Recent Knowledge in the Application of Saccharomyces in Aquaculture: A Bibliometric and Narrative Review
Abstract
1. Introduction
2. Results and Discussions
2.1. Situation of the Scientific Research on Saccharomyces cerevisiae (SC) in Aquaculture Based on WoS Database
2.1.1. Growth of SC-Related Documents 2015–2025
2.1.2. Leading Countries on SC Research in Aquaculture
2.1.3. The Core Sources, and Most Cited Publications on SC Research
2.2. The Potential Use of the Yeast SC in Aquaculture Based on Keyword Analysis
2.2.1. Dendrogram of Keyword Clusters
2.2.2. Thematic Map Analysis
2.2.3. Insights from the Three-Field Plot
2.2.4. Insights from the Trend Topics
2.3. Use of Saccharomyces cerevisiae (SC) in Aquaculture Based on the Recent Published Documents (2024–2025)
2.3.1. Enhancement of Growth, Feed Efficiency, and Digestibility
2.3.2. Impact on Disease Resistance, Immune Response, and Gut Integrity
2.3.3. The Synbiotic Effect
Country | Host | Experimental Conditions | Key Findings | Date | Citation |
---|---|---|---|---|---|
Pakistan | Pacific whit shrimp (Litopenaeus vannamei) |
|
| 2025 | [80] |
Canada | Atlantic Salmon (Salmo salar L.) |
|
| 2025 | [81] |
Portugal | Green macroalga (Ulva rigida) |
|
| 2025 | [82] |
UK | Atlantic Salmon (Salmo salar L.) |
|
| 2025 | [83] |
Thailand | Nile tilapia (Oreochromis niloticus) |
|
| 2025 | [84] |
Australia | Barramundi (Lates calcarifer) |
|
| 2025 | [85] |
Iran | Rainbow trout (Oncorhynchus mykiss) |
|
| 2025 | [86] |
Canada | Zebrafish (Danio rerio) |
|
| 2024 | [87] |
Italy | Gilthead Seabream (Sparus aurata) |
|
| 2024 | [88] |
Egypt | Nile tilapia (Oreochromis niloticus) |
|
| 2024 | [89] |
Egypt | Nile tilapia (Oreochromis niloticus) |
|
| 2024 | [90] |
Egypt | common carp (Cyprinus carpio) |
|
| 2024 | [91] |
Peru | freshwater prawn (Cryphiops caementarius) |
|
| 2024 | [92] |
Iran | Zebrafish (Danio rerio) |
|
| 2024 | [93] |
Iran | Nile tilapia (Oreochromis niloticus) |
|
| 2024 | [94] |
China | Salmo trutta |
|
| 2024 | [95] |
Brazil | Shrimp (Penaeus vannamei) |
|
| 2024 | [96] |
Malaysia | freshwater prawn (Macrobrachium rosenbergii) |
|
| 2024 | [97] |
Egypt | Nile tilapia (Oreochromis niloticus) |
|
| 2024 | [98] |
Egypt | Mugil capito |
|
| 2024 | [99] |
Egypt | Nile tilapia (Oreochromis niloticus) |
|
| 2024 | [100] |
USA | white sturgeon (Acipenser transmontanus) |
|
| 2024 | [101] |
2.4. Use of Machine Learning and AI
3. Materials and Methods
3.1. Research Questions
- What are the main research areas, research quantity, global distribution of publications, and leading sources of studies focusing on the impact of the yeast Saccharomyces cerevisiae in aquaculture? This investigation was based on a selection of keywords, including “Saccharomyces cerevisiae” and “probiotics” (Figure 9).
- What are the effects of the yeast S. cerevisiae on the feed utilization and growth parameters of aquaculture species?
- What impact does S. cerevisiae have on disease prevention, survival (%), gut microbiome, and water quality in aquaculture species?
- What is the interactive effect between S. cerevisiae and other probiotics and prebiotics in aquaculture systems?
3.2. Searching Strategy
3.3. Data Processing and Bibliometric Analysis
3.4. Narrative Review (2024–2025)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2024: Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar]
- Shen, X.; Jin, G.; Zhao, Y.; Shao, X. Prevalence and Distribution Analysis of Antibiotic Resistance Genes in a Large-Scale Aquaculture Environment. Sci. Total Environ. 2020, 711, 134626. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020; FAO: Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Boyd, C.E.; McNevin, A.A.; Davis, R.P. The Contribution of Fisheries and Aquaculture to the Global Protein Supply. Food Sec. 2022, 14, 805–827. [Google Scholar] [CrossRef] [PubMed]
- Lewbart, G.A. Bacteria and Ornamental Fish. Semin. Avian Exot. Pet. Med. 2001, 10, 48–56. [Google Scholar] [CrossRef]
- Abarike, E.D.; Jian, J.; Tang, J.; Cai, J.; Yu, H.; Lihua, C.; Jun, L. Influence of Traditional Chinese Medicine and Bacillus Species (TCMBS) on Growth, Immune Response and Disease Resistance in Nile Tilapia, Oreochromis niloticus. Aquac. Res. 2018, 49, 2366–2375. [Google Scholar] [CrossRef]
- Hasan, K.N.; Banerjee, G. Recent Studies on Probiotics as Beneficial Mediator in Aquaculture: A Review. JoBAZ 2020, 81, 53. [Google Scholar] [CrossRef]
