Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,525)

Search Parameters:
Keywords = R-packages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7229 KiB  
Review
Evolution and Trends of the Exploration–Exploitation Balance in Bio-Inspired Optimization Algorithms: A Bibliometric Analysis of Metaheuristics
by Yoslandy Lazo, Broderick Crawford, Felipe Cisternas-Caneo, José Barrera-Garcia, Ricardo Soto and Giovanni Giachetti
Biomimetics 2025, 10(8), 517; https://doi.org/10.3390/biomimetics10080517 - 7 Aug 2025
Abstract
The balance between exploration and exploitation is a fundamental element in the design and performance of bio-inspired optimization algorithms. However, to date, its conceptual evolution and its treatment in the scientific literature have not been systematically characterized from a bibliometric approach. This study [...] Read more.
The balance between exploration and exploitation is a fundamental element in the design and performance of bio-inspired optimization algorithms. However, to date, its conceptual evolution and its treatment in the scientific literature have not been systematically characterized from a bibliometric approach. This study performs an exhaustive analysis of the scientific production on the balance between exploration and exploitation using records extracted from the Web of Science (WoS) database. The processing and analysis of the data were carried out through the combined use of Bibliometrix (R package) and VOSviewer, tools that made it possible to quantify productivity, map collaborative networks, and visualize emerging thematic trends. The results show a sustained growth in the volume of publications over the last decade, as well as the consolidation of academic collaboration networks and the emergence of new thematic lines in the field. In particular, metaheuristic algorithms have demonstrated a significant and growing impact, constituting a fundamental pillar in the advancement and methodological diversification of the exploration–exploitation balance. This work provides a quantitative framework and a structured view of the evolution of research, identifies the main actors and trends, and raises opportunities for future lines of research in the field of optimization using metaheuristics, the most prominent instantiation of bio-inspired optimization algorithms. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

16 pages, 882 KiB  
Article
MatBYIB: A MATLAB-Based Toolkit for Parameter Estimation of Eccentric Gravitational Waves from EMRIs
by Genliang Li, Shujie Zhao, Huaike Guo, Jingyu Su and Zhenheng Lin
Universe 2025, 11(8), 259; https://doi.org/10.3390/universe11080259 - 6 Aug 2025
Abstract
Accurate parameter estimation is essential for gravitational wave data analysis. In extreme mass-ratio inspiral binary systems, orbital eccentricity is a critical parameter for parameter estimation. However, the current software for the parameter estimation of the gravitational wave often neglects the direct estimation of [...] Read more.
Accurate parameter estimation is essential for gravitational wave data analysis. In extreme mass-ratio inspiral binary systems, orbital eccentricity is a critical parameter for parameter estimation. However, the current software for the parameter estimation of the gravitational wave often neglects the direct estimation of orbital eccentricity. To fill this gap, we have developed the MatBYIB, a MATLAB-based software (Version 1.0) package for the parameter estimation of the gravitational wave with arbitrary eccentricity. The MatBYIB employs the Analytical Kludge waveform as a computationally efficient signal generator and computes parameter uncertainties via the Fisher Information Matrix and the Markov Chain Monte Carlo. For Bayesian inference, we implement the Metropolis–Hastings algorithm to derive posterior distributions. To guarantee convergence, the Gelman–Rubin convergence criterion (the Potential Scale Reduction Factor R^) is used to determine sampling adequacy, with MatBYIB dynamically increasing the sample size until R^<1.05 for all parameters. Our results demonstrate strong agreement between predictions based on the Fisher Information Matrix and full MCMC sampling. This program is user-friendly and allows for the estimation of the gravitational wave parameters with arbitrary eccentricity on standard personal computers. Full article
Show Figures

