Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Pteris vittata L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2268 KiB  
Article
Plant Secondary Metabolites on Efflux-Mediated Antibiotic Resistant Stenotrophomonas Maltophilia: Potential of Herbal-Derived Efflux Pump Inhibitors
by Thi Huyen Thu Nguyen, Ngoc Anh Thơ Nguyen, Hai Dang Nguyen, Thi Thu Hien Nguyen, Mai Huong Le, Minh Quan Pham, Huu Nghi Do, Kim Chi Hoang, Serge Michalet, Marie-Geneviève Dijoux-Franca and Hoang Nam Pham
Antibiotics 2023, 12(2), 421; https://doi.org/10.3390/antibiotics12020421 - 20 Feb 2023
Cited by 6 | Viewed by 3223
Abstract
During the process of adapting to metal contamination, plants produce secondary metabolites that have the potential to modulate multidrug-resistant (MDR) phenotypes; this is achieved by inhibiting the activity of efflux pumps to reduce the minimum inhibitory concentrations (MICs) of antimicrobial substrates. Our study [...] Read more.
During the process of adapting to metal contamination, plants produce secondary metabolites that have the potential to modulate multidrug-resistant (MDR) phenotypes; this is achieved by inhibiting the activity of efflux pumps to reduce the minimum inhibitory concentrations (MICs) of antimicrobial substrates. Our study evaluated the effect of secondary metabolites of belowground parts of Pteris vittata L. and Fallopia japonica, two metal-tolerant plants from northern Vietnam, on six antibiotic-resistant Stenotrophomonas maltophilia strains possessing efflux pump resistance mechanisms that were isolated from soil and clinical samples. The chemical composition of aqueous and dichloromethane (DCM) fractions extracted from P. vittata and F. japonica was determined using UHPLC-DAD-ESI/QTOF analysis. The antibacterial and efflux pump inhibitory activities of the four fractions were evaluated for the six strains (K279a, 0366, BurA1, BurE1, PierC1, and 502) using a microdilution assay at fraction concentrations of 62.5, 125, and 250 μg/mL. The DCM fraction of F. japonica exhibited remarkable antibacterial activity against strain 0366, with a MIC of 31.25 μg/mL. Furthermore, this fraction also significantly decreased gentamicin MIC: four-fold and eight-fold reductions for BurA1 and BurE1 strains, respectively (when tested at 250 μg/mL), and two-fold and eight-fold reductions for K279a and BurE1 strains, respectively (when tested at 125 μg/mL). Pure emodin, the main component identified in the DCM fraction of F. japonica, and sennidine A&B only reduced by half the MIC of gentamicin (when tested at 30 μg/mL). Our results suggest that the DCM fraction components of F. japonica underground parts may be potential candidates for new bacterial efflux pump inhibitors (EPIs). Full article
(This article belongs to the Special Issue Efflux Pumps in Bacteria: What They Do and How We Can Stop Them)
Show Figures

Figure A1

11 pages, 1515 KiB  
Article
Removal of Methylene Blue from Wastewater by Waste Roots from the Arsenic-Hyperaccumulator Pteris vittata: Fixed Bed Adsorption Kinetics
by Leone Mazzeo, Davide Marzi, Irene Bavasso, Vincenzo Piemonte and Luca Di Palma
Materials 2023, 16(4), 1450; https://doi.org/10.3390/ma16041450 - 9 Feb 2023
Cited by 7 | Viewed by 2056
Abstract
Phytoremediation of arsenic-contaminated water was successfully conducted by means of the perennial fern Pteris vittate, which is an arsenic-hyperaccumulator plant able to grow in hydroponic cultures. In order to avoid the costs linked to the disposal of As-contaminated biomass, in this work, [...] Read more.
Phytoremediation of arsenic-contaminated water was successfully conducted by means of the perennial fern Pteris vittate, which is an arsenic-hyperaccumulator plant able to grow in hydroponic cultures. In order to avoid the costs linked to the disposal of As-contaminated biomass, in this work, Pteris vittata waste roots were tested as a low-cost bio-adsorbent for the removal of methylene blue (MB) from water in a fixed-bed adsorption configuration. As a matter of fact, methylene blue can negatively impact the growth and health of algae and plants by blocking light from reaching them in water, which can alter their normal biological processes. Previous works have already shown the potentiality of such material toward the uptake of methylene blue; however, all the studies conducted were just focused on batch-mode experiments. In this work, column runs were carried out at 20 °C, evaluating the bed void fraction for each test and hence estimating the apparent density of the material (300 g/L). The breakthrough curves collected were fitted by means of a mathematical model based on the linear driving force (LDF) approximation to obtain information on the mass transfer mechanism occurring in the system. A relation for the product between the LDF mass transfer coefficient and the solid specific surface (kLDFas) with respect to the Reynolds (Re) dimensionless number was obtained (kLDFas=0.45Re). The range of validity of such expression was Re<0.025. Its applicability was deeply discussed: in such conditions, the technology is ready to be tested at larger scales. Full article
Show Figures