- Khan, M.S.K.; Salin, K.R.; Yakupitiyage, A.; Tsusaka, T.W.; Nguyen, L.T.; Siddique, M.A.M. L-Tryptophan Mitigates Cannibalism and Improves Growth of Asian Seabass, Lates calcarifer Reared in a RAS System. Aquac. J. 2023, 3, 168–180. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial Use in Aquaculture Re-examined: Its Relevance to Antimicrobial Resistance and to Animal and Human Health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Ali, H.; Rico, A.; Murshed-e-Jahan, K.; Belton, B. An Assessment of Chemical and Biological Product Use in Aquaculture in Bangladesh. Aquaculture 2016, 454, 199–209. [Google Scholar] [CrossRef]
- Gao, P.; Mao, D.; Luo, Y.; Wang, L.; Xu, B.; Xu, L. Occurrence of Sulfonamide and Tetracycline-Resistant Bacteria and Resistance Genes in Aquaculture Environment. Water Res. 2012, 46, 2355–2364. [Google Scholar] [CrossRef]
- Watts, J.; Schreier, H.; Lanska, L.; Hale, M. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef]
- Elsabagh, M.; Mohamed, R.; Moustafa, E.M.; Hamza, A.; Farrag, F.; Decamp, O.; Dawood, M.A.O.; Eltholth, M. Assessing the Impact of Bacillus Strains Mixture Probiotic on Water Quality, Growth Performance, Blood Profile and Intestinal Morphology of Nile Tilapia, Oreochromis niloticus. Aquacult Nutr. 2018, 24, 1613–1622. [Google Scholar] [CrossRef]
- Won, S.; Hamidoghli, A.; Choi, W.; Bae, J.; Jang, W.J.; Lee, S.; Bai, S.C. Evaluation of Potential Probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on Growth Performance, Immune Response, Gut Histology and Immune-Related Genes in Whiteleg Shrimp, Litopenaeus vannamei. Microorganisms 2020, 8, 281. [Google Scholar] [CrossRef]
- Mohammed, E.A.H.; Ahmed, A.E.M.; Kovács, B.; Pál, K. The Significance of Probiotics in Aquaculture: A Review of Research Trend and Latest Scientific Findings. Antibiotics 2025, 14, 242. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, E.A.H.; Ahmed, A.E.M.; Teye-Gaga, C.; Pál, K. The Potential Use of Pediococcus spp. Probiotic in Aquaculture: A Review. Acta Agrar. Debreceniensis 2025, 1, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, E.A.H.; Kovács, B.; Kuunya, R.; Mustafa, E.O.A.; Abbo, A.S.H.; Pál, K. Antibiotic Resistance in Aquaculture: Challenges, Trends Analysis, and Alternative Approaches. Antibiotics 2025, 14, 598. [Google Scholar] [CrossRef] [PubMed]
- Gismondo, M.R.; Drago, L.; Lombardi, A. Review of Probiotics Available to Modify Gastrointestinal Flora. Int. J. Antimicrob. Agents 1999, 12, 287–292. [Google Scholar] [CrossRef]
- Parker, R. Probiotics, the Other Half of the Antibiotic Story. Anim. Nutr. Health 1974, 29, 4–6. [Google Scholar]
- FAO; WHO. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Liver Lactic Acid Bacteria; Food and Agriculture Organization and World Health Organization Joint Report; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Yanbo, W.; Zirong, X. Effect of Probiotics for Common Carp (Cyprinus carpio) Based on Growth Performance and Digestive Enzyme Activities. Anim. Feed. Sci. Technol. 2006, 127, 283–292. [Google Scholar] [CrossRef]
- Tovar-Ramırez, D.; Zambonino Infante, J.; Cahu, C.; Gatesoupe, F.J.; Vázquez-Juárez, R. Influence of Dietary Live Yeast on European Sea Bass (Dicentrarchus labrax) Larval Development. Aquaculture 2004, 234, 415–427. [Google Scholar] [CrossRef]
- Kari, Z.A.; Kabir, M.A.; Dawood, M.A.O.; Razab, M.K.A.A.; Ariff, N.S.N.A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Mat, K.; Ismail, T.A.; et al. Effect of Fish Meal Substitution with Fermented Soy Pulp on Growth Performance, Digestive Enzyme, Amino Acid Profile, and Immune-Related Gene Expression of African Catfish (Clarias gariepinus). Aquaculture 2022, 546, 737418. [Google Scholar] [CrossRef]
- Kumar, R.; Mukherjee, S.C.; Prasad, K.P.; Pal, A.K. Evaluation of Bacillus subtilis as a Probiotic to Indian Major Carp Labeo rohita (Ham.). Aquac. Res. 2006, 37, 1215–1221. [Google Scholar] [CrossRef]
- Mohammed, E.A.H.; Fehér, M.; Bársony, P.; Pál, K. Alteration in Gut Microbiome of Common Carp (Cyprinus carpio L., 1758) Mediated by Probiotics and Yeast Prebiotic. Biol. Life Sci. Forum 2025, 45, 1. [Google Scholar] [CrossRef]
- Agboola, J.O.; Øverland, M.; Skrede, A.; Hansen, J.Ø. Yeast as Major Protein-rich Ingredient in Aquafeeds: A Review of the Implications for Aquaculture Production. Rev. Aquac. 2021, 13, 949–970. [Google Scholar] [CrossRef]