Figure 1

34 pages, 7266 KiB  
Article
Relationship Between Aggregation Index and Change in the Values of Some Landscape Metrics as a Function of Cell Neighborhood Choice
by Paolo Zatelli, Clara Tattoni and Marco Ciolli
ISPRS Int. J. Geo-Inf. 2025, 14(8), 304; https://doi.org/10.3390/ijgi14080304 - 5 Aug 2025
Viewed by 30
Abstract
Landscape metrics are one of the main tools for studying changes in the landscape and the ecological structure of the territory. However, the calculation of some metrics yields significantly different values depending on the configuration of the “Cell neighborhood” (CN) used. This makes [...] Read more.
Landscape metrics are one of the main tools for studying changes in the landscape and the ecological structure of the territory. However, the calculation of some metrics yields significantly different values depending on the configuration of the “Cell neighborhood” (CN) used. This makes the comparison of different analysis results often impossible. In fact, although the metrics are defined in the same way for all software, the choice of a CN with four cells, which includes only the elements on the same row or column, or eight cells, which also includes the cells on the diagonal, changes their value. QGIS’ LecoS plugin uses the value eight while GRASS’ r.li module uses the value four and these values are not modifiable by users. A previous study has shown how the value of the CN used for the calculation of landscape metrics is rarely explicit in scientific publications and its value cannot always be deduced from the indication of the software used. The difference in value for the same metric depends on the CN configuration and on the compactness of the patches, which can be expressed through the Aggregation Index (AI), of the investigated landscape. The scope of this paper is to explore the possibility of deriving an analytical relationship between the Aggregation Index and the variation in the values of some landscape metrics as the CN varies. The numerical experiments carried out in this research demonstrate that it is possible to estimate the differences in landscape metrics evaluated with a four and eight CN configuration using polynomials only for few metrics and only for some intervals of AI values. This analysis combines different Free and Open Source Software (FOSS) systems: GRASS GIS for the creation of test maps and R landscapemetrics package for the calculation of landscape metrics and the successive statistical analysis. Full article
Show Figures

Figure 1

13 pages, 1293 KiB  
Article
Integration of an OS-Based Machine Learning Score (AS Score) and Immunoscore as Ancillary Tools for Predicting Immunotherapy Response in Sarcomas
by Isidro Machado, Raquel López-Reig, Eduardo Giner, Antonio Fernández-Serra, Celia Requena, Beatriz Llombart, Francisco Giner, Julia Cruz, Victor Traves, Javier Lavernia, Antonio Llombart-Bosch and José Antonio López Guerrero
Cancers 2025, 17(15), 2551; https://doi.org/10.3390/cancers17152551 - 1 Aug 2025
Viewed by 185
Abstract
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related [...] Read more.
Background: Angiosarcomas (ASs) represent a heterogeneous and highly aggressive subset of tumors that respond poorly to systemic treatments and are associated with short progression-free survival (PFS) and overall survival (OS). The aim of this study was to develop and validate an immune-related prognostic model—termed the AS score—using data from two independent sarcoma cohorts. Methods: A prognostic model was developed using a previously characterized cohort of 25 angiosarcoma samples. Candidate genes were identified via the Maxstat algorithm (Maxstat v0.7-25 for R), combined with log-rank testing. The AS score was then computed by weighing normalized gene expression levels according to Cox regression coefficients. For external validation, transcriptomic data from TCGA Sarcoma cohort (n = 253) were analyzed. The Immunoscore—which reflects the tumor immune microenvironment—was inferred using the ESTIMATE package (v1.0.13) in R. All statistical analyses were performed in RStudio (v 4.0.3). Results: Four genes—IGF1R, MAP2K1, SERPINE1, and TCF12—were ultimately selected to construct the prognostic model. The resulting AS score enabled the classification of angiosarcoma cases into two prognostically distinct groups (p = 0.00012). Cases with high AS score values, which included both cutaneous and non-cutaneous forms, exhibited significantly poorer outcomes, whereas cases with low AS scores were predominantly cutaneous. A significant association was observed between the AS score and the Immunoscore (p = 0.025), with higher Immunoscore values found in high-AS score tumors. Validation using TCGA sarcoma cohort confirmed the prognostic value of both the AS score (p = 0.0066) and the Immunoscore (p = 0.0029), with a strong correlation between their continuous values (p = 2.9 × 10−8). Further survival analysis, integrating categorized scores into four groups, demonstrated robust prognostic significance (p = 0.00021). Notably, in tumors with a low Immunoscore, AS score stratification was not prognostic. In contrast, among cases with a high Immunoscore, the AS score effectively distinguished outcomes (p < 0.0001), identifying a subgroup with poor prognosis but potential sensitivity to immunotherapy. Conclusions: This combined classification using the AS score and Immunoscore has prognostic relevance in sarcoma, suggesting that angiosarcomas with an immunologically active microenvironment (high Immunoscore) and poor prognosis (high AS score) may be prime candidates for immunotherapy and this approach warrants prospective validation. Full article
(This article belongs to the Special Issue Genomics and Transcriptomics in Sarcoma)
Show Figures

