegradability, local/systemic toxicity, higher
elastic modulus) have been overcome by fabricating scaffolds with tunable porosity [35].

In the group of bioceramics, calcium phosphates and bioactive glass are the most
frequently used in the orthopedic and dental fields. Calcium phosphates (with various
forms, tunable porosities and densities) resemble the native bone tissue, having a good
capacity for integration and great bioactivity and osteoconductivity [35]. Hydroxyapatite
(HA) (one example of calcium phosphate) is an intrinsic component of bone tissue, pre-
senting excellent biocompatibility, osseointegration, osteoconductivity, osteoinductivity
and angiogenic effects. Biodegradable polymers have been mixed with HA in order to
overcome its limitations (brittleness and insufficient mechanical strength). Bioactive glass
(BG)—with its main components of silicate, borate and phosphate glass—exhibits ideal
surface reactivity, bioactivity and osteoinductivity, but also brittleness (a disadvantage
solved via polymer inclusion) [35].

Polymeric scaffolds are based on natural polymers (collagen, chitosan, hyaluronic
acid, silk, alginate, gelatin, cellulose, etc.) and synthetic polymers (polylactic acid (PLA),
poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA), poly(ethylene glycol) (PEG),
polycaprolactone (PCL), polyurethane (PU) etc.) [39,40]. Natural polymers and synthetic
polymers have advantages, such as biocompatibility, design flexibility, supporting cell
attachment, osteogenic differentiation, calcium biomineralization, easy tailoring of the
microstructure, hydrophilicity, pore size, porosity, mechanical characteristics and degrad-
ability. They also have disadvantages, such as immunogenic and pathogenic impurities,
poor replicability, need of crosslinking and an inferior loading-bearing capacity [35].

Hydrogels are based on hydrophilic polymers (natural, synthetic or hybrid) with a hy-
drophilic nature, with a high water content and permeability being substrates for supporting
cell growth, which promotes osteogenesis, calcium biomineralization and angiogenesis [35].

Four-dimensional biomaterials are a new smart generation exhibiting a dynamic self-
remodeling capability and a tunable stimuli responsiveness. They may contain hydrogels,
bioceramics, piezoelectric materials, etc. that undergo self-transformation of shape and
functionality after stimuli exposure [35].

The biomaterial/scaffold properties, such as pore size, stiffness, scaffold composition,
surface topography, surface functional groups, surface wettability and degradation product,
are crucial for their effects on cellular behavior being taken into consideration for the
appropriate selection of a certain biomaterial-based scaffold [41]. The techniques applied
for manufacturing the bone tissue regeneration scaffolds are freeze-drying, electrospinning,
3D printing (selective laser sintering, stereolithography, fused deposition modeling), solvent
casting, sol-gel, gas foaming and particulate leaching [37]. Recently, a new 3D bioprinting
technology that deposits living cells, extracellular matrices and biomaterials (inkjet-based
bioprinting, extrusion-based bioprinting, laser-based bioprinting) has emerged [42].

Natural biomaterials have been widely applied in tissue regeneration due to their
various advantages, such as biological and chemical similarity to natural tissues, biocom-
patibility, biodegradability, biological activity, low cytotoxicity, good cost-efficiency and
availability. From this class, edible materials have attracted increasing interest due to
some of their remarkable properties: enhancement of cell attachment, proliferation and
migration and antibacterial, anti-inflammatory and antioxidant properties [43]. Edible
materials, including natural polysaccharides (chitin, chitosan, hyaluronan, alginate, etc.),
phenolic compounds (coumarin, phenolic acid, anthocyanin, lignin, tannic acid, etc.), and
proteins (collagen, gelatin, silk fibroin, etc.) from plants, animals or other organisms, are a
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good source of nutrition for humans [43]. They can be employed as scaffolds or provide
osteogenesis-stimulative substances for bone regeneration [43].

The inclusion of some plants, plant extracts or phytochemical compounds in the daily
diet and in the biomaterials-based scaffold composition can improve the bone regenera-
tion process. Phytochemical compounds from the classes of anthocyanins, phenols and
flavonoids presented a beneficial and stimulating effect in the bone regeneration process.

Thus, the purpose of this review is to summarize the information regarding the implications
of phytochemical extracts and their mechanism of action in the bone regeneration process.

2. Research Methodology

The studies considered were selected using the PRISMA 2020 flow diagram according
to Page et al., 2021. The steps and selection criteria, followed by the number of the studies
used for our review, are shown in Figure 1. Databases such as PubMed, Scopus, Science
Direct, Elsevier, Google Scholar and Google Patents were accessed to search the literature.
The Medical Subject Headings keywords included in the search were “bone regeneration”,
“bone markers”, “bone signaling pathways”, “bone metabolism”, “bone pathology”, “plant
extract”, “plant bone regeneration”, “natural compounds bone regeneration”, “elagic acid
bone” and “bone regeneration materials”.
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All the information systematized in the tables was obtained from research articles
(in vivo/in vitro studies) and reviews between 2012 and 2022 (from the past 10 years). A
Prisma flow-diagram was used to describe how to select the studies and articles included
in the review, as shown in Figure 1 [44,45].

Studies published in languages other than English were excluded. A total of 143 stud-
ies were selected and included in this review.