- Xia, R.; Hao, Q.; Xie, Y.; Zhang, Q.; Ran, C.; Yang, Y.; Zhou, W.; Chu, F.; Zhang, X.; Wang, Y.; et al. Effects of Dietary Saccharomyces cerevisiae on Growth, Intestinal and Liver Health, Intestinal Microbiota and Disease Resistance of Channel Catfish (Ictalurus punctatus). Aquac. Rep. 2022, 24, 101157. [Google Scholar] [CrossRef]
- Adel, M.; Lazado, C.C.; Safari, R.; Yeganeh, S.; Zorriehzahra, M.J. Aqualase®, a Yeast-Based in-Feed Probiotic, Modulates Intestinal Microbiota, Immunity and Growth of Rainbow Trout Oncorhynchus mykiss. Aquac. Res. 2017, 48, 1815–1826. [Google Scholar] [CrossRef]
- Smukowski Heil, C.S.; Large, C.R.L.; Patterson, K.; Hickey, A.S.-M.; Yeh, C.-L.C.; Dunham, M.J. Temperature Preference Can Bias Parental Genome Retention during Hybrid Evolution. PLoS Genet. 2019, 15, e1008383. [Google Scholar] [CrossRef]
- Benito, Á.; Calderón, F.; Palomero, F.; Benito, S. Quality and Composition of Airen Wines Fermented by Sequential Inoculation of Lachancea Thermotolerans and Saccharomyces cerevisiae. Food Technol. Biotechnol. 2016, 54, 135–144. [Google Scholar] [CrossRef]
- Del Valle, J.C.; Bonadero, M.C.; Fernández-Gimenez, A.V. Saccharomyces cerevisiae as Probiotic, Prebiotic, Synbiotic, Postbiotics and Parabiotics in Aquaculture: An Overview. Aquaculture 2023, 569, 739342. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Abd El-Kader, M.F.; Farid, M.A.; Abd-Elghany, M.F.; Alkafafy, M.; Van Doan, H. Saccharomyces cerevisiae Enhanced the Growth, Immune and Antioxidative Responses of European Seabass (Dicentrarchus labrax). Ann. Anim. Sci. 2021, 21, 1423–1433. [Google Scholar] [CrossRef]
- Chen, W.; Gao, S. Current Status of Industrialized Aquaculture in China: A Review. Environ. Sci. Pollut. Res. 2023, 30, 32278–32287. [Google Scholar] [CrossRef]
- Tucciarone, I.; Secci, G.; Contiero, B.; Parisi, G. Sustainable Aquaculture over the Last 30 Years: An Analysis of the Scientific Literature by the Text Mining Approach. Rev. Aquac. 2024, 16, 2064–2076. [Google Scholar] [CrossRef]
- Brookes, B.C. “Sources of Information on Specific Subjects” by S.C. Bradford. J. Inf. Sci. 1985, 10, 173–175. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S. Recent Advances in the Role of Probiotics and Prebiotics in Carp Aquaculture: A Review. Aquaculture 2016, 454, 243–251. [Google Scholar] [CrossRef]
- Oberbeckmann, S.; Osborn, A.M.; Duhaime, M.B. Microbes on a Bottle: Substrate, Season and Geography Influence Community Composition of Microbes Colonizing Marine Plastic Debris. PLoS ONE 2016, 11, e0159289. [Google Scholar] [CrossRef]
- Hai, N.V. The Use of Probiotics in Aquaculture. J. Appl. Microbiol. 2015, 119, 917–935. [Google Scholar] [CrossRef] [PubMed]
- Carbone, D.; Faggio, C. Importance of Prebiotics in Aquaculture as Immunostimulants. Effects on Immune System of Sparus aurata and Dicentrarchus labrax. Fish Shellfish Immunol. 2016, 54, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Kabeya, N.; Fonseca, M.M.; Ferrier, D.E.K.; Navarro, J.C.; Bay, L.K.; Francis, D.S.; Tocher, D.R.; Castro, L.F.C.; Monroig, Ó. Genes for de Novo Biosynthesis of Omega-3 Polyunsaturated Fatty Acids Are Widespread in Animals. Sci. Adv. 2018, 4, eaar6849. [Google Scholar] [CrossRef] [PubMed]
- Hai, N.V. Research Findings from the Use of Probiotics in Tilapia Aquaculture: A Review. Fish Shellfish Immunol. 2015, 45, 592–597. [Google Scholar] [CrossRef]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single Cell Protein: Sources, Mechanism of Production, Nutritional Value and Its Uses in Aquaculture Nutrition. Aquaculture 2021, 531, 735885. [Google Scholar] [CrossRef]
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal Availability in the Scenarios of Climate Change: Inevitability of Fishmeal Replacement in Aquafeeds and Approaches for the Utilization of Plant Protein Sources. Aquac. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; El Basuini, M.F.; Hossain, M.S.; Nhu, T.H.; Dossou, S.; Moss, A.S. Effects of Dietary Supplementation of Lactobacillus rhamnosus or/and Lactococcus lactis on the Growth, Gut Microbiota and Immune Responses of Red Sea Bream, Pagrus major. Fish Shellfish Immunol. 2016, 49, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Standen, B.T.; Peggs, D.L.; Rawling, M.D.; Foey, A.; Davies, S.J.; Santos, G.A.; Merrifield, D.L. Dietary Administration of a Commercial Mixed-Species Probiotic Improves Growth Performance and Modulates the Intestinal Immunity of Tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2016, 49, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Rohani, M.F.; Islam, S.M.; Hossain, M.K.; Ferdous, Z.; Siddik, M.A.; Nuruzzaman, M.; Padeniya, U.; Brown, C.; Shahjahan, M. Probiotics, Prebiotics and Synbiotics Improved the Functionality of Aquafeed: Upgrading Growth, Reproduction, Immunity and Disease Resistance in Fish. Fish Shellfish Immunol. 2022, 120, 569–589. [Google Scholar] [CrossRef] [PubMed]
- Øverland, M.; Skrede, A. Yeast Derived from Lignocellulosic Biomass as a Sustainable Feed Resource for Use in Aquaculture. J. Sci. Food Agric. 2017, 97, 733–742. [Google Scholar] [CrossRef]
- Iwashita, M.K.P.; Nakandakare, I.B.; Terhune, J.S.; Wood, T.; Ranzani-Paiva, M.J.T. Dietary Supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae Enhance Immunity and Disease Resistance against Aeromonas hydrophila and Streptococcus iniae Infection in Juvenile Tilapia Oreochromis niloticus. Fish Shellfish Immunol. 2015, 43, 60–66. [Google Scholar] [CrossRef]
- Huyben, D.; Sun, L.; Moccia, R.; Kiessling, A.; Dicksved, J.; Lundh, T. Dietary Live Yeast and Increased Water Temperature Influence the Gut Microbiota of Rainbow Trout. J. Appl. Microbiol. 2018, 124, 1377–1392. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; El Basuini, M.F.; Hossain, M.S.; Nhu, T.H.; Moss, A.S.; Dossou, S.; Wei, H. Dietary Supplementation of β-Glucan Improves Growth Performance, the Innate Immune Response and Stress Resistance of Red Sea Bream, Pagrus major. Aquacult Nutr. 2017, 23, 148–159. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Samir, F.; Abd El-Naby, A.S.; Monier, M.N. Antioxidative and Immunostimulatory Effect of Dietary Cinnamon Nanoparticles on the Performance of Nile Tilapia, Oreochromis niloticus (L.) and Its Susceptibility to Hypoxia Stress and Aeromonas hydrophila Infection. Fish Shellfish Immunol. 2018, 74, 19–25. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S.; Ishikawa, M.; El-Sabagh, M.; Esteban, M.A.; Zaineldin, A.I. Probiotics as an Environment-Friendly Approach to Enhance Red Sea Bream, Pagrus major Growth, Immune Response and Oxidative Status. Fish Shellfish Immunol. 2016, 57, 170–178. [Google Scholar] [CrossRef]
- Zhou, P.; Ye, L.; Xie, W.; Lv, X.; Yu, H. Highly Efficient Biosynthesis of Astaxanthin in Saccharomyces cerevisiae by Integration and Tuning of Algal crtZ and Bkt. Appl. Microbiol. Biotechnol. 2015, 99, 8419–8428. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Hu, S.-Y.; Chiu, C.-S.; Liu, C.-H. Multiple-Strain Probiotics Appear to Be More Effective in Improving the Growth Performance and Health Status of White Shrimp, Litopenaeus vannamei, than Single Probiotic Strains. Fish Shellfish Immunol. 2019, 84, 1050–1058. [Google Scholar] [CrossRef]
- Lin, H.-L.; Shiu, Y.-L.; Chiu, C.-S.; Huang, S.-L.; Liu, C.-H. Screening Probiotic Candidates for a Mixture of Probiotics to Enhance the Growth Performance, Immunity, and Disease Resistance of Asian Seabass, Lates calcarifer (Bloch), Against Aeromonas hydrophila. Fish Shellfish Immunol. 2017, 60, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Pooljun, C.; Daorueang, S.; Weerachatyanukul, W.; Direkbusarakom, S.; Jariyapong, P. Enhancement of Shrimp Health and Immunity with Diets Supplemented with Combined Probiotics: Application to Vibrio Parahaemolyticus Infections. Dis. Aquat. Org. 2020, 140, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Y.; Xue, M.; Yang, T.; Luo, X.; Fan, Y.; Meng, Y.; Liu, W.; Lin, G.; Li, B.; et al. Effects of Dietary Saccharomyces cerevisiae YFI-SC2 on the Growth Performance, Intestinal Morphology, Immune Parameters, Intestinal Microbiota, and Disease Resistance of Crayfish (Procambarus clarkia). Animals 2021, 11, 1963. [Google Scholar] [CrossRef]
- Heidarieh, M.; Mirvaghefi, A.R.; Akbari, M.; Sheikhzadeh, N.; Kamyabi-Moghaddam, Z.; Askari, H.; Shahbazfar, A.A. Evaluations of HilysesTM, Fermented Saccharomyces cerevisiae, on Rainbow Trout (Oncorhynchus mykiss) Growth Performance, Enzymatic Activities and Gastrointestinal Structure. Aquacult. Nutr. 2013, 19, 343–348. [Google Scholar] [CrossRef]