Figure 1

16 pages, 1258 KiB  
Article
Genome-Wide Association Analysis of Traits Related to Nitrogen Deficiency Stress in Potato
by Carmen Iribar, Alba Alvarez-Morezuelas, Leire Barandalla and Jose Ignacio Ruiz de Galarreta
Horticulturae 2025, 11(8), 889; https://doi.org/10.3390/horticulturae11080889 - 1 Aug 2025
Viewed by 218
Abstract
Potato (Solanum tuberosum L.) crop yields may be reduced by nitrogen deficiency stress tolerance. An evaluation of 144 tetraploid potato genotypes was carried out during two consecutive seasons (2019 and 2020), with the objective of characterizing their variability in key physiological and [...] Read more.
Potato (Solanum tuberosum L.) crop yields may be reduced by nitrogen deficiency stress tolerance. An evaluation of 144 tetraploid potato genotypes was carried out during two consecutive seasons (2019 and 2020), with the objective of characterizing their variability in key physiological and agronomic parameters. Physiological parameters included chlorophyll content and fluorescence, stomatal conductance, NDVI, leaf area, and perimeter, while agronomic characteristics such as yield, tuber fresh weight, tuber number, starch content, dry matter, and reducing sugars were evaluated. To genotype the population, the GGP V3 Potato array was used, generating 18,259 high-quality SNP markers. Marker–trait association analysis was conducted using the GWASpoly package in R, applying Q + K linear mixed models to enhance precision. This methodology enabled the identification of 18 SNP markers that exhibited statistically significant associations with the traits analyzed in both trials and periods, relating them to genes whose functional implication has already been described. Genetic loci associated with chlorophyll content and tuber number were detected across non-stress and stress treatments, while markers linked to leaf area and leaf perimeter were identified specifically under nitrogen deficiency stress. The genomic distribution of these markers revealed that genetic markers or single-nucleotide polymorphisms (SNPs) correlated with phenotypic traits under non-stress conditions were predominantly located on chromosome 11, whereas SNPs linked to stress responses were mainly identified on chromosomes 2 and 3. These findings contribute to understanding the genetic mechanisms underlying potato tolerance to nitrogen deficiency stress, offering valuable insights for the development of future marker-assisted selection programs aimed at improving nitrogen use efficiency and stress resilience in potato breeding. Full article
(This article belongs to the Special Issue Genetics, Genomics and Breeding of Vegetable Crops)
Show Figures

Figure 1

20 pages, 3941 KiB  
Article
MicroRNA Expression Analysis and Biological Pathways in Chemoresistant Non-Small Cell Lung Cancer
by Chara Papadaki, Maria Mortoglou, Aristeidis E. Boukouris, Krystallia Gourlia, Maria Markaki, Eleni Lagoudaki, Anastasios Koutsopoulos, Ioannis Tsamardinos, Dimitrios Mavroudis and Sofia Agelaki
Cancers 2025, 17(15), 2504; https://doi.org/10.3390/cancers17152504 - 29 Jul 2025
Viewed by 236
Abstract
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). [...] Read more.
Background/Objectives: Alterations in DNA damage repair mechanisms can impair the therapeutic effectiveness of cisplatin. MicroRNAs (miRNAs), key regulators of DNA damage repair processes, have been proposed as promising biomarkers for predicting the response to platinum-based chemotherapy (CT) in non-small cell lung cancer (NSCLC). In this study, by using a bioinformatics approach, we identified six miRNAs, which were differentially expressed (DE) between NSCLC patients characterized as responders and non-responders to platinum-based CT. We further validated the differential expression of the selected miRNAs on tumor and matched normal tissues from patients with resected NSCLC. Methods: Two miRNA microarray expression datasets were retrieved from the Gene Expression Omnibus (GEO) repository, comprising a total of 69 NSCLC patients (N = 69) treated with CT and annotated data from their response to treatment. Differential expression analysis was performed using the Linear Models for Microarray Analysis (Limma) package in R to identify DE miRNAs between responders (N = 33) and non-responders (N = 36). Quantitative real-time PCR (qRT-PCR) was used to assess miRNA expression levels in clinical tissue samples (N = 20). Results: Analysis with the Limma package revealed 112 DE miRNAs between responders and non-responders. A random-effects meta-analysis further identified 24 miRNAs that were consistently up- or downregulated in at least two studies. Survival analysis using the Kaplan–Meier plotter (KM plotter) indicated that 22 of these miRNAs showed significant associations with prognosis in NSCLC. Functional and pathway enrichment analysis revealed that several of the identified miRNAs were linked to key pathways implicated in DNA damage repair, including the p53, Hippo, PI3K and TGF-β signaling pathways. We finally distinguished a six-miRNA signature consisting of miR-26a, miR-29c, miR-34a, miR-30e-5p, miR-30e-3p and miR-497, which were downregulated in non-responders and are involved in at least three DNA damage repair pathways. Comparative expression analysis on tumor and matched normal tissues from surgically treated NSCLC patients confirmed their differential expression in clinical samples. Conclusions: In summary, we identified a signature of six miRNAs that are suppressed in NSCLC and may serve as a predictor of cisplatin response in NSCLC. Full article
Show Figures

