Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = RADARSAT Constellation Mission (RCM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6889 KiB  
Article
Machine Learning-Based Detection of Icebergs in Sea Ice and Open Water Using SAR Imagery
by Zahra Jafari, Pradeep Bobby, Ebrahim Karami and Rocky Taylor
Remote Sens. 2025, 17(4), 702; https://doi.org/10.3390/rs17040702 - 19 Feb 2025
Cited by 1 | Viewed by 1063
Abstract
Icebergs pose significant risks to shipping, offshore oil exploration, and underwater pipelines. Detecting and monitoring icebergs in the North Atlantic Ocean, where darkness and cloud cover are frequent, is particularly challenging. Synthetic aperture radar (SAR) serves as a powerful tool to overcome these [...] Read more.
Icebergs pose significant risks to shipping, offshore oil exploration, and underwater pipelines. Detecting and monitoring icebergs in the North Atlantic Ocean, where darkness and cloud cover are frequent, is particularly challenging. Synthetic aperture radar (SAR) serves as a powerful tool to overcome these difficulties. In this paper, we propose a method for automatically detecting and classifying icebergs in various sea conditions using C-band dual-polarimetric images from the RADARSAT Constellation Mission (RCM) collected throughout 2022 and 2023 across different seasons from the east coast of Canada. This method classifies SAR imagery into four distinct classes: open water (OW), which represents areas of water free of icebergs; open water with target (OWT), where icebergs are present within open water; sea ice (SI), consisting of ice-covered regions without any icebergs; and sea ice with target (SIT), where icebergs are embedded within sea ice. Our approach integrates statistical features capturing subtle patterns in RCM imagery with high-dimensional features extracted using a pre-trained Vision Transformer (ViT), further augmented by climate parameters. These features are classified using XGBoost to achieve precise differentiation between these classes. The proposed method achieves a low false positive rate of 1% for each class and a missed detection rate ranging from 0.02% for OWT to 0.04% for SI and SIT, along with an overall accuracy of 96.5% and an area under curve (AUC) value close to 1. Additionally, when the classes were merged for target detection (combining SI with OW and SIT with OWT), the model demonstrated an even higher accuracy of 98.9%. These results highlight the robustness and reliability of our method for large-scale iceberg detection along the east coast of Canada. Full article
Show Figures

Figure 1

35 pages, 63312 KiB  
Article
Real-Time Multiresolution Management of Spatiotemporal Earth Observation Data Using DGGS
by Amir Mirzai Golpayegani, Mahmudul Hasan and Faramarz F. Samavati
Remote Sens. 2025, 17(4), 570; https://doi.org/10.3390/rs17040570 - 7 Feb 2025
Viewed by 875
Abstract
The effective management of spatiotemporal Earth observation data is a significant challenge due to their growing size and scale, geometric distortion, temporal gaps, and restricted access. In this article, we introduce a novel methodology utilizing a Discrete Global Grid System (DGGS) to address [...] Read more.
The effective management of spatiotemporal Earth observation data is a significant challenge due to their growing size and scale, geometric distortion, temporal gaps, and restricted access. In this article, we introduce a novel methodology utilizing a Discrete Global Grid System (DGGS) to address a set of challenges related to spatiotemporal data storage with a live updating mechanism, the multiresolution processing of an arbitrary region of interest (ROI) in real time, and the approximation of missing data in a smooth, continuous manner. We use reverse Chaikin subdivision and B-spline curve fitting to handle temporal data gaps, allowing for real-time updates. Additionally, our work presents a triangular wavelet scheme to incorporate a flexible, tensor-based multiresolution storage scheme for spatiotemporal raster data. The case study we present uses data from the RADARSAT Constellation Mission (RCM) of the Canadian Space Agency (CSA). Our system enables the dynamic retrieval and visualization of time-varying data for a user-defined ROI. The obtained results demonstrate that our method ensures high data fidelity while making spatiotemporal data more accessible across various practical applications in Earth observation. Full article
Show Figures