- Amenyogbe, E. Application of Probiotics for Sustainable and Environment-Friendly Aquaculture Management—A Review. Cogent Food Agric. 2023, 9, 2226425. [Google Scholar] [CrossRef]
- Yousefi, M.; Adineh, H.; Taheri Mirghaed, A.; Hoseini, S.M. Co-Supplementation of Diet with Saccharomyces cerevisiae and Thymol: Effects on Growth Performance, Antioxidant and Immunological Responses of Rainbow Trout, Oncorhynchus mykiss. Animals 2025, 15, 302. [Google Scholar] [CrossRef]
- Boonanuntanasarn, S.; Ditthab, K.; Jangprai, A.; Nakharuthai, C. Effects of Microencapsulated Saccharomyces cerevisiae on Growth, Hematological Indices, Blood Chemical, and Immune Parameters and Intestinal Morphology in Striped Catfish, Pangasianodon hypophthalmus. Probiotics Antimicro. Prot. 2019, 11, 427–437. [Google Scholar] [CrossRef]
- Samidjan, I.; Rachmawati, D.; Dody, S.; Riyadi, P.H. Effects of Various Doses of Saccharomyces cerevisiae on the Growth, Survival Rate, and Blood Profile of Saline Red Tilapia (Oreochromis spp.) in the Semi-Intensive Culture Conditions. Pertanika J. Sci. Technol. 2022, 31, 529–541. [Google Scholar] [CrossRef]
- Eliopoulos, C.; Markou, G.; Chorianopoulos, N.; Haroutounian, S.A.; Arapoglou, D. Transformation of Mixtures of Olive Mill Stone Waste and Oat Bran or Lathyrus Clymenum Pericarps into High Added Value Products Using Solid State Fermentation. Waste Manag. 2022, 149, 168–176. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Zheng, L.; Peng, M.; Mai, Y.; Wang, X. Comparative Analysis of the Effect of Dietary Supplementation with Fermented and Water-Extracted Leaf Extracts of Eucommia Ulmoides on Egg Production and Egg Nutrition. Foods 2024, 13, 1521. [Google Scholar] [CrossRef]
- Wei, G.; Chitrakar, B.; Regenstein, J.M.; Sang, Y.; Zhou, P. Microbiology, Flavor Formation, and Bioactivity of Fermented Soybean Curd (Furu): A Review. Food Res. Int. 2023, 163, 112183. [Google Scholar] [CrossRef]
- Mohammed, H.H.; Brown, T.L.; Beck, B.H.; Yildirim-Aksoy, M.; Eljack, R.M.; Peatman, E. The Effects of Dietary Inclusion of a Saccharomyces cerevisiae Fermentation Product in a Commercial Catfish Ration on Growth, Immune Readiness, and Columnaris Disease Susceptibility. J. Appl. Aquac. 2019, 31, 193–209. [Google Scholar] [CrossRef]
- Yang, X.; He, Y.; Chi, S.; Tan, B.; Lin, S.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S. Supplementation with Saccharomyces cerevisiae Hydrolysate in a Complex Plant Protein, Low-Fishmeal Diet Improves Intestinal Morphology, Immune Function and Vibrio harveyi Disease Resistance in Epinephelus Coioides. Aquaculture 2020, 529, 735655. [Google Scholar] [CrossRef]
- Rezaei Aminlooi, V.; Ahmadifard, N.; Tukmechi, A.; Agh, N. Improvement of Reproductive Indices, Lysozyme Activity, and Disease Resistance in Live-bearing Ornamental Fish, Poecilia latipinna Using Artemia Supplementation with Treated Yeast Cell, Saccharomyces cerevisiae. Aquac. Res. 2019, 50, 72–79. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Mishra, S.; Sarkar, B.; Swain, S.K.; Pal, A.; Tripathy, P.P.; Ojha, S.K. Dietary Saccharomyces cerevisiae Boosts Growth and Immunity of IMC Labeo rohita (Ham.) Juveniles. Indian J. Microbiol. 2015, 55, 81–87. [Google Scholar] [CrossRef]
- Da Paixão, A.E.M.; Dos Santos, J.C.; Pinto, M.S.; Pereira, D.S.P.; De Oliveira Ramos, C.E.C.; Cerqueira, R.B.; Navarro, R.D.; Da Silva, R.F. Effect of Commercial Probiotics (Bacillus subtilis and Saccharomyces cerevisiae) on Growth Performance, Body Composition, Hematology Parameters, and Disease Resistance against Streptococcus agalactiae in Tambaqui (Colossoma macropomum). Aquacult Int. 2017, 25, 2035–2045. [Google Scholar] [CrossRef]
- Abass, D.A.; Obirikorang, K.A.; Campion, B.B.; Edziyie, R.E.; Skov, P.V. Dietary Supplementation of Yeast (Saccharomyces cerevisiae) Improves Growth, Stress Tolerance, and Disease Resistance in Juvenile Nile Tilapia (Oreochromis niloticus). Aquacult Int. 2018, 26, 843–855. [Google Scholar] [CrossRef]
- El-Mokhlesany, S.A.I.; Ibrahim, M.A.; Amer, A.A.; Gewaily, M.S.; Zaineldin, A.I.; Soliman, A.; Baromh, M.Z.; Gouda, A.H.; Dawood, M.A.O. The Protective Effects of Saccharomyces cerevisiae on the Growth Performance, Intestinal Health, and Antioxidative Capacity of Mullet (Liza Ramada) Fed Diets Contaminated with Aflatoxin B1. Ann. Anim. Sci. 2023, 23, 859–868. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Rohani, M.F.; Shahjahan, M. Probiotic Yeast Enhances Growth Performance of Nile Tilapia (Oreochromis niloticus) through Morphological Modifications of Intestine. Aquac. Rep. 2021, 21, 100800. [Google Scholar] [CrossRef]
