Evaluation of Multiple Responses Associated with Arsenic Tolerance and Accumulation in Pteris vittata L. Plants Exposed to High As Concentrations under Hydroponics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Arsenic, Macro and Micro Nutrient Analysis
2.3. Thiol Analysis
2.4. Imaging of Chlorophyll Fluorescence and Leaf Chlorophyll Content
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, E.; Naidu, R.; Alston, A.M. Arsenic in the soil environment: A review. Adv. Agron. 1998, 64, 149–195. [Google Scholar]
- Bhattacharya, P.; Frisbie, S.H.; Smith, E.; Naidu, R.; Jacks, G.; Sarkar, B. Arsenic in the environment: A global perspective. In Handbook of Heavy Metals in the Environment; Marcell Dekker Inc.: New York, NY, USA, 2002; pp. 147–215. [Google Scholar]
- Benner, S. Anthropogenic arsenic. Nat. Geosci. 2010, 3, 5–6. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Soni, R.; Gupta, S.K.; Shukla, D.P. Mercury, arsenic, lead and cadmium in waters of the Singrauli coal mining and power plants industrial zone, Central East India. Environ. Monit. Assess. 2020, 192, 1–20. [Google Scholar] [CrossRef]
- Song, Y.; Kirkwood, N.; Maksimović, Č.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci. Total Environ. 2019, 663, 568–579. [Google Scholar] [CrossRef]
- Cunningham, S.D.; Berti, W.R. Remediation of contaminated soils with green plants: An overview. Cell. Develop. Biol. Plant 1993, 29, 207–212. [Google Scholar] [CrossRef]
- Bondada, B.R.; Ma, L.Q. Tolerance of heavy metals in vascular plants: Arsenic hyperaccumulation by Chinese brake fern (Pteris vittata L.). In Pteridology in the New Millennium; Springer: Dordrecht, The Netherlands, 2003; pp. 397–420. [Google Scholar]
- Baker, A.J. Metal tolerance. New Phytol. 1987, 106, 93–111. [Google Scholar] [CrossRef]
- Cai, Y.; Ma, L.Q. Metal tolerance, accumulation, and detoxification in plants with emphasis on arsenic in terrestrial plants. In Biogeochemistry of Environmentally Important Trace Elements; Cai, Y., Braids, O.C., Eds.; American Chemical Society: Washington, DC, USA, 2003; pp. 95–114. [Google Scholar]
- Tu, C.; Ma, L.Q.; Bondada, B. Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J. Environ. Qual. 2002, 31, 1671–1675. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Wang, J.; Song, W.Y. Arsenic uptake and translocation in plants. Plant Cell Physiol. 2016, 57, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Finnegan, P.; Chen, W. Arsenic toxicity: The effects on plant metabolism. Front. Physiol. 2012, 3, 182. [Google Scholar] [CrossRef] [Green Version]
- Kamran, M.A.; Xu, R.K.; Li, J.Y.; Jiang, J.; Nkoh, J.N. Effect of different phosphorus sources on soybean growth and arsenic uptake under arsenic stress conditions in an acidic ultisol. Ecotox. Environ. Saf. 2018, 165, 11–18. [Google Scholar] [CrossRef]
- Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.; Cai, Y.; Kennelley, E.D. A fern that hyperaccumulates arsenic. Nature 2001, 409, 579. [Google Scholar] [CrossRef]
- Zhao, F.J.; Dunham, S.J.; McGrath, S.P. Arsenic hyperaccumulation by different fern species. New Phytol. 2002, 156, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, M.; Ma, L.Q.; Santos, J.A.G. Three new arsenic hyperaccumulating ferns. Sci. Total Environ. 2006, 364, 24–31. [Google Scholar] [CrossRef]