3. Plant Extracts and Phytochemical Compounds with a Positive Effect on the Bone
Regeneration Process
3.1. Classes of Phytochemical Compounds Involved in the Bone Regeneration Process

Natural products exhibit a wide range of modulatory effects on various pathways
involved in bone regeneration (osteoclastogenesis inhibition, bone anabolism and bone
resorption), such as NF-κB signaling pathways, MAPKs signaling pathways, Akt signaling
pathways, calcium ion (Ca2+) signaling pathway, ROS-mediated effects and inflammatory
mediator genes (Figure 2) [46,47]. Some phytochemical compounds have been effective in
improving bone regeneration and preventing/treating osteoporosis and osteoarthritis by
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enhancing some mechanisms, such as mineral turnover, bone mineral density, inhibition
of bone loss, increase in calcium and vitamin D3 and prevention of inflammation and
oxidative stress [48].
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The phytocompounds which have proven their potential in orthopedic applications
belong to the following classes: flavonoids, tannins, polyphenols, anthocyanins, terpenoids,
polysaccharides, alkaloids and others (Figure 2) [46,47,49]. Many researchers have pointed
out that a certain activity is due to the complex composition of the plant product (including
interactions such as the synergistic, additive, or antagonistic effect) rather than to a single
compound, solvent extraction and doses [50].
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3.2. Phytocompounds Used in the Bone Regeneration Process—State of the Art

Currently, many conventional treatments are known whose mechanism of action is to
stop the reabsorption (anti-resorptive drugs) or anabolic drugs, but these are also known
for their characteristic adverse effects following their long-term administration.

The treatment of osteoporosis can be carried out with the medicinal agents from the
mentioned classes individually or as a combined treatment. A classic treatment against
the loss of bone density is the combined therapy of anabolic and antiresorptive drugs,
such as retiparatide, romosozumab and bisphosphonates, selective modulators of estrogen
receptors, and the continuous administration of calcium combined with vitamin D. How-
ever, the demonstrated adverse effects suggest that these classical treatments should be
administered with caution and not on a long-term basis. However, bone diseases such as
osteoporosis and osteoarthritis are chronic diseases, so this premise is not valid.

Some of the adverse effects in the case of the long-term administration of the drug
classes involved in conventional treatment are the occurrence of thrombotic events; the
occurrence of breast cancer; the occurrence of kidney diseases (especially with the contin-
uous administration of calcium together with vitamin D); gastrointestinal diseases; and
cardiovascular events.

Considering these facts, the treatment plan for bone diseases—such as osteoporosis—brings
to the fore natural molecules, specifically phytochemicals. These are of major interest for the
treatment and stimulation of bone regeneration, and they do not cause any adverse effects.

According to the mechanism of action, natural compounds can be divided into three
broad classes: compounds with pro-estrogenic activity, compounds with antioxidant and
anti-inflammatory properties and modulatory compounds of bone regeneration pathways.

Estrogen has multiple effects on bone metabolism: Through its action on osteocytes, it
inhibits bone remodeling; it also inhibits bone resorption through direct action on osteoclasts [51].

Oxidative stress disturbs the balance of bone metabolism, determining the apoptosis of
osteocytes and osteoblasts and favoring the cell proliferation of osteoclasts. This causes bone
destruction [52]. At the bone tissue level, oxidative stress favors postmenopausal, diabetic
and glucocorticoid osteoporosis. Under the action of oxidative stress at the intracellular
level, the mitochondria are deformed, which leads to the disruption of cellular metabolism
and even to apoptosis [53].

Prostaglandin E2 (PGE2) is produced by both osteoblasts and osteoclasts in the initial
phases of the bone healing process through a reaction catalyzed by the enzyme cyclooxy-
genase (COX). At the bone fracture, it promotes angiogenesis and increases the number
of osteoclasts, which promotes osteolysis and increases the differentiation of osteoblasts,
thus promoting osteogenesis. Both traditional non-steroidal anti-inflammatory drugs and
selective COX2 inhibitors inhibit bone formation due to their effect on prostaglandins [54].

Proinflammatory cytokines regulate the inflammatory process of bones. They regulate
both bone formation and bone resorption, thus altering bone homeostasis. Proinflammatory
cytokines (TNFα, IL-1, and IL-17) cause osteoclast activation, which explains the increased
bone loss during inflammation. Other cytokines, such as IL-12, IL-18, IL-33 and IFN, are
suppressors of osteoclast differentiation and thus inhibit bone loss. The presence of certain
cytokines in bone tissue can influence osteolysis [55].

Bone regeneration involves a large number of small molecules, transmission and
signaling pathways, growth factors and physicochemical stimuli from the extracellular
matrix, which are often interconnected and overlapping [56]. The main signaling pathways
with a role in the bone regeneration process are Wnt, TGF-b, MAPK, JNK and the Notch
pathway. Small molecules act as activators or inhibitors of transcription factors, and
through this they can regulate the process of bone formation [57].

Several plant-derived components obtained from plant extracts proved their ability to
affect the proliferation and differentiation potential of MSCs having as targets various signal
transduction pathways demonstrating an osteopromotive role in bone regeneration [50,58–60].
The mechanism of action of some bioactive compounds are highlighted in Table 1.
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Table 1. Phytochemical compounds involved in bone regeneration process including their mechanism of action and natural sources.

Compounds Type of Activity Mechanism of Action Extract Source In Vivo/In Vitro Studies Ref.
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Table 1. Cont.

Compounds Type of Activity Mechanism of Action Extract Source In Vivo/In Vitro Studies Ref.
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↑ expression of osteogenesis-related genes 
such as OSX, COLⅠ, ALP, OCN and OPN 
↑ total β-catenin and nuclear β-catenin; 
activation of the Wnt/β-catenin signaling 
pathway 

Coptis species. 
Berberis species. 
Coptidis Rhizoma, 
Coptis chinensis, 
Coptis teeta. 