- Opiyo, M.A.; Jumbe, J.; Ngugi, C.C.; Charo-Karisa, H. Dietary Administration of Probiotics Modulates Non-Specific Immunity and Gut Microbiota of Nile Tilapia (Oreochromis niloticus) Cultured in Low Input Ponds. Int. J. Vet. Sci. Med. 2019, 7, 1–9. [Google Scholar] [CrossRef]
- De Moraes, A.V.; Owatari, M.S.; Da Silva, E.; De Oliveira Pereira, M.; Piola, M.; Ramos, C.; Farias, D.R.; Schleder, D.D.; Jesus, G.F.A.; Jatobá, A. Effects of Microencapsulated Probiotics-Supplemented Diet on Growth, Non-Specific Immunity, Intestinal Health and Resistance of Juvenile Nile Tilapia Challenged with Aeromonas hydrophila. Anim. Feed. Sci. Technol. 2022, 287, 115286. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Magouz, F.I.; Essa, M.; Mansour, M. Impact of Yeast Fermented Poultry By-Product Meal on Growth, Digestive Enzyme Activities, Intestinal Morphometry and Immune Response Traits of Common Carp (Cyprinus carpio). Ann. Anim. Sci. 2020, 20, 939–959. [Google Scholar] [CrossRef]
- Aubin, J.; Gatesoupe, F.-J.; Labbe, L.; Lebrun, L. Trial of Probiotics to Prevent the Vertebral Column Compression Syndrome in Rainbow Trout (Oncorhynchus mykiss Walbaum). Aquac. Res. 2005, 36, 758–767. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Foysal, M.J.; Fotedar, R.; Francis, D.S.; Gupta, S.K. Probiotic Yeast Saccharomyces cerevisiae Coupled with Lactobacillus casei Modulates Physiological Performance and Promotes Gut Microbiota in Juvenile Barramundi, Lates calcarifer. Aquaculture 2022, 546, 737346. [Google Scholar] [CrossRef]
- Vidakovic, A.; Huyben, D.; Sundh, H.; Nyman, A.; Vielma, J.; Passoth, V.; Kiessling, A.; Lundh, T. Growth Performance, Nutrient Digestibility and Intestinal Morphology of Rainbow Trout (Oncorhynchus mykiss) Fed Graded Levels of the Yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus. Aquacult. Nutr. 2020, 26, 275–286. [Google Scholar] [CrossRef]
- Amin, I.; Can, E.; Khan, T.; Fatima, J.; Khalid, M. Synergistic Effects of Combined Probiotic Supplementation on Growth Performance, Survival, and Health Status in Labeo rohita. Aquacult. Int. 2025, 33, 340. [Google Scholar] [CrossRef]
- Stangroom, J.; Marana, M.; Booman, M.; Andrew, S.; Poley, J.; Wilderjans, E.; Ghillebert, R.; Sabbadin Zanuzzo, F. Aspergillus niger β-Glucan, MycoFence®, Efficacy Against Ulcerative Disease in Atlantic Salmon Compared to Commercial Yeast β-Glucan. Aquaculture 2025, 603, 742350. [Google Scholar] [CrossRef]
- Brandão, M.; Marques, D.J.; Sousa, S.; Mateus, M.; Pinheiro, H.M.; Da Fonseca, M.M.R.; Pires, C.; Nunes, M.L.; Marques, A.; Cesário, M.T. Lactic Acid Bacteria and Yeast Fermentation to Improve the Nutritional Value of Ulva rigida. Mar. Drugs 2025, 23, 106. [Google Scholar] [CrossRef]
- Momoh, T.A.; Odu-Onikosi, S.G.; Amulejoye, F.D.; Wilson, J.; Eynon, B.; Kühlwein, H.; Kuri, V.; Merrifield, D.L. Brewers’ Yeast (Saccharomyces cerevisiae) Purified Functional Feed Additives Mitigate Soybean Meal-Induced Enteritis in Atlantic Salmon (Salmo salar) Parr. Aquac. Nutr. 2025, 2025, 8555658. [Google Scholar] [CrossRef]
- Phinyo, M.; Khlaithim, P.; Boonsrangsom, T.; Pongpadung, P.; Janpoom, S.; Klinbunga, S.; Sujipuli, K. Improved Growth and Immunity in Nile Tilapia Oreochromis niloticus Fed a Fermented Rice Bran Supplement. Anim. Feed. Sci. Technol. 2025, 319, 116160. [Google Scholar] [CrossRef]
- Siddik, M.A.B.; Francis, D.S.; Islam, S.M.M.; Salini, M.J.; Fotedar, R. Fermentation and Fortification of Sargassum linearifolium with Multi-Strain Probiotics Improves Mucosal Barrier Status, Inflammatory Response and Resistance to Vibrio harveyi Infection in Barramundi Lates calcarifer. Aquaculture 2025, 595, 741502. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Pagheh, E.; Aghaei Moghaddam, A.; Gharavi, B.; Ghelichpour, M. Dietary Nonenriched and Iron-Enriched Yeasts Improve Hematological and Antioxidant Parameters in Rainbow Trout, Oncorhynchus mykiss, Fed on Diets Containing Cottonseed Meal. Aquac. Nutr. 2025, 2025, 9955172. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, J.; Shandilya, U.K.; Lumsden, J.S.; Barzrgar, A.B.; Huyben, D.; Karrow, N.A. Hepatic Gene Expression Changes of Zebrafish Fed Yeast Prebiotic, Yeast Probiotic, Black Soldier Fly Meal, and Butyrate. Fishes 2024, 9, 495. [Google Scholar] [CrossRef]