Figure 1

24 pages, 1825 KiB  
Review
Critical Perspectives on Soil Geochemical Properties Limiting Arsenic Phytoextraction with Hyperaccumulator Pteris vittata
by Sarick Matzen and Céline Pallud
Geosciences 2023, 13(1), 8; https://doi.org/10.3390/geosciences13010008 - 27 Dec 2022
Cited by 5 | Viewed by 4395
Abstract
Arsenic is a metalloid widely distributed in the environment and of global concern for human health. In a promising breakthrough for sustainable arsenic soil remediation, a fern, Pteris vittata L., was discovered to take up arsenic from the soil and accumulate it in [...] Read more.
Arsenic is a metalloid widely distributed in the environment and of global concern for human health. In a promising breakthrough for sustainable arsenic soil remediation, a fern, Pteris vittata L., was discovered to take up arsenic from the soil and accumulate it in its fronds at up to ~100 times soil concentrations. Successively harvesting the fronds removes, or phytoextracts, arsenic from the soil with potential environmental and economic benefits including low site disturbance and low cost. The practical use of P. vittata for soil remediation faces challenges largely stemming from the complex nature of the soil. Here, we review soil geochemical processes governing the transport of arsenic from soil to the roots of arsenic-hyperaccumulating ferns. We find that phytoextraction is a soil-dependent process, but that key soil attributes including texture are often not reported. We show that rhizosphere processes play a crucial role in arsenic phytoextraction, and that nutrient management is most successful with ecologically based approaches including sparingly soluble nutrient forms. We conclude that a multi-scale ecological approach is needed to validate P. vittata behavior across controlled and field conditions, and arsenic movement between soil, water, and plant compartments. Our synthesis suggests that phytoextraction as currently practiced is limited to soils with low arsenic concentrations and that P. vittata cultivation is climate-limited to a zone smaller than its range as a wild species. Full article
(This article belongs to the Section Biogeosciences)
Show Figures

Figure 1

17 pages, 3965 KiB  
Article
The Chemically Modified Leaves of Pteris vittata as Efficient Adsorbent for Zinc (II) Removal from Aqueous Solution
by Qaiser Khan, Muhammad Zahoor, Syed Muhammad Salman, Muhammad Wahab, Muhammad Talha, Abdul Waheed Kamran, Yousaf Khan, Riaz Ullah, Essam A. Ali and Abdul Bari Shah
Water 2022, 14(24), 4039; https://doi.org/10.3390/w14244039 - 11 Dec 2022
Cited by 5 | Viewed by 2399
Abstract
High concentrations of zinc along with other metals are released by steel mills, and this has a number of negative effects on organism health; most notably, neurological symptoms have been recorded with a high risk of brain atrophy. In the current study, Zn [...] Read more.
High concentrations of zinc along with other metals are released by steel mills, and this has a number of negative effects on organism health; most notably, neurological symptoms have been recorded with a high risk of brain atrophy. In the current study, Zn (II) was eliminated from steel mill effluent, utilizing chemically processed Pteris vittata plant leaves as a biosorbent. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and energy dispersive X-ray spectroscopy (EDX) were applied to characterize the chemically modified Pteris vittata leaves, from now onward abbreviated as CMPVL. In order to identify the ideal parameter, batch studies were conducted varying a single parameter affecting the biosorption process at a time, including variations in temperature (293–323 K), initial metal concentration (20–300 mg/L), and adsorbent doses (0.01–0.12 g), pH (2–8), as well as contact time (10–140 min). To describe the isothermal experimental results, a number of models were used including Freundlich, Langmuir, Temkin, Jovanovich, and Harkins–Jura. Among these models, the Langmuir model provided a significant fit to the isotherm data with an R2 of 0.9738. The kinetics data were fitted to the pseudo first order, pseudo second order, power function, Natarajan–Khalaf, and intraparticle diffusion models. The highest R2 (0.9976) value was recorded for the pseudo second order model. Using the Langmuir isotherm, the highest uptake ability (84.74 mg/g) of Zn was recorded. The thermodynamic investigation, carried out at various temperatures, led to the conclusion that the biosorption process was exothermic and spontaneous in nature. The CMPVL, thus, has the potential to function well as an alternative to existing carbon-based adsorbents in the effective elimination of zinc from aquatic environments. Full article
Show Figures