In vitro 
(mesenchymal 

ctem cells) 
In vitro 

(osteoblast and 
osteoclast) 

 
 

In vitro 
(mesenchymal 

stem cells) 

[83–
86] 

↓ bone loss by preventing decalcification
and demineralization
inhibits osteoclastogenesis
suppresses the activity of the markers involved in
the differentiation of acid phosphatase-resistant
tartrate bone cells and cathepsin K
↓ the differentiation rate of osteoclasts
restore downregulation of osteogenesis-related
genes expression;
↑ expression of osteogenesis-related genes such as
OSX, COLI, ALP, OCN and OPN
↑ total β-catenin and nuclear β-catenin; activation
of the Wnt/β-catenin signaling pathway

Coptis species.
Berberis species.

Coptidis Rhizoma, Coptis
chinensis, Coptis teeta.

In vitro (mesenchymal
ctem cells)

In vitro (osteoblast and
osteoclast)

In vitro (mesenchymal
stem cells)

[85–88]

[87]

Apigenin
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Apigenin 

 

↑ the proliferation capacity of osteoblasts 
inhibits decalcification and 
osteoclastogenesis 
modulates intracellular signals  ↓bone 
loss induced by estrogen hormones 
↓ the level of bone inflammation. 
 
↑ mRNA levels of osteogenic genes BMP-2, 
Runx2 and COL1 
downregulation of miR29a, miR17 and 
miR20a 

Olea europaea. 
Cassia occidentalis 

In vivo (rats) 
In vitro 

(osteoblasts) 
 
 

In vitro 
(osteoblasts) 
In vivo (rats) 

[87–
90] 

Chlorogenic acid  

 

↑ the level of favorable markers for bone 
formation 
↑ the level of bone morphogenetic protein 
↑ the activity of osteoblasts 
↓ the level of pro-inflammatory factors 
↑ the level of glutathione peroxidase 
strong antioxidant effect 
↑ the serum activity of alkaline 
phosphatase, osteoprotegerin 
↓ the production of RANKL decreases 

Prunus domestica 
L. 

In vivo (rats) 
In vivo (rats) [91,92] 

Aesculetin 

 

↑ expression of bone morphogenetic 
protein-2, 
collagen type 1, osteoprotegerin;  
ALP activation; transcription of Runt-
related transcription factor 2; induction of: 
non-collagenous proteins of bone 
sialoprotein II, osteopontin, osteocalcin, 
and osteonectin, of annexin V and 
PHOSPHO 1.  
↑ the production of thrombospondin-1 and 
tenascin C 

- 
In vitro 

(osteoblasts) [93] 

 
 

 
 

 
   

 

↑ the proliferation capacity of osteoblasts
inhibits decalcification and osteoclastogenesis
modulates intracellular signals → ↓bone loss
induced by estrogen hormones
↓ the level of bone inflammation.

↑ mRNA levels of osteogenic genes BMP-2,
Runx2 and COL1
downregulation of miR29a, miR17 and miR20a

Olea europaea.
Cassia occidentalis

In vivo (rats)
In vitro (osteoblasts)

In vitro (osteoblasts)
In vivo (rats)

[89–92]



Plants 2023, 12, 2055 15 of 32

Table 1. Cont.

Compounds Type of Activity Mechanism of Action Extract Source In Vivo/In Vitro Studies Ref.

Chlorogenic acid

Plants 2023, 12, x FOR PEER REVIEW 18 of 38 
 

 

Apigenin 

 

↑ the proliferation capacity of osteoblasts 
inhibits decalcification and 
osteoclastogenesis 
modulates intracellular signals  ↓bone 
loss induced by estrogen hormones 
↓ the level of bone inflammation. 
 
↑ mRNA levels of osteogenic genes BMP-2, 
Runx2 and COL1 
downregulation of miR29a, miR17 and 
miR20a 

Olea europaea. 
Cassia occidentalis 

In vivo (rats) 
In vitro 

(osteoblasts) 
 
 

In vitro 
(osteoblasts) 
In vivo (rats) 

[87–
90] 

Chlorogenic acid  

 

↑ the level of favorable markers for bone 
formation 
↑ the level of bone morphogenetic protein 
↑ the activity of osteoblasts 
↓ the level of pro-inflammatory factors 
↑ the level of glutathione peroxidase 
strong antioxidant effect 
↑ the serum activity of alkaline 
phosphatase, osteoprotegerin 
↓ the production of RANKL decreases 

Prunus domestica 
L. 

In vivo (rats) 
In vivo (rats) [91,92] 

Aesculetin 

 

↑ expression of bone morphogenetic 
protein-2, 
collagen type 1, osteoprotegerin;  
ALP activation; transcription of Runt-
related transcription factor 2; induction of: 
non-collagenous proteins of bone 
sialoprotein II, osteopontin, osteocalcin, 
and osteonectin, of annexin V and 
PHOSPHO 1.  
↑ the production of thrombospondin-1 and 
tenascin C 

- 
In vitro 

(osteoblasts) [93] 

 
 

 
 

 
   

 

↑ the level of favorable markers for bone formation
↑ the level of bone morphogenetic protein →↑ the
activity of osteoblasts
↓ the level of pro-inflammatory factors
↑ the level of glutathione peroxidase →strong
antioxidant effect
↑ the serum activity of alkaline
phosphatase, osteoprotegerin
↓ the production of RANKL decreases

Prunus domestica L. In vivo (rats)
In vivo (rats) [93,94]

Aesculetin
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↑ the level of favorable markers for bone 
formation 
↑ the level of bone morphogenetic protein 
↑ the activity of osteoblasts 
↓ the level of pro-inflammatory factors 
↑ the level of glutathione peroxidase 
strong antioxidant effect 
↑ the serum activity of alkaline 
phosphatase, osteoprotegerin 
↓ the production of RANKL decreases 

Prunus domestica 
L. 