- Alfonso, S.; Toomey, L.; Fiocchi, E.; Manfrin, A.; Boscarato, M.; Vasilaki, P.; Zupa, W.; Bertazzo, V.; Bégout, M.-L.; Spedicato, M.T.; et al. Growth Performance, Immune Characteristics, and Health and Welfare of Gilthead Seabream (Sparus aurata) Fed a Tailor-Made Environmentally Sustainable Diet Formulated Using Novel Ingredients. Aquac. Res. 2024, 2024, 8234882. [Google Scholar] [CrossRef]
- Awad, A.; Mohammady, E.Y.; Soaudy, M.R.; Rabetimarghezar, N.; El-Haroun, E.R.; Hassaan, M.S. Growth and Physiological Response of Nile Tilapia (Oreochromis niloticus) Fed a Fermented Mixture of Plant Protein Sources. Anim. Feed. Sci. Technol. 2024, 315, 116034. [Google Scholar] [CrossRef]
- Mohammady, E.Y.; Aboseif, A.M.; Al-Afify, A.D.G.; Abdelhameed, M.S.; Shawer, E.E.; Abdo, S.M.; Ramadan, E.A.; Hegab, M.H.; El-Dein, A.N.; Hassaan, M.S. Growth and Physiological Responses of Nile Tilapia, Oreochromis niloticus Fed Dietary Fermented Sugar Beet Bagasse and Reared in Biofloc System. Anim. Feed. Sci. Technol. 2024, 318, 116124. [Google Scholar] [CrossRef]
- El-Mashtoly, M.; Magouz, F.I.; Darwish, S.; Amer, A.A.; Zaineldin, A.I.; Gewaily, M.S.; Dawood, M.A.O. Dietary Chlorella vulgaris and Saccharomyces cerevisiae Enhanced the Growth Performance, Blood Biomarkers, and Antioxidative Capacity of Common Carp (Cyprinus carpio). Sci. Afr. 2024, 26, e02407. [Google Scholar] [CrossRef]
- Reyes-Avalos, W.; Azañero-Díaz, C.; Melgarejo-Velasquez, G.; Yzásiga-Barrera, C.; Alegre-Calvo, B.; Lezama-Salazar, R. Effect of Diets Supplemented with Yeast, Chitin, and Chitosan on the Growth, Immune, and Antioxidant Responses of the Freshwater Prawn Cryphiops (Cryphiops) caementarius. Aquac. Nutr. 2024, 2024, 1727130. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Sudaagar, M.; Zakariaee, H.; Paknejad, H.; Baruah, K.; Norouzitalab, P. Evaluation of the Synbiotic Effects of Saccharomyces cerevisiae and Mushroom Extract on the Growth Performance, Digestive Enzyme Activity, and Immune Status of Zebrafish Danio rerio. BMC Microbiol. 2024, 24, 331. [Google Scholar] [CrossRef]
- Adineh, H.; Yousefi, M.; Al Sulivany, B.S.A.; Ahmadifar, E.; Farhangi, M.; Hoseini, S.M. Effects of Dietary Yeast, Saccharomyces cerevisiae, and Costmary, Tanacetum balsamita, Essential Oil on Growth Performance, Digestive Enzymes, Biochemical Parameters, and Disease Resistance in Nile Tilapia, Oreochromis niloticus. Aquac. Nutr. 2024, 2024, 1388002. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; He, H.; He, W.; Zhang, Z.; Sun, S.; Wang, W. Multi-Omics Analysis Reveals the Regulatory Mechanism of Different Probiotics on Growth Performance and Intestinal Health of Salmo trutta (S. trutta). Microorganisms 2024, 12, 1410. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, O.A.L.F.; Wasielesky, W.; Sena, R.P.O.; Ramiro, B.D.O.; Bezerra, A.; Krummenauer, D. Microbial Community Composition, Nitrification Process, and Growth of Penaeus vannamei in a Synbiotic Nursery System Inoculated with Different Probiotic Microorganisms. Aquaculture 2024, 592, 741254. [Google Scholar] [CrossRef]
- Taguemount, R.; Pratoomyot, J.; Shinn, A.P.; Waiho, K.; Rasid, R. Dietary Supplements of β-1,3/1,6-Glucan Derived from Baker’s Yeast Results in Enhanced Seed Production and Robustness in Larvae of the Freshwater Prawn Macrobrachium rosenbergii (De Man, 1879). Aquac. Int. 2024, 32, 8095–8113. [Google Scholar] [CrossRef]
- Abd El-Naby, A.S.; El Asely, A.M.; Hussein, M.N.; Khattaby, A.E.-R.A.; Sabry, E.A.; Abdelsalam, M.; Samir, F. Effects of Dietary Fermented Saccharomyces cerevisiae Extract (Hilyses) Supplementation on Growth, Hematology, Immunity, Antioxidants, and Intestinal Health in Nile Tilapia. Sci. Rep. 2024, 14, 12583. [Google Scholar] [CrossRef]
- Shehata, A.I.; Soliman, A.A.; Ahmed, H.A.; Gewaily, M.S.; Amer, A.A.; Shukry, M.; Abdel-Latif, H.M.R. Evaluation of Different Probiotics on Growth, Body Composition, Antioxidant Capacity, and Histoarchitecture of Mugil capito. Sci. Rep. 2024, 14, 7379. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Soliman, A.A.; Gewaily, M.S.; Amer, A.A.; Shukry, M.; Khalil, R.H.; Shehata, A.I. Dietary Effects of Saccharomyces cerevisiae and Allium sativum on Growth, Antioxidant Status, Hepatic and Intestinal Histoarchitecture, Expression of Growth- and Immune-Related Genes, and Resistance of Oreochromis niloticus to Aeromonas sobria. Fish Shellfish Immunol. 2024, 148, 109493. [Google Scholar] [CrossRef]