- Wang, H.B.; Xie, F.; Yao, Y.Z.; Zhao, B.; Xiao, Q.Q.; Pan, Y.H.; Wang, H.J. The effects of arsenic and induced-phytoextraction methods on photosynthesis in Pteris species with different arsenic-accumulating abilities. Environ. Experim. Bot. 2012, 75, 298–306. [Google Scholar] [CrossRef]
- Xie, Q.E.; Yan, X.L.; Liao, X.Y.; Li, X. The arsenic hyperaccumulator fern Pteris vittata L. Environ. Sci. Techn. 2009, 43, 8488–8495. [Google Scholar] [CrossRef]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health. 2018, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Cózatl, D.G.; Butko, E.; Springer, F.; Torpey, J.W.; Komives, E.A.; Kehr, J.; Schroeder, J.I. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 2008, 54, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.Y.; Park, H.; Lee, S.H.; Koo, N.; Kim, J.G. Arsenate tolerance mechanism of Oenothera odorata from a mine population involves the induction of phytochelatins in roots. Chemosphere 2009, 75, 505–512. [Google Scholar] [CrossRef]
- Sakai, Y.; Watanabe, T.; Wasaki, J.; Senoura, T.; Shinano, T.; Osaki, M. Influence of arsenic stress on synthesis and localization of low-molecular-weight thiols in Pteris vittata. Environ. Poll. 2010, 158, 3663–3669. [Google Scholar] [CrossRef] [Green Version]
- Arnetoli, M.; Vooijs, R.; Ten Bookum, W.; Galardi, F.; Gonnelli, C.; Gabbrielli, R.; Shat, H.; Verkleij, J.A. Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration. Environ. Poll. 2008, 152, 585–591. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.Q.; Tu, C. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ. Poll. 2004, 128, 317–325. [Google Scholar] [CrossRef]
- Singh, N.; Ma, L.Q.; Vu, J.C.; Raj, A. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. Environ. Pollut. 2009, 157, 2300–2305. [Google Scholar] [CrossRef]
- Ahsan, N.; Lee, D.G.; Kim, K.H.; Alam, I.; Lee, S.H.; Lee, K.W.; Lee, H.; Lee, B.H. Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 2010, 78, 224–231. [Google Scholar] [CrossRef]
- Agnihotri, A.; Seth, C.S. Exogenously applied nitrate improves the photosynthetic performance and nitrogen metabolism in tomato (Solanum lycopersicum L. cv Pusa Rohini) under arsenic (V) toxicity. Physiol. Mol. Biol. Plants. 2016, 22, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Sitko, K.; Rusinowski, S.; Kalaji, H.M.; Szopiński, M.; Małkowski, E. Photosynthetic efficiency as bioindicator of environmental pressure in A. Halleri. Plant Physiol. 2017, 175, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Pietrini, F.; Zacchini, M.; Iori, V.; Pietrosanti, L.; Ferretti, M.; Massacci, A. Spatial distribution of cadmium in leaves and its impact on photosynthesis: Examples of different strategies in willow and poplar clones. Plant Biol. 2010, 12, 355–363. [Google Scholar] [CrossRef]
- Pietrini, F.; Iori, V.; Cheremisina, A.; Shevyakova, N.I.; Radyukina, N.; Kuznetsov, V.V.; Zacchini, M. Evaluation of nickel tolerance in Amaranthus paniculatus L. plants by measuring photosynthesis, oxidative status, antioxidative response and metal-binding molecule content. Environ. Sci. Poll. Res. 2015, 22, 482–494. [Google Scholar] [CrossRef]