In vivo (rats) 
In vivo (rats) [91,92] 

Aesculetin 

 

↑ expression of bone morphogenetic 
protein-2, 
collagen type 1, osteoprotegerin;  
ALP activation; transcription of Runt-
related transcription factor 2; induction of: 
non-collagenous proteins of bone 
sialoprotein II, osteopontin, osteocalcin, 
and osteonectin, of annexin V and 
PHOSPHO 1.  
↑ the production of thrombospondin-1 and 
tenascin C 

- 
In vitro 

(osteoblasts) [93] 

 
 

 
 

 
   

 

↑ expression of bone morphogenetic protein-2,
collagen type 1, osteoprotegerin;
ALP activation; transcription of Runt-related
transcription factor 2; induction of: non-collagenous
proteins of bone sialoprotein II, osteopontin,
osteocalcin, and osteonectin, of annexin V and
PHOSPHO 1.
↑ the production of thrombospondin-1 and tenascin C

- In vitro (osteoblasts) [95]

Acemannan
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Acemannan 

 

↑ mRNA expression of bone 
morphogenetic protein 2 
↑ mineral deposition 

Aloe vera In vivo 
(volunteers) 

[94] 

Antihemorrhagic plant extract 

↑ osteoblastic activity and new bone 
formation; ↑ osteonectin and osteopontin 
expression 
 
↓ inflammatory cell infiltration, vascular 
dilatation and hemorrhage 

Glycyrrhiza glabra, 
Vitis vinifera, 
Alpinia 
officinarum Urtica 
dioica, Thymus 
vulgaris 

In vivo (rats) [95] 

Withaferin A 

 

↑ expression of osteoblast-specific 
transcription factor and mineralizing 
genes, osteoblast survival,  
↓ inflammatory cytokines. 

Withania 
somnifera 

In vitro 
(osteoblasts)  

In vivo (mice, 
rats) 

[96] 

Ecdysterone 

 

↑ gene expression of the BMP-
2/Smad/Runx2/ Osterix signaling pathway, 
stimulates MC3T3-E1 cell proliferation 

 
In vitro 

(osteoblasts)  
In vivo (rats) 

[97] 

 
 

 
 

 
 

 
 

 
 

↑ mRNA expression of bone morphogenetic protein
2
↑ mineral deposition

Aloe vera In vivo (volunteers) [96]



Plants 2023, 12, 2055 16 of 32

Table 1. Cont.

Compounds Type of Activity Mechanism of Action Extract Source In Vivo/In Vitro Studies Ref.

Antihemorrhagic
plant extract

↑ osteoblastic activity and new bone formation; ↑
osteonectin and osteopontin expression

↓ inflammatory cell infiltration, vascular dilatation
and hemorrhage

Glycyrrhiza glabra, Vitis
vinifera, Alpinia

officinarum Urtica dioica,
Thymus vulgaris

In vivo (rats) [97]

Withaferin A
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↓ inflammatory cell infiltration, vascular 
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Vitis vinifera, 
Alpinia 
officinarum Urtica 
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vulgaris 

In vivo (rats) [95] 

Withaferin A 

 

↑ expression of osteoblast-specific 
transcription factor and mineralizing 
genes, osteoblast survival,  
↓ inflammatory cytokines. 

Withania 
somnifera 

In vitro 
(osteoblasts)  

In vivo (mice, 
rats) 

[96] 

Ecdysterone 

 

↑ gene expression of the BMP-
2/Smad/Runx2/ Osterix signaling pathway, 
stimulates MC3T3-E1 cell proliferation 

 
In vitro 

(osteoblasts)  
In vivo (rats) 

[97] 

 
 

 
 

 
 

 
 

 
 

↑ expression of osteoblast-specific transcription
factor and mineralizing genes, osteoblast survival,
↓ inflammatory cytokines.

Withania somnifera In vitro (osteoblasts)
In vivo (mice, rats) [98]

Ecdysterone
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Alpinia 
officinarum Urtica 
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vulgaris 
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Withaferin A 

 

↑ expression of osteoblast-specific 
transcription factor and mineralizing 
genes, osteoblast survival,  
↓ inflammatory cytokines. 

Withania 
somnifera 

In vitro 
(osteoblasts)  

In vivo (mice, 
rats) 

[96] 

Ecdysterone 

 

↑ gene expression of the BMP-
2/Smad/Runx2/ Osterix signaling pathway, 
stimulates MC3T3-E1 cell proliferation 

 
In vitro 

(osteoblasts)  
In vivo (rats) 

[97] 

 
 

 
 

 
 

 
 

 
 

↑ gene expression of the
BMP-2/Smad/Runx2/Osterix signaling pathway,
stimulates MC3T3-E1 cell proliferation

In vitro (osteoblasts)
In vivo (rats) [99]

Echinacoside
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Echinacoside 

 

 
 
↑ the uterine weight and serum E2 levels, 
↓ body weight and hydroxyproline serum 
levels 

 
Cistanche tubulosa 

 
In vivo (rats) 