Figure 1

21 pages, 4494 KiB  
Article
A Numerical Model for Simulating Force-Induced Damage in Korla Fragrant Pears at Different Maturity Stages
by Chen Ding, Peiyu Chen, Lin Liao, Shengyou Chu, Xirui Yang, Guangxin Gai, Yang Liu, Kun Li, Xuerong Wang, Jiahui Li and Haipeng Lan
Agriculture 2025, 15(15), 1611; https://doi.org/10.3390/agriculture15151611 - 25 Jul 2025
Viewed by 188
Abstract
The maturity of Korla fragrant pears directly influences their harvesting, packaging, transportation, and storage. Investigating the mechanical properties of fragrant pears at various maturity stages can help minimize damage during postharvest handling. This study employs micro-CT technology combined with reverse model scanning to [...] Read more.
The maturity of Korla fragrant pears directly influences their harvesting, packaging, transportation, and storage. Investigating the mechanical properties of fragrant pears at various maturity stages can help minimize damage during postharvest handling. This study employs micro-CT technology combined with reverse model scanning to develop a numerical model for force damage across different maturity stages, supported by experimental validation. The results demonstrate that both rupture force and rupture strain progressively decrease as the maturity of Korla fragrant pears increases, exhibiting a sudden transition. Simultaneously, the fruit’s microstructure shifts from distinct cellular organization to an irregular, collapsed state. The proposed numerical model, which accounts for this abrupt change, provides a better fit than models based on a single physical parameter, with the R2 value improving from 0.7922 to 0.9665. Furthermore, this model accurately quantifies the mechanical properties of fragrant pears at all stages of maturity. These findings offer technical support for reducing postharvest losses and serve as a reference for developing damage prediction models for other fruits and vegetables. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

28 pages, 1971 KiB  
Review
Radon Anomalies and Earthquake Prediction: Trends and Research Hotspots in the Scientific Literature
by Félix Díaz and Rafael Liza
Geosciences 2025, 15(8), 283; https://doi.org/10.3390/geosciences15080283 - 25 Jul 2025
Viewed by 250
Abstract
Radon anomalies have long been explored as potential geochemical precursors to seismic activity due to their responsiveness to subsurface stress variations. However, before this study, the scientific progression of this research domain had not been systematically examined through a quantitative lens. This study [...] Read more.
Radon anomalies have long been explored as potential geochemical precursors to seismic activity due to their responsiveness to subsurface stress variations. However, before this study, the scientific progression of this research domain had not been systematically examined through a quantitative lens. This study presents a comprehensive bibliometric analysis of 379 articles published between 1977 and 2025 and indexed in Scopus and Web of Science. Utilizing the Bibliometrix R-package and its Biblioshiny interface, the analysis investigates temporal publication trends, leading countries, institutions, international collaboration networks, and thematic evolution. The results reveal a marked increase in research output since 2010, with China, India, and Italy emerging as the most prolific contributors. Thematic mapping indicates a shift from conventional geochemical monitoring toward the integration of artificial intelligence techniques, such as decision trees and neural networks, for anomaly detection and predictive modeling. Notwithstanding this methodological evolution, core research themes remain centered on radon concentration monitoring and the analysis of environmental parameters. Overall, the findings highlight the coexistence of traditional and emerging approaches, emphasizing the importance of standardized methodologies and interdisciplinary collaboration. This bibliometric synthesis provides strategic insights to inform future research and strengthen the role of radon monitoring in seismic early warning systems. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