- Pietrini, F.; Iori, V.; Bianconi, D.; Mughini, G.; Massacci, A.; Zacchini, M. Assessment of physiological and biochemical responses, metal tolerance and accumulation in two eucalypt hybrid clones for phytoremediation of cadmium-contaminated waters. J. Environ. Manag. 2015, 162, 221–231. [Google Scholar] [CrossRef]
- Pietrini, F.; Di Baccio, D.; Iori, V.; Veliksar, S.; Lemanova, N.; Juškaitė, L.; Maruška, A.; Zacchini, M. Investigation on metal tolerance and phytoremoval activity in the poplar hybrid clone “Monviso” under Cu-spiked water: Potential use for wastewater treatment. Sci. Total Environ. 2017, 592, 412–418. [Google Scholar] [CrossRef]
- Santangeli, M.; Capo, C.; Beninati, S.; Pietrini, F.; Forni, C. Gradual Exposure to Salinity Improves Tolerance to Salt Stress in Rapeseed (Brassica napus L.). Water 2019, 11, 1667. [Google Scholar] [CrossRef] [Green Version]
- Iori, V.; Pietrini, F.; Cheremisina, A.; Shevyakova, N.I.; Radyukina, N.; Kuznetsov, V.V.; Zacchini, M. Growth responses, metal accumulation and phytoremoval capability in Amaranthus plants exposed to nickel under hydroponics. Water Air Soil Poll. 2013, 224, 1450. [Google Scholar] [CrossRef]
- Di Baccio, D.; Pietrini, F.; Bertolotto, P.; Pérez, S.; Barceló, D.; Zacchini, M.; Donati, E. Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen: Removal, metabolism andmorpho-physiological traits for biomonitoring of emerging contaminants. Sci. Total Environ. 2017, 584, 363–373. [Google Scholar] [CrossRef]
- Pietrini, F.; Passatore, L.; Fischetti, E.; Carloni, S.; Ferrario, C.; Polesello, S.; Zacchini, M. Evaluation of morpho-physiological traits and contaminant accumulation ability in Lemna minor L. treated with increasing perfluorooctanoic acid (PFOA) concentrations under laboratory conditions. Sci. Total Environ. 2019, 695, 133828. [Google Scholar] [CrossRef] [PubMed]
- Iori, V.; Pietrini, F.; Bianconi, D.; Mughini, G.; Massacci, A.; Zacchini, M. Analysis of biometric, physiological, and biochemical traits to evaluate the cadmium phytoremediation ability of eucalypt plants under hydroponics. iForest Biogeosci. For. 2017, 10, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Lou, L.Q.; Ye, Z.H.; Wong, M.H. A comparison of arsenic tolerance, uptake and accumulation between arsenic hyperaccumulator, Pteris vittata L. and non-accumulator, P. semipinnata L.—A hydroponic study. J. Haz. Mater. 2009, 171, 436–442. [Google Scholar] [CrossRef]
- Feng, R.; Wei, C.; Tu, S.; Sun, X. Interactive effects of selenium and arsenic on their uptake by Pteris vittata L. under hydroponic conditions. Environ. Exp. Bot. 2009, 65, 363–368. [Google Scholar] [CrossRef]
- Huang, Y.; Miyauchi, K.; Inoue, C.; Endo, G. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata. Biosci. Biotech. Biochem. 2016, 80, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Ma, L.Q. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L. Environ. Poll. 2016, 141, 238–246. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Bilger, W.; Björkman, O. Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta 1991, 184, 226–234. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.B.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Ma, L.Q. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environ. Poll. 2005, 135, 333–340. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Ma, L.Q.; Santos, J.; Rathinasabapathi, B.; Stamps, B.; Littell, R.C. Effects of Arsenic Species and Concentrations on Arsenic Accumulation by Different Fern Species in a Hydroponic System. Int. J. Phytorem. 2005, 7, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Hatayama, M.; Sato, T.; Shinoda, K.; Inoue, C. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics. J. Biosci. Bioeng. 2011, 111, 326–332. [Google Scholar] [CrossRef]