- McDonald, S.; Yazdi, Z.; Camus, A.; Soto, E. Evaluation of Three Inactive Vaccines Against Veronaea botryosa Infection in White Sturgeon (Acipenser transmontanus). Fish Shellfish Immunol. 2024, 145, 109368. [Google Scholar] [CrossRef]
- Nakanishi, A.; Fukunishi, H.; Matsumoto, R.; Eguchi, F. Development of a Prediction Method of Cell Density in Autotrophic/Heterotrophic Microorganism Mixtures by Machine Learning Using Absorbance Spectrum Data. BioTech 2022, 11, 46. [Google Scholar] [CrossRef]
- Yukgehnaish, K.; Kumar, P.; Sivachandran, P.; Marimuthu, K.; Arshad, A.; Paray, B.A.; Arockiaraj, J. Gut Microbiota Metagenomics in Aquaculture: Factors Influencing Gut Microbiome and Its Physiological Role in Fish. Rev. Aquac. 2020, 12, 1903–1927. [Google Scholar] [CrossRef]
- Palomba, E.; Tirelli, V.; De Alteriis, E.; Parascandola, P.; Landi, C.; Mazzoleni, S.; Sanchez, M. A Cytofluorimetric Analysis of a Saccharomyces cerevisiae Population Cultured in a Fed-Batch Bioreactor. PLoS ONE 2021, 16, e0248382. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
Country | No. of Articles | Articles % | SCP | MCP | MCP % |
---|---|---|---|---|---|
China | 84 | 18.02 | 63 | 21 | 25.00 |
Egypt | 48 | 10.30 | 27 | 21 | 43.75 |
Brazil | 33 | 7.08 | 22 | 11 | 33.33 |
India | 32 | 6.87 | 21 | 11 | 34.37 |
Iran | 23 | 4.93 | 15 | 8 | 34.78 |
USA | 17 | 3.65 | 12 | 5 | 29.41 |
Mexico | 15 | 3.22 | 10 | 5 | 33.33 |
Thailand | 15 | 3.22 | 11 | 4 | 26.66 |
Sweden | 14 | 3.00 | 6 | 8 | 57.14 |
Chile | 12 | 2.57 | 11 | 1 | 8.33 |
Bangladesh | 11 | 2.36 | 6 | 5 | 45.45 |
Malaysia | 11 | 2.36 | 4 | 7 | 63.63 |
Norway | 11 | 2.36 | 4 | 7 | 63.63 |
Italy | 10 | 2.16 | 6 | 4 | 40.00 |
Indonesia | 9 | 1.93 | 6 | 3 | 33.33 |
Pakistan | 9 | 1.93 | 4 | 5 | 55.55 |
Belgium | 8 | 1.72 | 4 | 4 | 50.00 |
Australia | 6 | 1.29 | 2 | 4 | 66.66 |
Japan | 6 | 1.28 | 0 | 6 | 100.00 |
Rank | Paper | C1 | C2 | Citations |
---|---|---|---|---|
1 | Dawood MAO, 2016, Aquaculture | 372 | 37.20 | [36] |
2 | Oberbeckmann S, 2016, PLoS One | 372 | 37.20 | [37] |
3 | Hai NV, 2015, J APPL Microbiol | 348 | 31.63 | [38] |
4 | Carbone D, 2016, Fish Shellfish Immunol | 276 | 27.60 | [39] |
5 | Kabeya N, 2018, Sci Adv. | 178 | 22.25 | [40] |
6 | Hai NV, 2015, Fish Shellfish Immunol | 175 | 15.91 | [41] |
7 | Sharif M, 2021, Aquaculture | 172 | 34.40 | [42] |
8 | Jannathulla R, 2019, Aquac Res | 169 | 24.14 | [43] |
9 | Dawood MAO, 2016, Fish & Shellfish Immunol | 166 | 16.60 | [44] |
10 | Standen BT, 2016, Fish & Shellfish Immunol | 166 | 16.60 | [45] |
11 | Rohani MF, 2022, Fish & Shellfish Immunol | 157 | 39.25 | [46] |
12 | Overland M, 2017, J Sci Food Agric. | 140 | 15.55 | [47] |
13 | Iwashita MKP, 2015, Fish Shellfish Immunol | 124 | 11.27 | [48] |
14 | Huyben D, 2018, J APPL Microbiol | 114 | 14.25 | [49] |
15 | Dawood MAO, 2017, Aquac Nutr | 113 | 12.55 | [50] |
16 | Abdel-Tawwab M, 2018, Fish & Shellfish Immunol | 109 | 13.62 | [51] |
17 | Dawood MAO, 2016, Fish Shellfish Immunol | 104 | 10.40 | [52] |
18 | Zhou P, 2015, Appl. Microbiol Biotechnol | 101 | 09.18 | [53] |
19 | Wang YC, 2019, Fish & Shellfish Immunol | 93 | 13.28 | [54] |
20 | Lin HL, 2017, Fish &Shellfish Immunol | 90 | 10.00 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, E.A.H.; Kovács, B.; Pál, K. Recent Knowledge in the Application of Saccharomyces in Aquaculture: A Bibliometric and Narrative Review. Antibiotics 2025, 14, 736. https://doi.org/10.3390/antibiotics14080736
Mohammed EAH, Kovács B, Pál K. Recent Knowledge in the Application of Saccharomyces in Aquaculture: A Bibliometric and Narrative Review. Antibiotics. 2025; 14(8):736. https://doi.org/10.3390/antibiotics14080736
Chicago/Turabian StyleMohammed, Elshafia Ali Hamid, Béla Kovács, and Károly Pál. 2025. "Recent Knowledge in the Application of Saccharomyces in Aquaculture: A Bibliometric and Narrative Review" Antibiotics 14, no. 8: 736. https://doi.org/10.3390/antibiotics14080736
APA StyleMohammed, E. A. H., Kovács, B., & Pál, K. (2025). Recent Knowledge in the Application of Saccharomyces in Aquaculture: A Bibliometric and Narrative Review. Antibiotics, 14(8), 736. https://doi.org/10.3390/antibiotics14080736