19 pages, 11648 KiB  
Article
Edge Effects on the Spatial Distribution and Diversity of Drosophilidae (Diptera) Assemblages in Deciduous Forests of Central European Russia
by Nikolai G. Gornostaev, Alexander B. Ruchin, Oleg E. Lazebny, Alex M. Kulikov and Mikhail N. Esin
Insects 2025, 16(8), 762; https://doi.org/10.3390/insects16080762 - 24 Jul 2025
Viewed by 370
Abstract
In the forest ecosystems of Central European Russia, the influence of forest edges on the spatial distribution of Drosophilidae was studied for the first time. The research was conducted during the period of 2021–2022 in the Republic of Mordovia. Beer traps baited with [...] Read more.
In the forest ecosystems of Central European Russia, the influence of forest edges on the spatial distribution of Drosophilidae was studied for the first time. The research was conducted during the period of 2021–2022 in the Republic of Mordovia. Beer traps baited with fermented beer and sugar were used to collect Drosophilidae. Two study plots were selected, differing in their forest edges, tree stands, and adjacent open ecosystems. In both cases, the forest directly bordered an open ecosystem. Edges serve as transitional biotopes, where both forest and meadow (open area) faunas coexist. Knowing that many drosophilid species prefer forest habitats, we designated forest interior sites as control points. Traps were set at heights of 1.5 m (lower) and 7.5 m (upper) on trees. A total of 936 specimens representing 27 species were collected. Nine species were common across all traps, while ten species were recorded only once. At the forest edges, 23 species were captured across both heights, compared to 19 species in the forest interiors. However, the total abundance at the forest edges was 370 specimens, while it was 1.5 times higher in the forest interiors. Both abundance and species richness varied between plots. Margalef’s index was higher at the forest edges than in the forest interiors, particularly at 1.5 m height at the edge and at 7.5 m height in the forest interior. Shannon and Simpson indices showed minimal variation across traps at different horizontal and vertical positions. The highest species diversity was observed among xylosaprobionts (9 species) and mycetophages (8 species). All ecological groups were represented at the forest edges, whereas only four groups were recorded in the forest interiors, with the phytosaprophagous species Scaptomyza pallida being absent. In general, both species richness and drosophilid abundance increased in the lower strata, both at the forest edge and within the interior. Using the R package Indicspecies, we identified Gitona distigma as an indicator species for the forest edge and Scaptodrosophila rufifrons as an indicator for the forest interior in the lower tier for both plots. In addition, Drosophila testacea, D. phalerata, and Phortica semivirgo were found to be indicator species for the lower tier in both plots, while Leucophenga quinquemaculata was identified as an indicator species for the upper tier at the second plot. Full article
Show Figures

Figure 1

17 pages, 1840 KiB  
Article
Epigenomic Interactions Between Chronic Pain and Recurrent Pressure Injuries After Spinal Cord Injury
by Letitia Y. Graves, Melissa R. Alcorn, E. Ricky Chan, Katelyn Schwartz, M. Kristi Henzel, Marinella Galea, Anna M. Toth, Christine M. Olney and Kath M. Bogie
Epigenomes 2025, 9(3), 26; https://doi.org/10.3390/epigenomes9030026 - 23 Jul 2025
Viewed by 335
Abstract
Background/Objectives: This study investigated variations in DNA methylation patterns associated with chronic pain and propensity for recurrent pressure injuries (PrI) in persons with spinal cord injury (SCI). Methods: Whole blood was collected from 81 individuals with SCI. DNA methylation was quantified using Illumina [...] Read more.
Background/Objectives: This study investigated variations in DNA methylation patterns associated with chronic pain and propensity for recurrent pressure injuries (PrI) in persons with spinal cord injury (SCI). Methods: Whole blood was collected from 81 individuals with SCI. DNA methylation was quantified using Illumina genome-wide arrays (EPIC and EPICv2). Comprehensive clinical profiles collected included secondary health complications, in particular current PrI and chronic pain. Relationships between recurrent PrI and chronic pain and whether the co-occurrence of both traits was mediated by changes in DNA methylation were investigated using R packages limma, DMRcate and mCSEA. Results: Three differentially methylated positions (DMPs) (cg09867095, cg26559694, cg24890286) and one region in the micro-imprinted locus for BLCAP/NNAT are associated with chronic pain in persons with SCI. The study cohort was stratified by PrI status to identify any sites associated with chronic pain and while the same three sites and region were replicated in the group with no recurrent PrI, two novel, hypermethylated (cg21756558, cg26217441) sites and one region in the protein-coding gene FDFT1 were identified in the group with recurrent PrI. Gene enrichment and genes associated with specific promoters using MetaScape identified several shared disorders and ontology terms between independent phenotypes of pain and recurrent PrI and interactive sub-groups. Conclusions: DMR analysis using mCSEA identified several shared genes, promoter-associated regions and CGI associated with overall pain and PrI history, as well as sub-groups based on recurrent PrI history. These findings suggest that a much larger gene regulatory network is associated with each phenotype. These findings require further validation. Full article
(This article belongs to the Special Issue Features Papers in Epigenomes 2025)
Show Figures