- Li, W.X.; Chen, T.B.; Huang, Z.C.; Lei, M.; Liao, X.Y. Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 2006, 62, 803–809. [Google Scholar] [CrossRef]
- Zemanová, V.; Popov, M.; Pavlíková, D.; Kotrba, P.; Hnilička, F.; Česká, J.; Pavlík, M. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata. BMC Plant Biol. 2020, 20, 1–10. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, Y.; Downum, K.R.; Ma, L.Q. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ. Poll. 2004, 131, 337–345. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Kohli, R.K.; Arora, K. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 2007, 53, 65–73. [Google Scholar] [CrossRef]
- Liao, X.Y.; Chen, T.B.; Lei, M.; Huang, Z.C.; Xiao, X.Y.; An, Z.Z. Root distributions and elemental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils. Plant Soil 2004, 261, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Gonzaga, M.I.; Santos, J.A.; Ma, L.Q. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Environ. Poll. 2008, 154, 212–218. [Google Scholar] [CrossRef]
- Santos, J.A.; Gonzaga, M.I.; Ma, L.Q.; Srivastava, M. Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages. Environ. Poll. 2008, 154, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.; Tripathi, R.D.; Tripathi, P.; Kumar, A.; Dave, R.; Mishra, S.; Singh, R.; Sharma, D.D.; Rai, U.N.; Chakrabarty, D.; et al. Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environ. Sci. Tech. 2010, 44, 9542–9549. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, V.P.; Tripathi, D.K.; Prasad, S.M.; Chauhan, D.K. Effect of Arsenic on Growth, Arsenic Uptake, Distribution of Nutrient Elements and Thiols in Seedlings of Wrightia arborea (Dennst.) Mabb. Int. J. Phytorem. 2015, 17, 128–134. [Google Scholar] [CrossRef]
- Cai, Y.; Su, J.; Ma, L.Q. Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements. Environ. Poll. 2004, 129, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Gaudet, M.; Pietrini, F.; Beritognolo, I.; Iori, V.; Zacchini, M.; Massacci, A.; Scarascia Mugnozza, M.; Sabatti, M. Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiol. 2011, 31, 1309–1318. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.J.; Wang, J.R.; Barker, J.H.A.; Schat, H.; Bleeker, P.M.; McGrath, S.P. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol. 2003, 159, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, U.; Bilger, W.; Neubauer, C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis; Schulze, E.D., Caldwell, M.M., Eds.; Springer: Berlin, Germany, 1994; pp. 49–70. [Google Scholar]
- Shangguan, Z.; Shao, M.; Dyckmans, J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J. Plant Physiol. 2000, 156, 46–51. [Google Scholar] [CrossRef]