Figure 1

20 pages, 2428 KiB  
Article
Effects of Claroideoglomus etunicatum Fungi Inoculation on Arsenic Uptake by Maize and Pteris vittata L.
by Guofei Pan, Yanyan Wei, Ningning Zhao, Minghua Gu, Bing He and Xueli Wang
Toxics 2022, 10(10), 574; https://doi.org/10.3390/toxics10100574 - 30 Sep 2022
Cited by 8 | Viewed by 2207
Abstract
The intercropping of arsenic (As) hyperaccumulator Chinese brake fern (Pterisvittata L.) with maize (Zea mays L.) is being widely utilized to enhance phytoremediation without impeding agricultural production. Arbuscular mycorrhizal (AM) fungi can regulate the physiological and molecular responses of plants in [...] Read more.
The intercropping of arsenic (As) hyperaccumulator Chinese brake fern (Pterisvittata L.) with maize (Zea mays L.) is being widely utilized to enhance phytoremediation without impeding agricultural production. Arbuscular mycorrhizal (AM) fungi can regulate the physiological and molecular responses of plants in tolerating heavy metal stress. We studied the effects of inoculation with AM fungi on As uptake by maize and P. vittata grown in soil contaminated with As. The results show that infection with the fungus Claroideoglomus etunicatum (Ce) increased the biomass of maize and P. vittata. Moreover, infection with Ce significantly reduced the accumulation of As and the coefficient for root–shoot transport of As in maize, whereas it enhanced the accumulation of As and coefficient for root–shoot transport of As in P. vittata. Infection with Ce led to a high content of available As in the soil planted with P. vittata, while there was a lower content of available As in the soil planted with maize. The different concentrations of available As in the soils suggest that inoculation with Ce may enhance the secretion of organic acids, particularly citric acid and tartaric acid, by maize roots and promote rhizosphere acidification, which then causes a decrease in As uptake by maize. Inoculation with Ce decreased the secretion of citric acid from P. vittata and promoted rhizosphere alkalization, which then caused an increase in As uptake by P. vittata and maize. Thus, co-combining AM fungi in the intercropping of the hyperaccumulator P. vittata with maize could be a promising approach to improving the efficiency of remediating As-contaminated soil. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

18 pages, 4128 KiB  
Article
Removal of Iron(II) from Effluents of Steel Mills Using Chemically Modified Pteris vittata Plant Leaves Utilizing the Idea of Phytoremediation
by Qaiser Khan, Muhammad Zahoor, Syed Muhammad Salman, Muhammad Wahab, Farhat Ali Khan, Naila Gulfam and Ivar Zekker
Water 2022, 14(13), 2004; https://doi.org/10.3390/w14132004 - 23 Jun 2022
Cited by 5 | Viewed by 2656
Abstract
Dargai District Malakand, Pakistan, is a tax-free zone that attracts many industrialists to install their plants in this area. Along with other industries, a number of steel mills are polluting the natural environment of this locality. This study aimed to evaluate heavy metals [...] Read more.
Dargai District Malakand, Pakistan, is a tax-free zone that attracts many industrialists to install their plants in this area. Along with other industries, a number of steel mills are polluting the natural environment of this locality. This study aimed to evaluate heavy metals levels in steel mills effluents and fabricate an efficient adsorbent from the leaves of plants growing on the banks of the drainage lines of the industries and having high phytoremediation capabilities, through chemical modifications. Initially, the effluents were analyzed for heavy metal concentrations, then the leaves of a plant (Pteris vittata) with better phytoremediation capability were chemically modified. The leaves of Pteris vittata were crushed into a fine powder, followed by chemical modification with HNO3, then washed with distilled water, neutralized with NaOH and finally activated through calcium chloride to enhance its biosorption ability, abbreviated as CMPVL. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), surface area analyzer, energy dispersive X-ray spectroscopy (EDX), and thermal gravimetric analysis (TGA) were used to characterize the CMPVL. The modified leaves in the powdered form were then used for the reclamation of Fe(II) present in the effluents of the mentioned industries. Batch biosorption tests were performed under varied physicochemical conditions of pH (2–9), contact time (10–140 min), temperature (293–333 K), biosorbent dose (0.01–0.13 g), and initial metal concentration (20–300 mg L−1) to optimize the removal of the selected metal. Langmuir, Jovanovic, Freundlich, Temkin, and Harkins–Jura isotherm models were used to assess the equilibrium data. With a high R2 value of 0.977, the Langmuir model offered an excellent match to the equilibrium data. The pseudo-first order, pseudo-second order, power function, intraparticle diffusion, and Natarajan–Khalaf models were applied to experimental kinetics data. With R2 values of 0.999, the pseudo-second order model well fitted the obtained data. The Van’t Hoff equation was used to calculate ΔH°, ΔS° and ΔG° of Fe(II) sorption on CMPVL. The ∆H° and ∆G° were negative, whereas ΔS° was positive, suggesting that the biosorption process was exothermic, favorable, and spontaneous. The selected plant leaves were found to be efficient in the reclamation of iron from the industrial effluents (as the plant has a high natural capability for remediating the selected metal ion) after chemical modification and may be used as an alternative to activated carbon as being a low-cost material and a high phytoremediator of iron metal. Such natural phenomena of phytoremediation should be utilized in obtaining efficient adsorbents for other metals as well. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