Figure 1

26 pages, 2915 KiB  
Review
Recent Knowledge in the Application of Saccharomyces cerevisiae in Aquaculture: A Bibliometric and Narrative Review
by Elshafia Ali Hamid Mohammed, Béla Kovács and Károly Pál
Antibiotics 2025, 14(8), 736; https://doi.org/10.3390/antibiotics14080736 - 22 Jul 2025
Viewed by 512
Abstract
Aquaculture is a key food production sector responsible for meeting the nutritional needs of a rapidly growing global population. However, the emergence of disease outbreaks has become a major challenge for the aquaculture industry, resulting in significant economic losses. The use of costly [...] Read more.
Aquaculture is a key food production sector responsible for meeting the nutritional needs of a rapidly growing global population. However, the emergence of disease outbreaks has become a major challenge for the aquaculture industry, resulting in significant economic losses. The use of costly and toxic antibiotics for treatment has a negative impact on the aquatic environment. Consequently, there has been a growing interest in probiotics as a non-antibiotic approach to manage disease outbreaks and improve fish performance. The use of the yeast Saccharomyces cerevisiae (SC) has shown remarkable benefits in aquaculture. In February 2025, a systematic search was conducted based on the Web of Science (WoS) database for the period 2015–2025 to identify relevant studies investigating the beneficial effects of SC in aquaculture. After searching on WoS, 466 documents were found and analyzed using R-bibliometric package for comprehensive analysis to identify research gap, trends, and distribution of global literature that focuses on SC in aquaculture. The most relevant and recent articles were reviewed, summarized and discussed. The yeast SC have shown a wide range of benefits, including improved growth performance, feed efficiency, enhanced diversity of the gut microbiome and immune response. The implementation of SC is becoming a recent trend and its efficacy in aquatic environments has been thoroughly investigated. This review aims to provide a valuable insight into SC as one of the most important aquaculture probiotics. It also emphasizes the need for further research to fully understand its benefits and the way it works. Full article
(This article belongs to the Special Issue Challenges and Strategies for the Antibiotic Resistance Crisis)
Show Figures

Figure 1

28 pages, 3894 KiB  
Review
Where Business Meets Location Intelligence: A Bibliometric Analysis of Geomarketing Research in Retail
by Cristiana Tudor, Aura Girlovan and Cosmin-Alin Botoroga
ISPRS Int. J. Geo-Inf. 2025, 14(8), 282; https://doi.org/10.3390/ijgi14080282 - 22 Jul 2025
Viewed by 489
Abstract
We live in an era where digitalization and omnichannel strategies significantly transform retail landscapes, and accurate spatial analytics from Geographic Information Systems (GIS) can deliver substantial competitive benefits. Nonetheless, despite evident practical advantages for specific targeting strategies and operational efficiency, the degree of [...] Read more.
We live in an era where digitalization and omnichannel strategies significantly transform retail landscapes, and accurate spatial analytics from Geographic Information Systems (GIS) can deliver substantial competitive benefits. Nonetheless, despite evident practical advantages for specific targeting strategies and operational efficiency, the degree of GIS integration into academic marketing literature remains ambiguous. Clarifying this uncertainty is beneficial for advancing theoretical understanding and ensuring retail strategies fully leverage robust, data-driven spatial intelligence. To examine the intellectual development of the field, co-occurrence analysis, topic mapping, and citation structure visualization were performed on 4952 peer-reviewed articles using the Bibliometrix R package (version 4.3.3) within R software (version 4.4.1). The results demonstrate that although GIS-based methods have been effectively incorporated into fields like site selection and spatial segmentation, traditional marketing research has not yet entirely adopted them. One of the study’s key findings is the distinction between “author keywords” and “keywords plus,” where researchers concentrate on novel topics like omnichannel retail, artificial intelligence, and logistics. However, “Keywords plus” still refers to more traditional terms such as pricing, customer satisfaction, and consumer behavior. This discrepancy presents a misalignment between current research trends and indexed classification practices. Although the mainstream retail research lacks terminology connected to geomarketing, a theme evolution analysis reveals a growing focus on technology-driven and sustainability-related concepts associated with the Retail 4.0 and 5.0 paradigms. These findings underscore a conceptual and structural deficiency in the literature and indicate the necessity for enhanced integration of GIS and spatial decision support systems (SDSS) in retail marketing. Full article
Show Figures

Figure 1

34 pages, 1079 KiB  
Systematic Review
The Central Variant of Posterior Reversible Encephalopathy Syndrome: A Systematic Review and Meta-Analysis
by Bahadar S. Srichawla, Maria A. Garcia-Dominguez and Brian Silver
Neurol. Int. 2025, 17(7), 113; https://doi.org/10.3390/neurolint17070113 - 21 Jul 2025
Viewed by 462
Abstract
Background: The central variant of posterior reversible encephalopathy syndrome (cvPRES) is an atypical subtype of PRES. Although no unifying definitions exists, it is most often characterized by vasogenic edema involving “central” structures, such as the brainstem, subcortical nuclei, and spinal cord, with relative [...] Read more.
Background: The central variant of posterior reversible encephalopathy syndrome (cvPRES) is an atypical subtype of PRES. Although no unifying definitions exists, it is most often characterized by vasogenic edema involving “central” structures, such as the brainstem, subcortical nuclei, and spinal cord, with relative sparing of the parieto-occipital lobes. Methods: This systematic review and meta-analysis followed the PRISMA guidelines and was pre-registered on PROSPERO [CRD42023483806]. Both the Joanna Briggs Institute and New-Castle Ottawa scale were used for case reports and cohort studies, respectively. The meta-analysis was completed using R-Studio and its associated “metafor” package. Results: A comprehensive search in four databases yielded 70 case reports/series (n = 100) and 12 cohort studies. The meta-analysis revealed a pooled incidence rate of 13% (95% CI: 9–18%) for cvPRES amongst included cohort studies on PRES. Significant heterogeneity was observed (I2 = 71% and a τ2 = 0.2046). The average age of affected individuals was 40.9 years, with a slightly higher prevalence in males (54%). The most common etiological factor was hypertension (72%). Fifty percent had an SBP >200 mmHg at presentation and a mean arterial pressure (MAP) of 217.6 ± 40.82. Imaging revealed an increased T2 signal involving the brain stem (88%), most often in the pons (62/88; 70.45%), and 18/100 (18%) cases of PRES with spinal cord involvement (PRES-SCI). Management primarily involved blood pressure reduction, with adjunctive therapies for underlying causes such as anti-seizure medications or hemodialysis. The MAP between isolated PRES-SCI and cvPRES without spinal cord involvement did not show significant differences (p = 0.5205). Favorable outcomes were observed in most cases, with a mortality rate of only 2%. Conclusions: cvPRES is most often associated with higher blood pressure compared to prior studies with typical PRES. The pons is most often involved. Despite the severity of blood pressure and critical brain stem involvement, those with cvPRES have favorable functional outcomes and a lower mortality rate than typical PRES, likely attributable to reversible vasogenic edema without significant neuronal dysfunction. Full article
Show Figures