Figure 1

19 pages, 31258 KiB  
Article
Pyramid Fine and Coarse Attentions for Land Cover Classification from Compact Polarimetric SAR Imagery
by Saeid Taleghanidoozdoozan, Linlin Xu and David A. Clausi
Remote Sens. 2025, 17(3), 367; https://doi.org/10.3390/rs17030367 - 22 Jan 2025
Cited by 1 | Viewed by 813
Abstract
Land cover classification from compact polarimetry (CP) imagery captured by the launched RADARSAT Constellation Mission (RCM) is important but challenging due to class signature ambiguity issues and speckle noise. This paper presents a new land cover classification method to improve the learning of [...] Read more.
Land cover classification from compact polarimetry (CP) imagery captured by the launched RADARSAT Constellation Mission (RCM) is important but challenging due to class signature ambiguity issues and speckle noise. This paper presents a new land cover classification method to improve the learning of discriminative features based on a novel pyramid fine- and coarse-grained self-attention transformer (PFC transformer). The fine-grained dependency inside a non-overlapping window and coarse-grained dependencies between non-overlapping windows are explicitly modeled and concatenated using a learnable linear function. This process is repeated in a hierarchical manner. Finally, the output of each stage of the proposed method is spatially reduced and concatenated to take advantage of both low- and high-level features. Two high-resolution (3 m) RCM CP SAR scenes are used to evaluate the performance of the proposed method and compare it to other state-of-the-art deep learning methods. The results show that the proposed approach achieves an overall accuracy of 93.63%, which was 4.83% higher than the best comparable method, demonstrating the effectiveness of the proposed approach for land cover classification from RCM CP SAR images. Full article
(This article belongs to the Topic Computer Vision and Image Processing, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 7440 KiB  
Article
A Novel Method for the Estimation of Sea Surface Wind Speed from SAR Imagery
by Zahra Jafari, Pradeep Bobby, Ebrahim Karami and Rocky Taylor
J. Mar. Sci. Eng. 2024, 12(10), 1881; https://doi.org/10.3390/jmse12101881 - 20 Oct 2024
Cited by 3 | Viewed by 1532
Abstract
Wind is one of the important environmental factors influencing marine target detection as it is the source of sea clutter and also affects target motion and drift. The accurate estimation of wind speed is crucial for developing an efficient machine learning (ML) model [...] Read more.
Wind is one of the important environmental factors influencing marine target detection as it is the source of sea clutter and also affects target motion and drift. The accurate estimation of wind speed is crucial for developing an efficient machine learning (ML) model for target detection. For example, high wind speeds make it more likely to mistakenly detect clutter as a marine target. This paper presents a novel approach for the estimation of sea surface wind speed (SSWS) and direction utilizing satellite imagery through innovative ML algorithms. Unlike existing methods, our proposed technique does not require wind direction information and normalized radar cross-section (NRCS) values and therefore can be used for a wide range of satellite images when the initial calibrated data are not available. In the proposed method, we extract features from co-polarized (HH) and cross-polarized (HV) satellite images and then fuse advanced regression techniques with SSWS estimation. The comparison between the proposed model and three well-known C-band models (CMODs)—CMOD-IFR2, CMOD5N, and CMOD7—further indicates the superior performance of the proposed model. The proposed model achieved the lowest Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), with values of 0.97 m/s and 0.62 m/s for calibrated images, and 1.37 and 0.97 for uncalibrated images, respectively, on the RCM dataset. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Marine Environmental Monitoring)
Show Figures