10 pages, 4026 KiB  
Article
Advanced Drinking Groundwater As Phytofiltration by the Hyperaccumulating Fern Pteris vittata
by Davide Marzi, Maria Luisa Antenozio, Sara Vernazzaro, Clara Sette, Enrico Veschetti, Luca Lucentini, Giancarlo Daniele, Patrizia Brunetti and Maura Cardarelli
Water 2021, 13(16), 2187; https://doi.org/10.3390/w13162187 - 11 Aug 2021
Cited by 15 | Viewed by 3806
Abstract
The reuse of Pteris vittata plants for multiple phytofiltration cycles is a main issue to allow an efficient phytoremediation of arsenic (As)-contaminated groundwater. Here, we assessed the capacity of phytofiltration of P. vittata plants grown for two cycles on naturally As-contaminated drinking water [...] Read more.
The reuse of Pteris vittata plants for multiple phytofiltration cycles is a main issue to allow an efficient phytoremediation of arsenic (As)-contaminated groundwater. Here, we assessed the capacity of phytofiltration of P. vittata plants grown for two cycles on naturally As-contaminated drinking water (collected in Central Italy), spaced by a growth cycle on non-contaminated water (N cycle). P. vittata young plants, with extensive frond and root development, were suspended individually in 15 L of water with initial As of 59 µg/L, without any additional treatment or water refilling. During cycle 1, in 45 days P. vittata plants reduced As concentration below 10 µg/L, the allowed EU limits for drinking water. During the subsequent 30 day-N cycle on non-contaminated water, no leaching of As from the roots was observed, while the water pH increased 0.9 Units, but is within the allowed limits. During cycle 2, under the same conditions as cycle 1, As concentration decreased below 10 µg/L in less than seven days. These results show that P. vittata young plants, previously used for the phytofiltration of As, do not extrude As and, when reused, remove As much more rapidly. No additional treatments were required during phytofiltration and thus this represents a sustainable, efficient, and scalable strategy. Full article
(This article belongs to the Special Issue Water Treatment: Desalination, Treatment, Reuse and Management)
Show Figures

Graphical abstract

17 pages, 2740 KiB  
Article
Evaluation of Multiple Responses Associated with Arsenic Tolerance and Accumulation in Pteris vittata L. Plants Exposed to High As Concentrations under Hydroponics
by Fabrizio Pietrini, Valentina Iori, Lucia Pietrosanti, Massimo Zacchini and Angelo Massacci
Water 2020, 12(11), 3127; https://doi.org/10.3390/w12113127 - 7 Nov 2020
Cited by 11 | Viewed by 3046
Abstract
Chinese brake fern (Pteris vittata L.) is recognized as an arsenic hyperaccumulating plant. Mechanisms underlying this capability and the associated hypertolerance have been described even if not completely elucidated. In this study, with the aim to expand the knowledge on the matter, [...] Read more.
Chinese brake fern (Pteris vittata L.) is recognized as an arsenic hyperaccumulating plant. Mechanisms underlying this capability and the associated hypertolerance have been described even if not completely elucidated. In this study, with the aim to expand the knowledge on the matter, an experimental trial was developed to investigate an array of responses, at the morphological, physiological, and biochemical level, in P. vittata plants exposed to high As concentrations in a long-term experiment under hydroponics. Results confirmed the ability of fern plants to both tolerate and accumulate a remarkable amount of As, especially in fronds. Notably, in As-treated plants, a far higher As content was detected in young fronds compared to old fronds, with bioaccumulation (BCF) and translocation (Tf) factors in accordance. At the biochemical level, As treatment affected macro and micronutrient, thiol, and phytochelatin concentrations in fronds of treated plants differently than that of the control. Physiological measurements accounted for a reduction in the photosynthetic activity of As-treated plants in the absence of visual symptoms of damage. Overall, the observed As tolerance and accumulation processes were discussed, evidencing how young fronds developed during As treatment maintain their physiological status while accumulating a high As content. Such indications could be very useful to improve the effective utilization of this plant species for phytofiltration of As-polluted water. Full article
Show Figures