 
[98] 

Epigallocatechin gallate 

 

activation of β-catenin of the Wnt signaling 
pathway 
↑ expression of osteogenic genes, ALP 
activity, and mineralization in bone 
marrow-derived mesenchymal stem cells 

Grean tea 

In vitro 
(adipose-

derived stem 
cells, 

dedifferentiate
d fat cells) 

In vivo (mice, 
rats) 

[99,10
0] 

Essential oils 

blocking nuclear factor kappa B, p38, and 
c-Jun N-terminal kinase signaling 
↓ production of nitric oxide in RAW264.7 
cells, inhibited EAhy926 cell proliferation 
↑ serum C-telopeptide collagen type I and 
osteocalcin 
↑ plasma calcium and vitamin D3, bone 
mineral-density 
Prevention of inflammation and oxidative 
stress  

Hypericum 
perforatum; 
Cinnamomum 
burmanini; 
Thymus vulgari; 
Rosmarinus 
officinalis. 
Populus alba; 

In vitro 
(macrophages, 

fibroblasts, 
osteoblasts) 
In vivo (rats, 

mice) 

[46] 

↑ the uterine weight and serum E2 levels,
↓ body weight and hydroxyproline serum levels

Cistanche tubulosa In vivo (rats) [100]
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Epigallocatechin gallate

Plants 2023, 12, x FOR PEER REVIEW 20 of 38 
 

 

 
Echinacoside 

 

 
 
↑ the uterine weight and serum E2 levels, 
↓ body weight and hydroxyproline serum 
levels 

 
Cistanche tubulosa 

 
In vivo (rats) 

 
[98] 

Epigallocatechin gallate 

 

activation of β-catenin of the Wnt signaling 
pathway 
↑ expression of osteogenic genes, ALP 
activity, and mineralization in bone 
marrow-derived mesenchymal stem cells 

Grean tea 

In vitro 
(adipose-

derived stem 
cells, 

dedifferentiate
d fat cells) 

In vivo (mice, 
rats) 

[99,10
0] 

Essential oils 

blocking nuclear factor kappa B, p38, and 
c-Jun N-terminal kinase signaling 
↓ production of nitric oxide in RAW264.7 
cells, inhibited EAhy926 cell proliferation 
↑ serum C-telopeptide collagen type I and 
osteocalcin 
↑ plasma calcium and vitamin D3, bone 
mineral-density 
Prevention of inflammation and oxidative 
stress  

Hypericum 
perforatum; 
Cinnamomum 
burmanini; 
Thymus vulgari; 
Rosmarinus 
officinalis. 
Populus alba; 

In vitro 
(macrophages, 

fibroblasts, 
osteoblasts) 
In vivo (rats, 

mice) 

[46] 

activation of β-catenin of the Wnt
signaling pathway
↑ expression of osteogenic genes, ALP activity, and
mineralization in bone marrow-derived
mesenchymal stem cells

Grean tea

In vitro (adipose-derived
stem cells,

dedifferentiated fat cells)
In vivo (mice, rats)

[101,102]

Essential oils

blocking nuclear factor kappa B, p38, and c-Jun
N-terminal kinase signaling
↓ production of nitric oxide in RAW264.7 cells,
inhibited EAhy926 cell proliferation
↑ serum C-telopeptide collagen type I
and osteocalcin
↑ plasma calcium and vitamin D3, bone
mineral-density
Prevention of inflammation and oxidative stress

Hypericum perforatum;
Cinnamomum burmanini;

Thymus vulgari;
Rosmarinus officinalis.

Populus alba;

In vitro (macrophages,
fibroblasts, osteoblasts)

In vivo (rats, mice)
[48]

Forskolin
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Forskolin 

 

activation of cyclic adenosine 
monophosphate (c-AMP) signalling in 
stem cells 

Coleus forskohlii 
In vitro 

(mesenchymal 
stem cells) 

[101] 

Gallotannin 

 

interaction with ALP 
growth of Saos-2 cells 

Mangifera indica 
L. 

In vitro 
(osteoblasts)  [102] 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

activation of cyclic adenosine monophosphate
(c-AMP) signalling in stem cells Coleus forskohlii In vitro (mesenchymal

stem cells) [103]
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Forskolin 

 

activation of cyclic adenosine 
monophosphate (c-AMP) signalling in 
stem cells 

Coleus forskohlii 
In vitro 

(mesenchymal 
stem cells) 

[101] 

Gallotannin 

 

interaction with ALP 
growth of Saos-2 cells 

Mangifera indica 
L. 

In vitro 
(osteoblasts)  [102] 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

interaction with ALP
growth of Saos-2 cells Mangifera indica L. In vitro (osteoblasts) [104]

Ursolic acid

Plants 2023, 12, x FOR PEER REVIEW 22 of 38 
 

 

Ursolic acid 

 

↑ trabecular parameters (BV/TV, Tb.Th and 
conn.D) 
↓ SMI 
↑ALP activity, osteogenic genes (Runx2, 
BMP-2, type 1 Col1 and Wnt3a) 
stimulates Wnt/β-catenin signalling 
osteoblast differentiation (activation of 
mitochondrial respiration) 

Psidium guajava In vitro 
(osteoblasts)  
In vivo (rats) 

[103] 

Malvidin 

  
Cyanidin 

 
Delphinidin 

 

inhibition of MSC adipogenesis and 
downregulation of FABP4 and adiponectin 
genes. 
↑ accumulation of calcium deposits 
upregulation of osteocyte-specific gene 
BMP-2 and Runx-2 expression 