Graphical abstract

22 pages, 5908 KiB  
Article
MaxEnt Modeling of Future Habitat Shifts of Itea yunnanensis in China Under Climate Change Scenarios
by Jinxin Zhang, Xiaoju Li, Suhang Li, Qiong Yang, Yuan Li, Yangzhou Xiang and Bin Yao
Biology 2025, 14(7), 899; https://doi.org/10.3390/biology14070899 - 21 Jul 2025
Viewed by 465
Abstract
The distribution of Itea yunnanensis, a shrub species in the genus Itea of the family Iteaceae, is primarily concentrated in the Hengduan Mountains region of China, where it faces severe threats from global climate change. However, systematic research on the species’ [...] Read more.
The distribution of Itea yunnanensis, a shrub species in the genus Itea of the family Iteaceae, is primarily concentrated in the Hengduan Mountains region of China, where it faces severe threats from global climate change. However, systematic research on the species’ distribution patterns, climatic response mechanisms, and future suitable habitat dynamics remains insufficient. This study aims to assess the spatiotemporal evolution and driving mechanisms of I. yunnanensis-suitable habitats under current and future climate change scenarios to reveal the migration patterns of its distribution centroid and ecological thresholds, and to enhance the reliability and interpretability of predictions through model optimization. For MaxEnt modeling, we utilized 142 georeferenced occurrence records of I. yunnanensis alongside environmental data under current conditions and three future Shared Socioeconomic Pathways (SSPs: SSP1-2.6, SSP2-4.5, SSP5-8.5). Model parameter optimization (Regularization Multiplier, Feature Combination) was performed using the R (v4.2.1) package ‘ENMeval’. The optimized model (RM = 3.0, FC = QHPT) significantly reduced overfitting risk (ΔAICc = 0) and achieved high prediction accuracy (AUC = 0.968). Under current climate conditions, the total area of potential high-suitability habitats for I. yunnanensis is approximately 94.88 × 104 km2, accounting for 9.88% of China’s land area, with core areas located around the Hengduan Mountains. Under future climate change, the suitable habitats show significant divergence, area fluctuation and contraction under the SSP1-2.6 scenario, and continuous expansion under the SSP5-8.5 scenario. Meanwhile, the species’ distribution centroid exhibits an overall trend of northwestward migration. This study not only provides key spatial decision-making support for the in situ and ex situ conservation of I. yunnanensis, but also offers an important methodological reference for the adaptive research on other ecologically vulnerable species facing climate change through its optimized modeling framework. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

38 pages, 9771 KiB  
Article
Global Research Trends in Biomimetic Lattice Structures for Energy Absorption and Deformation: A Bibliometric Analysis (2020–2025)
by Sunny Narayan, Brahim Menacer, Muhammad Usman Kaisan, Joseph Samuel, Moaz Al-Lehaibi, Faisal O. Mahroogi and Víctor Tuninetti
Biomimetics 2025, 10(7), 477; https://doi.org/10.3390/biomimetics10070477 - 19 Jul 2025
Viewed by 742
Abstract
Biomimetic lattice structures, inspired by natural architectures such as bone, coral, mollusk shells, and Euplectella aspergillum, have gained increasing attention for their exceptional strength-to-weight ratios, energy absorption, and deformation control. These properties make them ideal for advanced engineering applications in aerospace, biomedical devices, [...] Read more.
Biomimetic lattice structures, inspired by natural architectures such as bone, coral, mollusk shells, and Euplectella aspergillum, have gained increasing attention for their exceptional strength-to-weight ratios, energy absorption, and deformation control. These properties make them ideal for advanced engineering applications in aerospace, biomedical devices, and structural impact protection. This study presents a comprehensive bibliometric analysis of global research on biomimetic lattice structures published between 2020 and 2025, aiming to identify thematic trends, collaboration patterns, and underexplored areas. A curated dataset of 3685 publications was extracted from databases like PubMed, Dimensions, Scopus, IEEE, Google Scholar, and Science Direct and merged together. After the removal of duplication and cleaning, about 2226 full research articles selected for the bibliometric analysis excluding review works, conference papers, book chapters, and notes using Cite space, VOS viewer version 1.6.20, and Bibliometrix R packages (4.5. 64-bit) for mapping co-authorship networks, institutional affiliations, keyword co-occurrence, and citation relationships. A significant increase in the number of publications was found over the past year, reflecting growing interest in this area. The results identify China as the most prolific contributor, with substantial institutional support and active collaboration networks, especially with European research groups. Key research focuses include additive manufacturing, finite element modeling, machine learning-based design optimization, and the performance evaluation of bioinspired geometries. Notably, the integration of artificial intelligence into structural modeling is accelerating a shift toward data-driven design frameworks. However, gaps remain in geometric modeling standardization, fatigue behavior analysis, and the real-world validation of lattice structures under complex loading conditions. This study provides a strategic overview of current research directions and offers guidance for future interdisciplinary exploration. The insights are intended to support researchers and practitioners in advancing next-generation biomimetic materials with superior mechanical performance and application-specific adaptability. Full article
(This article belongs to the Special Issue Nature-Inspired Science and Engineering for Sustainable Future)
Show Figures

Figure 1

Back to TopTop