- Epron, D.; Dreyer, E.; Bréda, N. Photosynthesis of oak trees [Quercus petraea (Matt.) Liebl.] during drought under field conditions: Diurnal courses of net CO2 assimilation and photochemical efficiency of photosystem II. Plant Cell Environ. 1992, 15, 809–820. [Google Scholar] [CrossRef]
- Lin, Z.F.; Ehleringer, J.R. Effects of leaf age on photosynthesis and water use efficiency of papaya. Photosynthetica 1982, 16, 514–519. [Google Scholar]
mg/kg | Al | B | Cd | Cr | Cu | Fe | Ca | Na | Mn | Mg | K | Ni | P | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Frond | C | 500 ± 62a | 81 ± 3.7ab | 0.8 ± 0.1b | 4.6 ± 0.7 | 8.3 ± 0.4b | 318 ± 72a | 10972 ± 465b | 5108 ± 708b | 33 ± 3.9a | 4358 ± 253a | 302 ± 6.7b | 1.9 ± 0.6 | 1643 ± 127b | 3.9 ± 0.2 | 43 ± 8.4a |
TOF | 527 ± 42a | 107 ± 6.9a | 1.4 ± 0.1a | 6.9 ± 1.2 | 12.6 ± 0.9a | 332 ± 61a | 18211 ± 824a | 12496 ± 824a | 31 ± 3.4a | 5660 ± 382a | 300 ± 7.6b | 2.1 ± 0.3 | 2114 ± 134ab | 6.0 ± 1.3 | 33 ± 3.1ab | |
TYF | 276 ± 30b | 70 ± 8.5b | 1.3 ± 0.2a | 5.7 ± 0.2 | 11.6 ± 0.6a | 50 ± 2.6b | 4559 ± 450c | 2512 ± 232c | 6.1 ± 0.3b | 2055 ± 145b | 353 ± 11.4a | 2.2 ± 1.2 | 2356 ± 117a | 6.2 ± 1.0 | 18 ± 2.9b | |
Rhizome | C | 2101 ± 211 | 170 ± 35 | 1.8 ± 0.07 | 5.6 ± 0.1 | 99 ± 13 b | 2257 ± 25 | 38322 ± 4643 | 5569 ± 467 | 264 ± 36 | 3859 ± 380 | 300 ± 26 | 10.8 ± 1.5 a | 10956 ± 1969 a | 9.9 ± 1.1 b | 308 ± 59 |
T | 2262 ± 557 | 189 ± 29 | 2.3 ± 0.4 | 8.5 ± 1.6 | 257 ± 43 a | 2037 ± 197 | 45222 ± 5867 | 4556 ± 492 | 264 ± 52 | 3223 ± 573 | 276 ± 14 | 6.2 ± 1.2 b | 4962 ± 830 b | 13.1 ± 2.2 a | 237 ± 78 | |
Root | C | 2271 ± 1277 | 74 ± 19A | 1.6 ± 0.4B | 10.5 ± 1.1B | 290 ± 77B | 4279 ± 996B | 35518 ± 10375B | 1623 ± 241A | 354 ± 93 | 5887 ± 1054 | 151 ± 39B | 24 ± 5.5 | 6890 ± 1893 | 9.9 ± 1.7B | 344 ± 100 |
T | 4485 ± 470 | 173 ± 9B | 2.6 ± 0.1A | 17.9 ± 0.8A | 801 ± 22A | 6365 ± 412A | 56723 ± 3196A | 776 ± 214B | 454 ± 28 | 5210 ± 323 | 231 ± 5.3A | 17 ± 0.8 | 7086 ± 813 | 16.0 ± 1.3A | 204 ± 37 |
Treatment | Fv/Fm (r.u.) | ΦPSII (r.u.) | NPQ (r.u.) | ETR (μmol Electrons m−2s−1) | Abs (r.u.) | Tot Chl Content (µg cm−2) |
---|---|---|---|---|---|---|
Control | 0.750 ± 0.001 a | 0.458 ± 0.004 a | 0.731 ± 0.033 b | 29.5 ± 0.3 a | 0.867 ± 0.003 a | 43.4 ± 0.4 a |
As-treated | 0.655 ± 0.004 b | 0.248 ± 0.007 b | 2.584 ± 0.031 a | 15.6 ± 0.4 b | 0.839 ± 0.004 b | 34.8 ± 0.5 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrini, F.; Iori, V.; Pietrosanti, L.; Zacchini, M.; Massacci, A. Evaluation of Multiple Responses Associated with Arsenic Tolerance and Accumulation in Pteris vittata L. Plants Exposed to High As Concentrations under Hydroponics. Water 2020, 12, 3127. https://doi.org/10.3390/w12113127
Pietrini F, Iori V, Pietrosanti L, Zacchini M, Massacci A. Evaluation of Multiple Responses Associated with Arsenic Tolerance and Accumulation in Pteris vittata L. Plants Exposed to High As Concentrations under Hydroponics. Water. 2020; 12(11):3127. https://doi.org/10.3390/w12113127
Chicago/Turabian StylePietrini, Fabrizio, Valentina Iori, Lucia Pietrosanti, Massimo Zacchini, and Angelo Massacci. 2020. "Evaluation of Multiple Responses Associated with Arsenic Tolerance and Accumulation in Pteris vittata L. Plants Exposed to High As Concentrations under Hydroponics" Water 12, no. 11: 3127. https://doi.org/10.3390/w12113127