Berries 
In vitro 

(mesenchymal 
stem cells) 

[104] 

↑ trabecular parameters (BV/TV,
Tb.Th and conn.D)
↓ SMI
↑ALP activity, osteogenic genes (Runx2, BMP-2,
type 1 Col1 and Wnt3a)
stimulates Wnt/β-catenin signalling
osteoblast differentiation (activation of
mitochondrial respiration)

Psidium guajava In vitro (osteoblasts)
In vivo (rats) [105]
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inhibition of MSC adipogenesis and 
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↑ accumulation of calcium deposits 
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BMP-2 and Runx-2 expression 

Berries 
In vitro 

(mesenchymal 
stem cells) 

[104] 
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inhibition of MSC adipogenesis and 
downregulation of FABP4 and adiponectin 
genes. 
↑ accumulation of calcium deposits 
upregulation of osteocyte-specific gene 
BMP-2 and Runx-2 expression 

Berries 
In vitro 

(mesenchymal 
stem cells) 

[104] 
inhibition of MSC adipogenesis and
downregulation of FABP4 and adiponectin genes.
↑ accumulation of calcium deposits
upregulation of osteocyte-specific gene BMP-2 and
Runx-2 expression

Berries In vitro (mesenchymal
stem cells) [106]
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Rutin
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activation of Wnt/b-Catenin Signaling 
↑ activity of ALP, Runx2, osterix, 
osteocalcin, bone morphogenetic protein 2, 
Wnt3a, and b-catenin 

Morinda citrifolia 
(Noni) 

In vitro 
(murine 

myoblast cell 
line, human 
periodontal 

ligament cells) 
In vivo (rats) 

[105–
107] 

Rhamnogalacturonan-I 

 

↓ intracellular accumulation of galectin-3 
up-regulation of collagen type I alpha 1 
(COL-Iα1), osteocalcin, sialoprotein. 
down-regulation of RANKL, TNFα, IL-6, 
and IL-1β 

Solanum 
tuberosum 

In vitro 
(neutrophils 

and 
macrophages; 
osteoblasts) 

In vivo (rats) 

[77,78] 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

activation of Wnt/b-Catenin Signaling
↑ activity of ALP, Runx2, osterix, osteocalcin, bone
morphogenetic protein 2, Wnt3a, and b-catenin

Morinda citrifolia (Noni)

In vitro (murine
myoblast cell line, human

periodontal ligament
cells) In vivo (rats)

[107–109]

Rhamnogalacturonan-I
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[77,78] 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

↓ intracellular accumulation of galectin-3
up-regulation of collagen type I alpha 1 (COL-Iα1),
osteocalcin, sialoprotein.
down-regulation of RANKL, TNFα, IL-6, and IL-1β

Solanum tuberosum

In vitro (neutrophils and
macrophages;
osteoblasts)
In vivo (rats)

[79,80]

Crocin
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Crocin 

 
Crocetin 

 

 
↑ ALP activity and ALP mRNA expression 
in MSCs 

 
 
Crocus sativus L. 

 
In vitro 

(mesenchymal 
stem cells) 

 
 

[108] 

Sinapic acid 

 

activation of TGF-β1/BMP/Smads/Runx2 
signaling pathways => osteoblast 
differentiation 

Cynanchi atrati 

In vitro 
(macrophags) 

In vitro 
(mesenchymal 

stem cells) 
In vivo (rats) 

[109,1
10] 

Crocetin
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↑ ALP activity and ALP mRNA expression 
in MSCs 

 
 
Crocus sativus L. 

 
In vitro 

(mesenchymal 
stem cells) 

 
 

[108] 

Sinapic acid 

 

activation of TGF-β1/BMP/Smads/Runx2 
signaling pathways => osteoblast 
differentiation 

Cynanchi atrati 

In vitro 
(macrophags) 

In vitro 
(mesenchymal 

stem cells) 
In vivo (rats) 

[109,1
10] 

↑ ALP activity and ALP mRNA expression in MSCs Crocus sativus L. In vitro (mesenchymal
stem cells) [110]
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Crocin 

 
Crocetin 

 

 
↑ ALP activity and ALP mRNA expression 
in MSCs 

 
 
Crocus sativus L. 

 
In vitro 

(mesenchymal 
stem cells) 

 
 

[108] 

Sinapic acid 

 

activation of TGF-β1/BMP/Smads/Runx2 
signaling pathways => osteoblast 
differentiation 

Cynanchi atrati 

In vitro 
(macrophags) 

In vitro 
(mesenchymal 

stem cells) 
In vivo (rats) 

[109,1
10] 

activation of TGF-β1/BMP/Smads/Runx2
signaling pathways => osteoblast differentiation Cynanchi atrati

In vitro (macrophags)
In vitro (mesenchymal

stem cells)
In vivo (rats)

[111,112]

BetaEcdysone
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Beta Ecdysone 

 

↑ collagen deposition, ↑ levels of 
osteocalcin, ↑ expression of osteogenic 
genes 

Tinospora 
cordifolia 

In vitro 
(osteoblasts, 

macrophages)  
In vivo (rats) 

[111] 

Cucurbitacin B  

 

↑ expression of ALP and OPN genes, 
mineralization  
up-regulation of VEGFR2 and VEGFR-
related signaling pathways (induction of 
angiogenesis) 

Cucurbitaceae 
family plants 

In vitro 
(mesenchymal 

stem cells) 
In vivo (rats) 

[112] 

Polysaccharides  

hematopoiesis protection: 
↓ myeloid cells within tumor-infiltrating 
immune cells 
Inhibition of hematopoietic cell expansion 
in the spleen 
↑ HSPCs (hematopoietic stem and 
progenitor cells) and common lymphoid 
progenitors in the bone marrow 

Polygonatum 
sibiricum In vivo (mice) [113] 

↑ collagen deposition, ↑ levels of osteocalcin, ↑
expression of osteogenic genes Tinospora cordifolia

In vitro (osteoblasts,
macrophages)

In vivo (rats)
[113]

Cucurbitacin B
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Table 1. Cont.

Compounds Type of Activity Mechanism of Action Extract Source In Vivo/In Vitro Studies Ref.

Polysaccharides

hematopoiesis protection:
↓ myeloid cells within tumor-infiltrating
immune cells
Inhibition of hematopoietic cell expansion
in the spleen
↑ HSPCs (hematopoietic stem and progenitor cells)
and common lymphoid progenitors in the bone
marrow

Polygonatum sibiricum In vivo (mice) [115]
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Table 1. Cont.

Compounds Type of Activity Mechanism of Action Extract Source In Vivo/In Vitro Studies Ref.

Ellagic acid and hydroxyapatite
↑ in the expression of FGF-2, VEGF and ALP
↑ IL-10, BMP-4 and OPN
↓ TNF-α and increasing the expression of

In vivo (rats) [118,119]
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4. The Innovative Administration and Application of Plant Extracts in the Process of
Bone Regeneration

The conventional administration of treatments in bone diseases (oral, systemic adminis-
tration) presents multiple disadvantages such as the low bioavailability of the administered
medicinal substances or of the administered phytochemical compounds, the occurrence of
side effects at the gastric and intestinal levels, low absorption and the need to increase the
dose of administration [119–121].

Taking into account these inconveniences, traditional medicine is considered to be
outdated with regards to bone diseases; therefore, the attention has been recently directed
toward the targeted administration of natural compounds in nanometric form [122].

An advantage of using nanomedicine is the possibility of incorporating medicinal
substances, phytochemicals or a mixture of two in different materials (biomaterials) that are
compatible with bone tissue [121–123]. Moreover, because of their increased compatibility
with the human body, the bioavailability of the substances administered through this route
is increased, thus allowing a decrease in the doses administered [124–126].

The administration can be sustained at the level of the therapeutic plateau, and thus
the number of administrations per day can be decreased. Increased compliance with the
applied treatment can be thus gained [124]. The phytochemical compounds included in
such systems are also protected from the factors that destroy their therapeutic activity, such
as light, temperature and pH [123–125].

The nanometric systems also allow the controlled and targeted release of the contained
compounds. The effectiveness of the treatment is much higher than that of conventional
treatments [126–128]. Additionally, these systems allow local administration, at the bone
level, which avoids the adverse gastric and intestinal effects that are encountered using
conventional medication [129–133].

Some of these novel transport systems are presented in Figure 3.
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New treatment opportunities and solutions are envisioned by combining herbal
medicines having osteogenic, antitumor, antimicrobial, and anti-inflammatory proper-
ties with advanced materials for bone tissue engineering. Plant derived compounds have
been included or added in the composition of orthopedic biomaterials (metallic, ceramic
and polymeric matrix) in order to deliver the phytochemical substance at the bone site,
leading to functionalized scaffolds with plant extracts applied in tissue engineering. A
wide range of natural compounds have been proposed for incorporation within bone tissue
engineering scaffolds in order to enhance bone growth, inhibit osteoclastic bone resorption,
and prevent other bone-related complications [43,134–136]. Recently, an innovative con-
cept has emerged in nanotechnology tissue engineering: combination and nanostructured
scaffolds. These have attracted a huge interest due to their promising results in improving
the bone healing process.

Essential oils (from different plant sources) and other compounds (metallic nanoparti-
cles, zinc nitrate, copper sulphate, cobalt nitrate, etc.) have been used to treat polyurethane
scaffolds, leading to the improved physical and biomedical properties of the designed
scaffolds (stability, biocompatibility, bone mineralization, osteoblast cell adhesion, antimi-
crobial activity, etc.) [48]. Polyphenols, another class of natural compounds, have been
incorporated in the composition of the bioactive scaffolds. They conferred unique structural
and functional features: bio adhesion, antioxidation, anti-inflammatory and antibacterial
properties, hydrophilicity, self-healing and biocompatibility (promoting bone regeneration).
The approaches addressed for the fabrication of polyphenol-based scaffolds have included
coating on the polymer scaffold and grafting or blending into biopolymers. They presented
different morphologies, such as hydrogels (3D cross-linked networks), films (2D materials)
and nanofibers (1D materials) [137].

Allium cepa extract, chitosan and poly (DL-lactic-co-glycolic) acid have been em-
ployed for the synthesis of a 3D matrix with a porous morphology (50–100 µm), allowing its
surface mineralization to have a uniform hydroxyapatite layer [138]. Cucurbitacin B was in-
corporated into a biomaterial scaffold based on a poly (lactidecoglycolide) and β-tricalcium
phosphate from where it was linearly released, showing enhanced neovascularization
(via VEGFR-related signaling pathways) and bone regeneration (via higher bone mineral
density, bone volume and number of trabeculae). The composite presented a bio-mimic
structure with a pore between 16 and 466 nm and improved mechanical properties [114].

Aloe vera gel has been incubated on the surface of poly (3-hydroxybutyrate-co-3-
hydroxyvalerate) nanofibers, generating a scaffold with promising osteoinductive potential
(higher amounts of alkaline phosphatase activity, mineralization, and bone-related gene and
protein expression were recorded) [139]. In another study, polycaprolactone/aloe vera/silk
fibroin nanofibrous scaffolds were synthesized, followed by hydroxyapatite deposition.
The result consisted of in biomimetic scaffolds with increased cell proliferation, osteogenic
marker expression, osteogenic differentiation and mineralization [140].

A lipid-based self-nano emulsifying drug delivery system (100–180 nm) containing
Cassia occidentalis L. butanolic extract prevented the downregulation of miR29a (Runx2),
miR17 and miR20a (RANKL), induced by methyl prednisone and proving osteogenic and
anti-resorptive mechanisms. The anti-inflammatory effect of the glucocorticoid was not
affected, whereas the induced sarcopenia and muscle atrophy were counteracted [92].
Linum usitatissimum extract rich in phenolic compounds and flavonoids was incorporated
in a composite hydrogel based on alginate and nano-hydroxyapatite which presented
a porous structure (100–200 µm) and sustainedly released the natural compound. This
composite demonstrated hemocompatibility, antioxidant activity and cell proliferation,
thus promoting bone regeneration [141].

Fruits (grape seed, pomegranate peel, jabuticaba peel) extracts have been used as
crosslinkers for anionic collagen, which together with nanohydroxyapatite formed a smart
scaffold with a pore size (17–230 nm) appropriate for bone growth [142]. Genipin, a natural
compound from gardenia fruits, demonstrated a promising cross-linking ability for natural
biopolymers (collagen, gelatin, and chitosan) and a promising biosafety profile. The surface
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of several scaffolds was coated with genipin-crosslinked hydrogel releasing osteogenic
factors, acting as an anti-infection agent or presenting a water-absorbing function [143].

Epigallocatechin gallate has been employed to coat poly (L-lactic acid) nanofibers
to enhance hydrophilicity and stem cell adhesion, with the flavonoid serving as a pro-
tective agent of external oxidative stress for the stem cells. The plant flavonoid-based
scaffold promoted the osteogenic differentiation of adipose-derived stem cells and reduced
the osteoclastic maturation of the murine macrophages [101]. In another study, epigallo
catechin gallate represented a promising tool to chemically modify gelatin sponges influenc-
ing surface properties (hydrophilicity and negative zeta potential). This functionalization
enhanced cell adhesion and calcium phosphate precipitation, inducing superior bone forma-
tion in vivo [102]. In other study, gellan gelum hydrogels loaded with alkaline phosphatase
were enriched with 5 types of gallotannins (three tannic acids with differing molecular
weight, pentagalloyl glucose, and a gallotannin-rich extract from mango kernel (Mangifera
indica L.). These preparations promoted the mineral formation (the dry mass percentage
values were increased) due to the interactions between the ALP and gallotannins dependent
on the medium [104].

Forskolin, a triterpenoid from Coleus forskohlii, was loaded into halloysite nanotubes,
which were then used as a dopant for the modification biopolymer scaffold (based on
gelatin, chitosan, agarose). This resulted in a new osteoconductive smart polymeric scaffold.
The forskolin-loaded halloysite nanotubes acted as a filler that increased the composite
volume and filled the voids, therefore facilitating the cell attachment. The mechanical
properties of the scaffold together with the chemical signal of forskolin (cyclic adenosine
monophosphate signaling activation in stem cells) had a synergic effect in promoting the
osteodifferentiation of mesenchymal stem cells [103].

Plant-derived nanoparticles from potato containing rhamnogalacturonan-I (with relatively
higher amount of gallactose) have been used for poly (L-lactide-co-E-caprolactone) scaffolds
functionalization revealing a downregulation of pro-inflammatory gene markers and promotion
of osteogenic markers [79]. The same plant-derived pectin, rhamnogalacturonan-I, has been
employed for the nanocoating of im-plants influencing osteoblast proliferation, mineralization
and gene expression (Runt-related transcription factor 2 (Runx2), alkaline phosphate (ALP), os-
teocalcin (Bglap), α-1 type I collagen (Col1a1), receptor activator of NF-κB ligand (RANKL)) [80].
A plant-derived phenolic compound, sinapic acid, was used for the synthesis of sinapic-acid-
loaded chitosan nanoparticles (100-115 nm), which were incorporated into polycaprolactone
fibers (around 350 nm), resulting in a scaffold that promoted osteoblast differentiation in vitro
and bone formation in vivo (via TGF-β1/BMP/Smads/Runx2 signaling pathways) due to the
sustained release of sinapic acid [112].

5. Conclusions

Understanding the structure of bone tissue and the mechanisms of bone formation is
crucial in the development of new methods of treatment for bone defects. The purpose of
this work was to summarize the main cells, biomarkers and signaling pathways involved in
bone metabolism. The phytochemical compounds with huge potential in bone regeneration
were highlighted according to their activity and mechanisms of action included in three
broad classes: natural compounds with pro-estrogenic activity, natural compounds with
antioxidant and anti-inflammatory properties and modulatory compounds of bone signal-
ing pathways. Recently, the targeted administration of natural compounds in nanometric
forms for bone regeneration has been in high demand due to their considerable advantages.
Another trend of nanomedicine applied in orthopedic field consists in the combination of
plant-derived compounds with nanostructured biomaterials, resulting in functionalized
scaffolds that are crucial for bone tissue engineering and that have shown promising results
for the improvement of the bone healing process.
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