Figure 1

14 pages, 5602 KiB  
Article
Surface Soil Moisture Estimation from Time Series of RADARSAT Constellation Mission Compact Polarimetric Data for the Identification of Water-Saturated Areas
by Igor Zakharov, Sarah Kohlsmith, Jon Hornung, François Charbonneau, Pradeep Bobby and Mark Howell
Remote Sens. 2024, 16(14), 2664; https://doi.org/10.3390/rs16142664 - 21 Jul 2024
Cited by 2 | Viewed by 1411
Abstract
Soil moisture is one of the main factors affecting microwave radar backscatter from the ground. While there are other factors that affect backscatter levels (for instance, surface roughness, vegetation, and incident angle), relative variations in soil moisture can be estimated using space-based, medium [...] Read more.
Soil moisture is one of the main factors affecting microwave radar backscatter from the ground. While there are other factors that affect backscatter levels (for instance, surface roughness, vegetation, and incident angle), relative variations in soil moisture can be estimated using space-based, medium resolution, multi-temporal synthetic aperture radar (SAR). Understanding the distribution and identification of water-saturated areas using SAR soil moisture can be important for wetland mapping. The SAR soil moisture retrieval algorithm provides a relative assessment and requires calibration over wet and dry periods. In this work, relative soil moisture indicators are derived from a time series of the RADARSAT Constellation Mission (RCM) SAR compact polarimetric (CP) data over reclaimed areas of an oil sands mine in Alberta, Canada. An evaluation of the soil moisture product is performed using in situ measurements showing agreement from June to September. The surface scattering component of m-chi CP decomposition and the RL SAR products demonstrated a good agreement with the field data (low RMSE values and a perfect alignment with field-identified wetlands). Full article
(This article belongs to the Special Issue GIS and Remote Sensing in Soil Mapping and Modeling)
Show Figures

Figure 1

18 pages, 6731 KiB  
Article
Early-Season Crop Classification Based on Local Window Attention Transformer with Time-Series RCM and Sentinel-1
by Xin Zhou, Jinfei Wang, Bo Shan and Yongjun He
Remote Sens. 2024, 16(8), 1376; https://doi.org/10.3390/rs16081376 - 13 Apr 2024
Cited by 10 | Viewed by 2285
Abstract
Crop classification is indispensable for agricultural monitoring and food security, but early-season mapping has remained challenging. Synthetic aperture radar (SAR), such as RADARSAT Constellation Mission (RCM) and Sentinel-1, can meet higher requirements on the reliability of satellite data acquisition with all-weather and all-day [...] Read more.
Crop classification is indispensable for agricultural monitoring and food security, but early-season mapping has remained challenging. Synthetic aperture radar (SAR), such as RADARSAT Constellation Mission (RCM) and Sentinel-1, can meet higher requirements on the reliability of satellite data acquisition with all-weather and all-day imaging capability to supply dense observations in the early crop season. This study applied the local window attention transformer (LWAT) to time-series SAR data, including RCM and Sentinel-1, for early-season crop classification. The performance of this integration was evaluated over crop-dominated regions (corn, soybean and wheat) in southwest Ontario, Canada. Comparative analyses against several machine learning and deep learning methods revealed the superiority of the LWAT, achieving an impressive F1-score of 97.96% and a Kappa coefficient of 97.08% for the northern crop region and F1-scores of 98.07% and 97.02% for the southern crop region when leveraging time-series data from RCM and Sentinel-1, respectively. Additionally, by the incremental procedure, the evolution of accuracy determined by RCM and Sentinel-1 was analyzed, which demonstrated that RCM performed better at the beginning of the season and could achieve comparable accuracy to that achieved by utilizing both datasets. Moreover, the beginning of stem elongation of corn was identified as a crucial phenological stage to acquire acceptable crop maps in the early season. This study explores the potential of RCM to provide reliable prior information early enough to assist with in-season production forecasting and decision making. Full article
Show Figures

Figure 1

13 pages, 2320 KiB  
Article
Optimizing Soil Moisture Retrieval: Utilizing Compact Polarimetric Features with Advanced Machine Learning Techniques
by Mohammed Dabboor, Ghada Atteia and Rana Alnashwan
Land 2023, 12(10), 1861; https://doi.org/10.3390/land12101861 - 29 Sep 2023
Cited by 3 | Viewed by 1653
Abstract
Soil moisture plays a crucial role in various environmental processes and is essential for agricultural management, hydrological modeling, and climate studies. Synthetic Aperture Radar (SAR) remote sensing presents significant potential for estimating soil moisture due to its ability to operate in all weather [...] Read more.
Soil moisture plays a crucial role in various environmental processes and is essential for agricultural management, hydrological modeling, and climate studies. Synthetic Aperture Radar (SAR) remote sensing presents significant potential for estimating soil moisture due to its ability to operate in all weather conditions and provide day-and-night imaging capabilities. Among the SAR configurations, the Compact Polarimetric (CP) mode has gained increasing interest as it relaxes system constraints, improves coverage, and enhances target information compared to conventional dual polarimetric SAR systems. This paper introduces a novel approach for soil moisture retrieval utilizing machine learning algorithms and CP SAR features. The CP SAR features are derived from a series of RADARSAT Constellation Mission (RCM) CP SAR imagery acquired over Canadian experimental sites equipped with Real-Time In Situ Soil Monitoring for Agriculture (RISMA) stations. This study employs a diverse dataset of compact polarimetric SAR features and corresponding ground truth soil moisture measurements for training and validation purposes. The results of our study achieved a Root Mean Square Error (RMSE) of 6.88% with a coefficient of determination R2 equal to 0.60, which corresponds to a correlation R between true and predicted soil moisture values of 0.75, using optimized Ensemble Learning Regression (ELR) with a decision-tree-based model. These results improved, yielding an RMSE of 5.67% and an R2 equal to 0.73 (R = 0.85), using an optimized Gaussian Process Regression (GPR) model. Full article
(This article belongs to the Topic Advances in Earth Observation and Geosciences)
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

15 pages, 6296 KiB  
Technical Note
Region-Based Sea Ice Mapping Using Compact Polarimetric Synthetic Aperture Radar Imagery with Learned Features and Contextual Information
by Saeid Taleghanidoozdoozan, Linlin Xu and David A. Clausi
Remote Sens. 2023, 15(12), 3199; https://doi.org/10.3390/rs15123199 - 20 Jun 2023
Cited by 1 | Viewed by 2025
Abstract
Operational sea ice maps are usually generated manually using dual-polarization (DP) synthetic aperture radar (SAR) satellite imagery, but there is strong interest in automating this process. Recently launched satellites offer compact polarimetry (CP) imagery that provides more comprehensive polarimetric information compared to DP, [...] Read more.
Operational sea ice maps are usually generated manually using dual-polarization (DP) synthetic aperture radar (SAR) satellite imagery, but there is strong interest in automating this process. Recently launched satellites offer compact polarimetry (CP) imagery that provides more comprehensive polarimetric information compared to DP, which compels the use of CP for automated classification of SAR sea ice imagery. Existing sea ice scene classification algorithms using CP imagery rely on handcrafted features, while neural networks offer the potential of features that are more discriminating. We have developed a new and effective sea ice classification algorithm that leverages the nature of CP data. First, a residual-based convolutional neural network (ResCNN) is implemented to classify each pixel. In parallel, an unsupervised segmentation is performed to generate regions based on CP statistical properties. Regions are assigned a single class label by majority voting using the ResCNN output. For testing, quad-polarimetric (QP) SAR sea ice scenes from the RADARSAT Constellation Mission (RCM) are used, and QP, DP, CP, and reconstructed QP modes are compared for classification accuracy, while also comparing them to other classification approaches. Using CP achieves an overall accuracy of 96.86%, which is comparable to QP (97.16%), and higher than reconstructed QP and DP data by about 2% and 10%, respectively. The implemented algorithm using CP imagery provides an improved option for automated sea ice mapping. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

24 pages, 21662 KiB  
Article
Eastern Arctic Sea Ice Sensing: First Results from the RADARSAT Constellation Mission Data
by Hangyu Lyu, Weimin Huang and Masoud Mahdianpari
Remote Sens. 2022, 14(5), 1165; https://doi.org/10.3390/rs14051165 - 26 Feb 2022
Cited by 23 | Viewed by 4898
Abstract
Sea ice monitoring plays a vital role in secure navigation and offshore activities. Synthetic aperture radar (SAR) has been widely used as an effective tool for sea ice remote sensing (e.g., ice type classification, concentration and thickness retrieval) for decades because it can [...] Read more.
Sea ice monitoring plays a vital role in secure navigation and offshore activities. Synthetic aperture radar (SAR) has been widely used as an effective tool for sea ice remote sensing (e.g., ice type classification, concentration and thickness retrieval) for decades because it can collect data by day and night and in almost all weather conditions. The RADARSAT Constellation Mission (RCM) is a new Canadian SAR mission providing several new services and data, with higher spatial coverage and temporal resolution than previous Radarsat missions. As a very deep convolutional neural network, Normalizer-Free ResNet (NFNet) was proposed by DeepMind in early 2021 and achieved a new state-of-the-art accuracy on the ImageNet dataset. In this paper, the RCM data are utilized for sea ice detection and classification using NFNet for the first time. HH, HV and the cross-polarization ratio are extracted from the dual-polarized RCM data with a medium resolution (50 m) for an NFNet-F0 model. Experimental results from Eastern Arctic show that destriping in the HV channel is necessary to improve the quality of sea ice classification. A two-level random forest (RF) classification model is also applied as a conventional technique for comparisons with NFNet. The sea ice concentration estimated based on the classification result from each region was validated with the corresponding polygon of the Canadian weekly regional ice chart. The overall classification accuracy confirms the superior capacity of the NFNet model over the RF model for sea ice monitoring and the sea ice sensing capacity of RCM. Full article
(This article belongs to the Special Issue New Developments in Remote Sensing for the Environment)
Show Figures

Figure 1

19 pages, 7823 KiB  
Article
The RADARSAT Constellation Mission Core Applications: First Results
by Mohammed Dabboor, Ian Olthof, Masoud Mahdianpari, Fariba Mohammadimanesh, Mohammed Shokr, Brian Brisco and Saeid Homayouni
Remote Sens. 2022, 14(2), 301; https://doi.org/10.3390/rs14020301 - 10 Jan 2022
Cited by 22 | Viewed by 6541
Abstract
The Canadian RADARSAT Constellation Mission (RCM) has passed its early operation phase with the performance evaluation being currently active. This evaluation aims to confirm that the innovative design of the mission’s synthetic aperture radar (SAR) meets the expectations of intended users. In this [...] Read more.
The Canadian RADARSAT Constellation Mission (RCM) has passed its early operation phase with the performance evaluation being currently active. This evaluation aims to confirm that the innovative design of the mission’s synthetic aperture radar (SAR) meets the expectations of intended users. In this study, we provide an overview of initial results obtained for three high-priority applications; flood mapping, sea ice analysis, and wetland classification. In our study, the focus is on results obtained using not only linear polarization, but also the adopted Compact Polarimetric (CP) architecture in RCM. Our study shows a promising level of agreement between RCM and RADARSAT-2 performance in flood mapping using dual-polarized HH-HV SAR data over Red River, Manitoba, suggesting smooth continuity between the two satellite missions for operational flood mapping. Visual analysis of coincident RCM CP and RADARSAT-2 dual-polarized HH-HV SAR imagery over the Resolute Passage, Canadian Central Arctic, highlighted an improved contrast between sea ice classes in dry ice winter conditions. A statistical analysis using selected sea ice samples confirmed the increased contrast between thin and both rough and deformed ice in CP SAR. This finding is expected to enhance Canadian Ice Service’s (CIS) operational visual analysis of sea ice in RCM SAR imagery for ice chart production. Object-oriented classification of a wetland area in Newfoundland and Labrador by fusion of RCM dual-polarized VV-VH data and Sentinel-2 optical imagery revealed promising classification results, with an overall accuracy of 91.1% and a kappa coefficient of 0.87. Marsh presented the highest user’s and producer’s accuracies (87.77% and 82.08%, respectively) compared to fog, fen, and swamp. Full article
(This article belongs to the Special Issue RADARSAT Constellation Mission (RCM))
Show Figures

Figure 1

17 pages, 17814 KiB  
Communication
Sentinel-1 and RADARSAT Constellation Mission InSAR Assessment of Slope Movements in the Southern Interior of British Columbia, Canada
by Byung-Hun Choe, Andrée Blais-Stevens, Sergey Samsonov and Jonathan Dudley
Remote Sens. 2021, 13(19), 3999; https://doi.org/10.3390/rs13193999 - 6 Oct 2021
Cited by 10 | Viewed by 4337
Abstract
Landslides are the most common natural hazard in British Columbia. The province has recorded the largest number of historical landslide fatalities in Canada, and damage to infrastructure comes at a great cost. In order to understand the potential impacts of landslides, radar remote [...] Read more.
Landslides are the most common natural hazard in British Columbia. The province has recorded the largest number of historical landslide fatalities in Canada, and damage to infrastructure comes at a great cost. In order to understand the potential impacts of landslides, radar remote sensing has become a cost-effective method for detecting downslope movements. This study investigates downslope movements in the Southern Interior of British Columbia, Canada, with Sentinel-1 and RADARSAT Constellation Mission (RCM) interferometric synthetic aperture radar (InSAR) data. The 2-dimensional time-series analysis with Sentinel-1 ascending and descending InSAR pairs from October 2017 to June 2021 observed distinct earthflow movements of up to ~15 cm/year in the east–west direction. The Grinder Creek, Red Mountain, Yalakom River, and Retaskit Creek earthflows previously documented are still active, with east–west movements of ~30 cm over the past four years. New RCM data acquired from June 2020 to September 2020 with a 4-day revisit capability were compared to 12-day Sentinel-1 InSAR pairs. The 4-day RCM InSAR pairs at higher spatial resolution showed better performance by detecting relatively small-sized slope movements within a few hundred meters, which were not clearly observed by Sentinel-1. The temporal variabilities observed from the RCM InSAR showed great potential for observing detailed slope movements within a narrower time window. Full article
(This article belongs to the Special Issue RADARSAT Constellation Mission (RCM))
Show Figures

Graphical abstract

20 pages, 5358 KiB  
Article
Wetland Hydroperiod Change Along the Upper Columbia River Floodplain, Canada, 1984 to 2019
by Chris Hopkinson, Brendon Fuoco, Travis Grant, Suzanne E. Bayley, Brian Brisco and Ryan MacDonald
Remote Sens. 2020, 12(24), 4084; https://doi.org/10.3390/rs12244084 - 14 Dec 2020
Cited by 14 | Viewed by 4546
Abstract
Increasing air temperatures and changing hydrological conditions in the mountainous Kootenay Region of British Columbia, Canada are expected to affect floodplain wetland extent and function along the Columbia River. The objective of this study was to determine the seasonally inundated hydroperiod for a [...] Read more.
Increasing air temperatures and changing hydrological conditions in the mountainous Kootenay Region of British Columbia, Canada are expected to affect floodplain wetland extent and function along the Columbia River. The objective of this study was to determine the seasonally inundated hydroperiod for a floodplain section (28.66 km2) of the Upper Columbia River wetlands complex using time series satellite image observations and binary open water mask extraction. A mid pixel resolution (30 m) optical satellite image time series of 61 clear sky scenes from the Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) sensors were used to map temporal variations in floodplain open water wetland extent during the April to October hydrologically active season from 1984 to 2019 (35 years). The hydroperiod from the first 31 scenes (T1: 18 years) was compared to the second 30 (T2: 16 years) to identify changes in the permanent and seasonal open water bodies. The seasonal variation in open water extent and duration was similar across the two time periods but the permanent water body extent diminished by ~16% (or ~3.5% of the floodplain). A simple linear model (r2 = 0.87) was established to predict floodplain open water extent as a function of river discharge downstream of the case study area. Four years of Landsat Multi-Spectral Scanner (MSS) data from 1992 to 1995 (12 scenes) were examined to evaluate the feasibility of extending the hydroperiod record back to 1972 using lower resolution (60 m) archive data. While the MSS hydroperiod produced a similar pattern of open water area to duration to the TM/OLI hydroperiod, small open water features were omitted or expanded due to the lower resolution. While MSS could potentially extend the TM/OLI hydroperiod record, this was not performed as the loss of features like the river channel diminished its value for change detection purposes. Radarsat 2 scenes from 2015 to 2019 were examined to evaluate the feasibility of continued mountain valley hydroperiod monitoring using higher spatial and temporal resolution sensors like the Radarsat Constellation Mission (RCM). From the available horizontal transmit/receive (HH) single polarization sample set (8 scenes), the hydroperiod pattern of open water extent to duration was similar to the longer Landsat time series and possessed greater feature detail, but it was significantly reduced in seasonal inundation area due to the systematic omission of open water areas containing emergent vegetation. However, accepting that differences exist in sensor-based hydroperiod attributes, the higher temporal resolution of RCM will be suited to mountain floodplain inundation monitoring and open water hydroperiod analysis. Full article
(This article belongs to the Special Issue Wetland Landscape Change Mapping Using Remote Sensing)
Show Figures

Graphical abstract

20 pages, 5359 KiB  
Review
Hybrid Compact Polarimetric SAR for Environmental Monitoring with the RADARSAT Constellation Mission
by Brian Brisco, Masoud Mahdianpari and Fariba Mohammadimanesh
Remote Sens. 2020, 12(20), 3283; https://doi.org/10.3390/rs12203283 - 9 Oct 2020
Cited by 50 | Viewed by 5155
Abstract
Canada’s successful space-based earth-observation (EO) radar program has earned widespread and expanding user acceptance following the launch of RADARSAT-1 in 1995. RADARSAT-2, launched in 2007, while providing data continuity for its predecessor’s imaging capabilities, added new polarimetric modes. Canada’s follow-up program, the RADARSAT [...] Read more.
Canada’s successful space-based earth-observation (EO) radar program has earned widespread and expanding user acceptance following the launch of RADARSAT-1 in 1995. RADARSAT-2, launched in 2007, while providing data continuity for its predecessor’s imaging capabilities, added new polarimetric modes. Canada’s follow-up program, the RADARSAT Constellation Mission (RCM), launched in 2019, while providing continuity for its two predecessors, includes an innovative suite of polarimetric modes. In an effort to make polarimetry accessible to a wide range of operational users, RCM uses a new method called hybrid compact polarization (HCP). There are two essential elements to this approach: (1) transmit only one polarization, circular; and (2) receive two orthogonal polarizations, for which RCM uses H and V. This configuration overcomes the conventional dual and full polarimetric system limitations, which are lacking enough polarimetric information and having a small swath width, respectively. Thus, HCP data can be considered as dual-pol data, while the resulting polarimetric classifications of features in an observed scene are of comparable accuracy as those derived from the traditional fully polarimetric (FP) approach. At the same time, RCM’s HCP methodology is applicable to all imaging modes, including wide swath and ScanSAR, thus overcoming critical limitations of traditional imaging radar polarimetry for operational use. The primary image data products from an HCP radar are different from those of a traditional polarimetric radar. Because the HCP modes transmit circularly polarized signals, the data processing to extract polarimetric information requires different approaches than those used for conventional linearly polarized polarimetric data. Operational users, as well as researchers and students, are most likely to achieve disappointing results if they work with traditional polarimetric processing tools. New tools are required. Existing tutorials, older seminar notes, and reference papers are not sufficient, and if left unrevised, could succeed in discouraging further use of RCM polarimetric data. This paper is designed to provide an initial response to that need. A systematic review of studies that used HCP SAR data for environmental monitoring is also provided. Based on this review, HCP SAR data have been employed in oil spill monitoring, target detection, sea ice monitoring, agriculture, wetland classification, and other land cover applications. Full article
(This article belongs to the Special Issue Environmental Mapping Using Remote Sensing)
Show Figures

Figure 1

23 pages, 7233 KiB  
Article
Compact Polarimetry Response to Modeled Fast Sea Ice Thickness
by Mohammed Dabboor and Mohammed Shokr
Remote Sens. 2020, 12(19), 3240; https://doi.org/10.3390/rs12193240 - 5 Oct 2020
Cited by 9 | Viewed by 3004
Abstract
Compact Polarimetric (CP) Synthetic Aperture Radar (SAR) is expected to gain more and more ground for Earth observation applications in the coming years. This comes in light of the recently launched RADARSAT Constellation Mission (RCM), which uniquely provides CP SAR imagery in operational [...] Read more.
Compact Polarimetric (CP) Synthetic Aperture Radar (SAR) is expected to gain more and more ground for Earth observation applications in the coming years. This comes in light of the recently launched RADARSAT Constellation Mission (RCM), which uniquely provides CP SAR imagery in operational mode. In this study, we present observations about the sensitivity of CP SAR imagery to thickness of thermodynamically-grown fast sea ice during early ice growth (September–December 2017) in the Resolute Bay area, Canadian Central Arctic. Fast ice is most suitable to use for this preliminary study since it exhibits only thermodynamic growth in absence of ice mobility and deformation. Results reveal that ice thickness up to 30 cm can be retrieved using several CP parameters from the tested set. This ice thickness corresponds to the thickness of young ice. We found the surface scattering mechanism to be dominant during the early ice growth, exposing an increasing tendency up to 30 cm thickness with a correlation coefficient with the thickness equal to 0.86. The degree of polarization was found to be the parameter with the highest correlation up to 0.95. While thickness retrieval within the same range is also possible using parameters from Full Polarimetric (FP) SAR parameters as shown in previous studies, the advantage of using CP SAR mode is the much larger swath coverage, which is an operational requirement. Full article
(This article belongs to the Special Issue RADARSAT Constellation Mission (RCM))
Show Figures

Graphical abstract

19 pages, 10961 KiB  
Article
Investigation of C-Band SAR Polarimetry for Mapping a High-Tidal Coastal Environment in Northern Canada
by Khalid Omari, René Chenier, Ridha Touzi and Mesha Sagram
Remote Sens. 2020, 12(12), 1941; https://doi.org/10.3390/rs12121941 - 16 Jun 2020
Cited by 12 | Viewed by 3119
Abstract
Synthetic Aperture Radar (SAR) has been used in characterizing intertidal zones along northern Canadian coastlines. RADARSAT-2, with its full polarimetric information, has been considered for monitoring these vulnerable ecosystems and helping enhance the navigational safety of these waters. The RADARSAT Constellation Mission (RCM) [...] Read more.
Synthetic Aperture Radar (SAR) has been used in characterizing intertidal zones along northern Canadian coastlines. RADARSAT-2, with its full polarimetric information, has been considered for monitoring these vulnerable ecosystems and helping enhance the navigational safety of these waters. The RADARSAT Constellation Mission (RCM) will ensure data continuity with three identical SAR satellites orbiting together, providing superior revisit capabilities. The three satellites are equipped with multiple configurations, including single-polarization (HH, HV, VV), conventional (HH-HV, VV-VH, and HH-VV), hybrid (i.e., compact) dual polarization, and fully polarimetric (FP) modes. This study investigates the potential of the compact polarimetric (CP) mode for mapping an intertidal zone located at Tasiujaq village on the southwest shore of Ungava Bay, Quebec. Simulated RCM data were generated using FP RADARSAT-2 images collected over the study site in 2016. Commonly used tools for CP analysis include Raney m-delta classification and the hybrid dual polarizations RH-RV (where the transmitter is right-circular and the receivers are horizontal and vertical linear polarizations) and RR-RL (where the transmitter is right circular and the receivers are right-circular and left-circular polarizations). The potential of CP is compared with single, conventional dual-pol, and FP. The Freeman–Durden and Touzi discriminators are used for FP analysis. The random forest classifier is used as a classification approach due to its well-documented performance compared to other classifiers. The results suggest that the hybrid compact (RR-RL and RH-RV) dual polarizations provide encouraging separability capacities with overall accuracies of 61% and 60.7%, respectively, although they do not perform as well as conventional dual-pol HH-HV (64.4%). On the other hand, the CP polarimetric m-delta decomposition generated slightly less accurate classification results with an overall accuracy of approximately 62% compared to the FP Freeman–Durden (67.08%) and Touzi discriminators (71.1%). Full article
Show Figures

Graphical abstract

Back to TopTop