Figure 1

13 pages, 2059 KiB  
Article
Phytoremediation of a Highly Arsenic Polluted Site, Using Pteris vittata L. and Arbuscular Mycorrhizal Fungi
by Simone Cantamessa, Nadia Massa, Elisa Gamalero and Graziella Berta
Plants 2020, 9(9), 1211; https://doi.org/10.3390/plants9091211 - 16 Sep 2020
Cited by 45 | Viewed by 6132
Abstract
Phytoremediation is a promising green technique for the restoration of a polluted environment, but there is often a gap between lab and field experiments. The fern, Pteris vittata L., can tolerate a high soil arsenic concentration and rapidly accumulate the metalloid in its [...] Read more.
Phytoremediation is a promising green technique for the restoration of a polluted environment, but there is often a gap between lab and field experiments. The fern, Pteris vittata L., can tolerate a high soil arsenic concentration and rapidly accumulate the metalloid in its fronds. Arbuscular mycorrhizal fungi (AMF) are mutualistic fungi that form a symbiosis with most land plants’ roots, improve their growth, and induce stress tolerance. This paper reports the results obtained using P. vittata inoculated with AMF, to extract Arsenic (As) from an industrial site highly contaminated also by other pollutants. Two experiments have been performed. In the first one, AMF colonized ferns were grown for two years under controlled conditions in soil coming from the metallurgic site. Positive effects on plant health and As phytoextraction and accumulation were detected. Then, considering these results, we performed a three year in situ experiment in the industrial site, to assess the remediation of As at two different depths. Our results show that the colonization of P. vittata with AMF improved the remediation process of As with a significant impact on the depth 0–0.2 m. Full article
Show Figures

Graphical abstract

14 pages, 1119 KiB  
Article
Efficacy of EDTA and Olive Mill Wastewater to Enhance As, Pb, and Zn Phytoextraction by Pteris vittata L. from a Soil Heavily Polluted by Mining Activities
by Georgios Kalyvas, Gerasimos Tsitselis, Dionisios Gasparatos and Ioannis Massas
Sustainability 2018, 10(6), 1962; https://doi.org/10.3390/su10061962 - 12 Jun 2018
Cited by 12 | Viewed by 3408
Abstract
A pot experiment was conducted to evaluate the effect of Na2-EDTA 0.01 M (E) and olive mill wastewater 15% (OMW) on As, Pb, and Zn uptake by Pteris vittata L. grown in a soil highly contaminated by mining activities. A two-factor [...] Read more.
A pot experiment was conducted to evaluate the effect of Na2-EDTA 0.01 M (E) and olive mill wastewater 15% (OMW) on As, Pb, and Zn uptake by Pteris vittata L. grown in a soil highly contaminated by mining activities. A two-factor experimental design was followed; 3 treatments (E, OMW, and E + OMW) × 2 batches (single or double dose). Six weeks after the P. vittata transplanting, all pots received the selected dose of each treatment (Batch I). At 8 weeks, in half of the pots, a second dose of the same treatments was added (Batch II). Plants were harvested after 10 weeks and As, Pb, and Zn concentrations were determined in fronds and roots. Depending on the element, both treatment and batch effects were significant. In Batch II, EDTA application resulted in a 55% increase of As and 9- and 4-fold of Pb and Zn concentrations in the fronds, while OMW treatment substantially reinforced plant uptake when combined with EDTA. Roots to fronds translocation of the metal(loid)s highly increased in Batch II. After harvest, composite soil samples of all treatment–batch combinations were subjected to sequential extraction, but no significant differentiations of As, Pb, and Zn partitioning in soil phases were detected. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop