Critical Perspectives on Soil Geochemical Properties Limiting Arsenic Phytoextraction with Hyperaccumulator Pteris vittata
Abstract
:1. Introduction
2. Geochemistry of Arsenic Soil Contamination
3. Methods to Remediate Arsenic-Contaminated Soils
3.1. Chemical Stabilization
3.2. Phytoextraction Using Pteris vittata and Other Arsenic-Hyperaccumulating Plants
3.2.1. Phytoextraction with Hyperaccumulators
3.2.2. Arsenic-Hyperaccumulators
3.2.3. Arsenic Hyperaccumulation in P. vittata
3.2.4. Mechanisms for Arsenic Release from Soil
4. Experimental Approaches
5. Effects of Soil Conditions on Phytoextraction with P. vittata
5.1. Effect of Soil Texture and Mineralogy
5.2. Effects of Soil Arsenic Concentrations
5.3. Effects of Metals
6. Soil Treatments to Increase Phytoremediation Efficiency
6.1. Fertilization with Phosphorus
6.2. Fertilization with Nitrogen, Sulfur, Potassium, and Calcium
6.3. Compost Addition
6.4. Chelating Agents
6.5. Inoculation with Mycorrhizal Fungi
7. Remediation Efficiency
Importance of Mass Balances
8. From Research to Practical Application
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, V.L. Health Risks Associated with Chronic Exposures to Arsenic in the Environment. Rev. Mineral. Geochem. 2014, 79, 435–449. [Google Scholar] [CrossRef]
- Oremland, R.S.; Stolz, J.F. The ecology of arsenic. Science 2003, 300, 939–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratnaike, R.N. Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003, 79, 391–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agency for Toxic Substances and Disease Registry. Substance Priority List. U.S. Department of Health and Human Services. Available online: https://www.atsdr.cdc.gov/spl/#2019spl (accessed on 17 November 2022).
- Tack, F.M.G.; Meers, E. Assisted Phytoextraction: Helping Plants to Help Us. Elements 2010, 6, 383–388. [Google Scholar] [CrossRef]
- Vélez-Gavilán, J. Pteris vittata (Chinese ladder brake fern). In Invasive Species Compendium; CABI: Wallingford, UK, 2020. [Google Scholar]
- Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.H.; Cai, Y.; Kennelley, E.D. A fern that hyperaccumulates arsenic—A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 2001, 409, 579. [Google Scholar] [CrossRef]
- Wan, X.M.; Lei, M.; Chen, T.B. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ. 2016, 563, 796–802. [Google Scholar] [CrossRef]
- Xie, Q.E.; Yan, X.L.; Liao, X.Y.; Li, X. The Arsenic Hyperaccumulator Fern Pteris vittata L. Environ. Sci. Technol. 2009, 43, 8488–8495. [Google Scholar] [CrossRef]
- Cantamessa, S.; Massa, N.; Gamalero, E.; Berta, G. Phytoremediation of a Highly Arsenic Polluted Site, Using Pteris vittata L. and Arbuscular Mycorrhizal Fungi. Plants 2020, 9, 211. [Google Scholar] [CrossRef]
- Kertulis-Tartar, G.M.; Ma, L.Q.; Tu, C.; Chirenje, T. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: A two-year study. Int. J. Phytoremediation 2006, 8, 311–322. [Google Scholar] [CrossRef]
- Matzen, S.; Fakra, S.; Nico, P.; Pallud, C. Pteris vittata arsenic accumulation only partially explains soil arsenic depletion during field-scale phytoextraction. Soil Syst. 2020, 4, 71. [Google Scholar] [CrossRef]
- Niazi, N.K.; Singh, B.; Van Zwieten, L.; Kachenko, A.G. Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var austroamericana: A long-term study. Environ. Sci. Pollut. Res. 2012, 19, 3506–3515. [Google Scholar] [CrossRef]
- Lessl, J.T.; Ma, L.Q. Sparingly-Soluble Phosphate Rock Induced Significant Plant Growth and Arsenic Uptake by Pteris vittata from Three Contaminated Soils. Environ. Sci. Technol. 2013, 47, 5311–5318. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.B.; Lessl, J.T.; Wilkie, A.C.; Liu, X.; Liu, Y.; Ma, L.Q. Arsenic removal by As-hyperaccumulator Pteris vittata from two contaminated soils: A 5-year study. Chemosphere 2018, 206, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-b.; Wei, C.; Huang, Z.; Huang, Q.; Lu, Q.; Fan, Z. Effect of phosphorus on arsenic accumulation in As-hyperaccumulator Pteris vittata L. and its implication. Chin. Sci. Bull. 2002, 47, 902–905. [Google Scholar] [CrossRef]
- Cao, X.; Ma, L.Q.; Shiralipour, A. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ. Pollut. 2003, 126, 157–167. [Google Scholar] [CrossRef]
- Tu, S.; Ma, L.Q. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ. Exp. Bot. 2003, 50, 243–251. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Ma, L.Q. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci. Total Environ. 2006, 359, 17–25. [Google Scholar] [CrossRef]
- Caille, N.; Swanwick, S.; Zhao, F.J.; McGrath, S.P. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Environ. Pollut. 2004, 132, 113–120. [Google Scholar] [CrossRef]
- Shelmerdine, P.A.; Black, C.R.; McGrath, S.P.; Young, S.D. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environ. Pollut. 2009, 157, 1589–1596. [Google Scholar] [CrossRef]
- Lei, M.; Wan, X.; Guo, G.; Yang, J.; Chen, T. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: Comprehensive evaluation of remediation efficiency correcting for atmospheric depositions. Environ. Sci. Pollut. Res. Int. 2018, 25, 124–131. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Tlustoš, P.; Komárek, M.; Száková, J. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: Laboratory versus field scale measures of efficiency. Geoderma 2008, 144, 446–454. [Google Scholar] [CrossRef]
- Gerhardt, K.E.; Gerwing, P.D.; Greenberg, B.M. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Sci. 2017, 256, 170–185. [Google Scholar] [CrossRef]
- Rathinasabapathi, B.; Ma, L.Q.; Srivastava, M. Arsenic hyperaccumulating ferns and their application to phytoremediation. Floric. Ornam. Plant Biotechnol. 2006, 3, 304–311. [Google Scholar]
- Danh, L.T.; Truong, P.; Mammucari, R.; Foster, N. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Int. J. Phytoremediation 2014, 16, 429–453. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Saha, U.K. Arsenic hyperaccumulating fern: Implications for remediation of arsenic contaminated soils. Geoderma 2016, 284, 132–143. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world—A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Bissen, M.; Frimmel, F.H. Arsenic—A Review. Part I- Occurrence, Toxicity, Speciation, Mobility. Acta Hydrochim. Hydrobiol. 2003, 31, 9–18. [Google Scholar] [CrossRef]
- Smith, E.; Smith, J.; Naidu, R. Distribution and nature of arsenic along former railway corridors of South Australia. Sci. Total Environ. 2006, 363, 175–182. [Google Scholar] [CrossRef]
- Masue-Slowey, Y.; Ying, S.C.; Kocar, B.D.; Pallud, C.E.; Fendorf, S. Dependence of arsenic fate and transport on biogeochemical heterogeneity arising from the physical structure of soils and sediments. J. Environ. Qual. 2013, 42, 1119–1129. [Google Scholar] [CrossRef]
- Amend, J.P.; Saltikov, C.; Lu, G.S.; Hernandez, J. Microbial Arsenic Metabolism and Reaction Energetics. Rev. Mineral. Geochem. 2014, 79, 391–433. [Google Scholar] [CrossRef]
- O’Day, P.A. Chemistry and Mineralogy of Arsenic. Elements 2006, 2, 77–83. [Google Scholar] [CrossRef]
- Dixit, S.; Hering, J.G. Comparison of arsenic(V) and arsenic(III) Sorption onto Iron Oxide Minerals: Implications for Arsenic Mobility. Environ. Sci. Technol. 2003, 37, 4182–4189. [Google Scholar] [CrossRef] [PubMed]
- Morin, G.; Calas, G. Arsenic in soils, mine tailings, and former industrial sites. Elements 2006, 2, 97–101. [Google Scholar] [CrossRef]
- Jacobs, L.W.; Syers, J.K.; Keeney, D.R. Arsenic Sorption by Soils. Soil Sci. Soc. Am. Proc. 1970, 34, 750–754. [Google Scholar] [CrossRef]
- Ladeira, A.C.Q.; Ciminelli, V.S.T. Adsorption and desorption of arsenic on an oxisol and its constituents. Water Res. 2004, 38, 2087–2094. [Google Scholar] [CrossRef]
- Deschamps, E.; Ciminelli, V.S.T.; Weidler, P.G.; Ramos, A.Y. Arsenic sorption onto soils enriched in Mn and Fe minerals. Clays Clay Miner. 2003, 51, 197–204. [Google Scholar] [CrossRef]
- Ying, S.C.; Kocar, B.D.; Fendorf, S. Oxidation and competitive retention of arsenic between iron- and manganese oxides. Geochim. Et Cosmochim. Acta 2012, 96, 294–303. [Google Scholar] [CrossRef]
- Manning, B.A.; Goldberg, S. Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clay Clay Minerals 1996, 44, 609–623. [Google Scholar] [CrossRef]
- Buschmann, J.; Kappelen, A.; Lindauer, U.; Kistler, D.; Berg, M.; Sigg, L. Arsenite and Arsenate Binding to Dissolved Humic Acids- Influence of pH, Type of Humic Acid, and Aluminum. Environ. Sci. Technol. 2006, 40, 6015–6020. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Allard, B.; Grimvall, A. Influence of pH and organic substance on the adsorption of As(V) on geologic materials. Water Air Soil Pollut. 1988, 40, 293–305. [Google Scholar] [CrossRef]
- Redman, A.D.; Macalady, D.L.; Ahmann, D. Natural Organic Matter Affects Arsenic Speciation and Sorption onto Hematite. Environ. Sci. Technol. 2002, 36, 2889–2896. [Google Scholar] [CrossRef]
- Smith, E.; Naidu, R.; Alston, A.M. Chemistry of inorganic arsenic in soils-II. Effects of phosphorus, sodium, and calcium on arsenic sorption. J. Environ. Qual. 2002, 31, 557–563. [Google Scholar]
- Bauer, M.; Blodau, C. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci. Total Environ. 2006, 354, 179–190. [Google Scholar] [CrossRef]
- Huang, A.; Teplitski, M.; Rathinasabapathi, B.; Ma, L. Characterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata. Can. J. Microbiol. 2010, 56, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Ma, L.Q.; Harris, W.G. Arsenic Concentrations in Florida Surface Soils- Influence of Soil Type and Properties. Soil Sci. Soc. Am. J. 2002, 66, 632–640. [Google Scholar]
- Cullen, W.R.; Reimer, K. Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713–784. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.; Sherwin, D.; Ditmars, R.; Hoenke, K.A. An analysis of soil arsenic records of decision. Environ. Sci. Technol. 2001, 35, 2401–2406. [Google Scholar] [CrossRef] [Green Version]
- Teaf, C.M.; Covert, D.J.; Teaf, P.A.; Page, E.; Starks, M.J. Arsenic Cleanup Criteria for Soils in the US and Abroad. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Amherst, MA, USA, 18–21 October 2010; Volume 15. Chapter 9. [Google Scholar]
- Matschullat, J. Arsenic in the geosphere—A review. Sci. Total Environ. 2000, 249, 297–312. [Google Scholar] [CrossRef]
- Warren, G.P.; Alloway, B.J. Reduction of arsenic uptake by lettuce with ferrous sulfate applied to contaminated soil. J. Environ. Qual. 2003, 32, 767–772. [Google Scholar] [CrossRef]
- Komarek, M.; Vanek, A.; Ettler, V. Chemical stabilization of metals and arsenic in contaminated soils using oxides—A review. Environ. Pollut. 2013, 172, 9–22. [Google Scholar] [CrossRef]
- Álvarez-Ayuso, E.; Murciego, A. Stabilization methods for the treatment of weathered arsenopyrite mine wastes: Arsenic immobilization under selective leaching conditions. J. Clean. Prod. 2021, 283, 125265. [Google Scholar] [CrossRef]
- Moore, T.J.; Rightmire, C.M.; Vempati, R.K. Ferrous Iron Treatment of Soils Contaminated with Arsenic-Containing Wood-Preserving Solution. J. Soil Contam. 2000, 9, 375–405. [Google Scholar] [CrossRef]
- Hartley, W.; Edwards, R.; Lepp, N.W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environ. Pollut. 2004, 131, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Hartley, W.; Lepp, N.W. Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils. Environ. Pollut. 2008, 156, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.P.; Alloway, B.J.; Lepp, N.W.; Singh, B.; Bochereau, F.J.M.; Penny, C. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides. Sci. Total Environ. 2003, 311, 19–33. [Google Scholar] [CrossRef]
- Bleeker, P.M.; Assuncao, A.G.L.; Tiega, P.M.; de Koe, T.; Verkleij, J. Revegetation of the acidic, As contaminated Jales mine spoil tips using a combination of spoil amendments and tolerant grasses. Sci. Total Environ. 2002, 300, 1–13. [Google Scholar] [CrossRef]
- Baragano, D.; Forjan, R.; Welte, L.; Gallego, J.L.R. Nanoremediation of As and metals polluted soils by means of graphene oxide nanoparticles. Sci. Rep. 2020, 10, 1896. [Google Scholar] [CrossRef] [Green Version]
- Kumpiene, J.; Ore, S.; Renella, G.; Mench, M.; Lagerkvist, A.; Maurice, C. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ. Pollut. 2006, 144, 62–69. [Google Scholar] [CrossRef]
- Mench, M.; Vangronsveld, J.; Beckx, C.; Ruttens, A. Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ. Pollut. 2006, 144, 51–61. [Google Scholar] [CrossRef]
- Ascher, J.; Ceccherini, M.T.; Landi, L.; Mench, M.; Pietramellara, G.; Nannipieri, P.; Renella, G. Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic-contaminated soil. Appl. Soil Ecol. 2009, 41, 351–359. [Google Scholar] [CrossRef]
- Sanchez, A.G.; Alvarez-Ayuso, E.; Rodriguez-Martin, F. Sorption of As(V) by some oxyhydroxides and clay minerals. Application to its immobilization in two polluted mining soils. Clay Miner. 2002, 37, 187–194. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Petersen, L.R.; Kjeldsen, P.; Jakobsen, R. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment. Chemosphere 2011, 84, 383–389. [Google Scholar] [CrossRef]
- Gonzalez, V.; Garcia, I.; Del Moral, F.; Simon, M. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal-arsenic polluted soil. J. Hazard. Mater. 2012, 205, 72–80. [Google Scholar] [CrossRef]
- Hartley, W.; Lepp, N.W. Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci. Total Environ. 2008, 390, 35–44. [Google Scholar] [CrossRef]
- Puschenreiter, M.; Horak, O.; Friesl, W.; Hartl, W. Low-cost agricultural measures to reduce heavy metal transfer into the food chain—A review. Plant Soil Environ. 2005, 51, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Oncu, G.; Reiser, M.; Kranert, M. Aerobic in situ stabilization of Landfill Konstanz Dorfweiher: Leachate quality after 1 year of operation. Waste Manag. 2012, 32, 2374–2384. [Google Scholar] [CrossRef]
- Reisinger, H.J.; Burris, D.R.; Hering, J.G. Remediating Subsurface Arsenic Contamination with Monitored Natural Attenuation. Environ. Sci. Technol. 2005, 39, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Venegas-Rioseco, J.; Ginocchio, R.; Ortiz-Calderon, C. Increase in Phytoextraction Potential by Genome Editing and Transformation: A Review. Plants 2021, 11, 86. [Google Scholar] [CrossRef]
- Brooks, R.R.; Lee, J.; Reeves, R.D.; Jaffre, T. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 1977, 7, 49–57. [Google Scholar] [CrossRef]
- van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Baker, A.J.M. Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Maestri, E.; Marmiroli, M.; Visioli, G.; Marmiroli, N. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environ. Exp. Bot. 2010, 68, 1–13. [Google Scholar] [CrossRef]
- Chaney, R.L.; Angle, J.S.; Broadhurst, C.L.; Peters, C.A.; Tappero, R.V.; Sparks, D.L. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 2007, 36, 1429–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, S.P.; Zhao, F.J.; Lombi, E. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 2001, 232, 207–214. [Google Scholar] [CrossRef]
- Pollard, A.J.; Baker, A.J.M. Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol. 1997, 135, 655–658. [Google Scholar] [CrossRef]
- Jiang, R.F.; Ma, D.Y.; Zhao, F.J.; McGrath, S.P. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol. 2005, 167, 805–814. [Google Scholar] [CrossRef]
- Morris, C.; Grossl, P.R.; Call, C.A. Elemental allelopathy: Processes, progress, and pitfalls. Plant Ecol. 2008, 202, 1–11. [Google Scholar] [CrossRef]
- Meharg, A.A.; Hartley-Whitaker, J. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol. 2002, 154, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Porter, E.K.; Peterson, P.J. Arsenic accumulation by plants on mine waste (United Kingdom). Sci. Total Environ. 1975, 4, 365–371. [Google Scholar] [CrossRef]
- de Koe, T. Agrostis castellana and Agrostis delicatula on heavy metal and arsenic enriched sites in NE Portugal. Sci. Total Environ. 1994, 145, 103–109. [Google Scholar] [CrossRef]
- Bech, J.; Poschenrieder, C.; Llugany, M.; Barceló, J.; Tume, P.; Tobias, F.J.; Barranzuela, J.L.; Vásquez, E.R. As and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci. Total Environ. 1997, 203, 83–91. [Google Scholar] [CrossRef]
- Center for Aquatic and Invasive Plants. Pteris vittata Chinese Ladder Brake Fern. University of Florida/IFAS. Available online: https://plants.ifas.ufl.edu/plant-directory/pteris-vittata/ (accessed on 21 December 2021).
- Komar, K.M.; Ma, L.Q.; Rockwood, D.; Syed, A. Identification of arsenic tolerant and hyperaccumulating plants from arsenic contaminated soils in Florida. Agron. Abstr. 1998, 343, 20–67. [Google Scholar]
- Komar, K.M. Phytoremediation of Arsenic Contaminated Soils: Plant Identification and Uptake Enhancement. Ph.D. Thesis, University of Florida, Gainsville, FL, USA, 1999. [Google Scholar]
- Chen, T.B.; Wei, C.Y.; Huang, Z.; Huang, Q.; Lu, Q.; Fan, Z. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chin. Sci. Bull. 2002, 47, 902–905. [Google Scholar] [CrossRef]
- Meharg, A.A. Variation in arsenic accumulation—Hyperaccumulation in ferns and their allies. New Phytol. 2003, 157, 25–31. [Google Scholar] [CrossRef]
- Wang, H.B.; Wong, M.H.; Lan, C.Y.; Baker, A.J.; Qin, Y.R.; Shu, W.S.; Chen, G.Z.; Ye, Z.H. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ. Pollut. 2007, 145, 225–233. [Google Scholar] [CrossRef]
- Wei, C.Y.; Wang, C.; Sun, X.; Wang, W.Y. Arsenic accumulation by ferns: A field survey in southern China. Environ. Geochem. Health 2007, 29, 169–177. [Google Scholar] [CrossRef]
- Wei, C.Y.; Chen, T.B.; Huang, Z.; Zhang, X. Cretan brake (Pteris cretica L.): An arsenic accumulatting plant. Acta Ecol. Sin. 2002, 22, 777–778, (In Chinese with English Abstract). [Google Scholar]
- Zhao, F.J.; Dunham, S.J.; McGrath, S.P. Arsenic hyperaccumulation by different fern species. New Phytol. 2002, 156, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, M.; Ma, L.Q.; Santos, J.A. Three new arsenic hyperaccumulating ferns. Sci. Total Environ. 2006, 364, 24–31. [Google Scholar] [CrossRef]
- Feng, R.; Wei, C.; Tu, S.; Tang, S.; Wu, F. Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: Evidence of plant uptake and subcellular distributions. Microchem. J. 2011, 97, 38–43. [Google Scholar] [CrossRef]
- Francesconi, K.; Visoottiviseth, P.; Sridokchan, W.; Goessler, W. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos- a potential phytoremediator of arsenic-contaminated soils. Sci. Total Environ. 2002, 284, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Visoottiviseth, P.; Francesconi, K.; Sridokchan, W. The potential of Thai indigenous plant species for the phytoremediation of arsenic. Sci. Total Environ. 2002, 118, 453–461. [Google Scholar]
- Koller, C.E.; Patrick, J.W.; Rose, R.J.; Offler, C.E.; MacFarlane, G.R. Pteris umbrosa R. Br. as an arsenic hyperaccumulator: Accumulation, partitioning and comparison with the established As hyperaccumulator Pteris vittata. Chemosphere 2007, 66, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- Pollard, A.J.; Dandridge, K.L.; Jhee, E.M. Ecological genetics and the evolution of trace element hyperaccumulation in plants. In Phytoremediation of Contaminated Soil and Water; Terry, N., Banuelos, G.S., Eds.; CRC Press: Boca Raton, FL, USA, 2000; Chapter 14. [Google Scholar]
- Baker, A.J.M.; Whiting, S.N. In search of the Holy Grail—A further step in understanding metal hyperaccumulation? New Phytol. 2002, 155, 1–4. [Google Scholar] [CrossRef]
- Singh, N.; Ma, L.Q. Assessing plants for phytoremediation of arsenic contaminated soils. In Methods in Biotechnology Volume 23: Phytoremediation: Methods and Reviews; Willey, N., Ed.; Humana Press: Totowa, NJ, USA, 2007; Volume 23, pp. 319–347, Chapter 24. [Google Scholar]
- Wan, X.; Zeng, W.; Zhang, D.; Wang, L.; Lei, M.; Chen, T. Changes in the concentration, distribution, and speciation of arsenic in the hyperaccumulator Pteris vittata at different growth stages. Sci. Total Environ. 2022, 841, 156708. [Google Scholar] [CrossRef]
- Liao, X.-Y.; Chen, T.-B.; Lei, M.; Huang, Z.-C.; Xiao, X.-Y.; An, Z.-Z. Root distributions and elemental accumulations of Pteris vittata from As-contaminated soils. Plant Soil 2004, 261, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.R.; Zhao, F.J.; Meharg, A.A.; Raab, A.; Feldmann, J.; McGrath, S.P. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol. 2002, 130, 1552–1561. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ma, L.Q.; Rathinasabapathi, B.; Cai, Y.; Liu, Y.G.; Zeng, G.M. Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata. Environ. Sci. Technol. 2011, 45, 9719–9725. [Google Scholar] [CrossRef]
- Lombi, E.; Zhao, F.J.; Fuhrmann, M.; Ma, L.Q.; Mcgrath, S.P. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol. 2002, 156, 195–203. [Google Scholar] [CrossRef] [Green Version]
- An, Z.Z.; Huang, Z.C.; Lei, M.; Liao, X.Y.; Zheng, Y.M.; Chen, T.B. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil. Chemosphere 2006, 62, 796–802. [Google Scholar] [CrossRef]
- Datta, R.; Das, P.; Tappero, R.; Punamiya, P.; Elzinga, E.; Sahi, S.; Feng, H.; Kiiskila, J.; Sarkar, D. Evidence for exocellular Arsenic in Fronds of Pteris vittata. Sci. Rep. 2017, 7, 2839. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Chen, T.B.; Lei, M. Role of trichome of Pteris vittata L. in arsenic hyperaccumulation. Sci. China 2005, 48, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Cai, Y.; Tu, C.; Ma, L.Q. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci. Total Environ. 2002, 300, 167–177. [Google Scholar] [CrossRef]
- Tu, C.; Ma, L.Q.; Zhang, W.; Cai, Y.; Harris, W.G. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.). Environ. Pollut. 2003, 124, 223–230. [Google Scholar] [CrossRef]
- Vetterlein, D.; Wesenberg, D.; Nathan, P.; Bräutigam, A.; Schierhorn, A.; Mattusch, J.; Jahn, R. Pteris vittata—Revisited: Uptake of As and its speciation, impact of P, role of phytochelatins and S. Environ. Pollut. 2009, 157, 3016–3024. [Google Scholar] [CrossRef]
- Webb, S.M.; Gaillard, J.-F.; Ma, L.Q.; Tu, C. XAS speciation of arsenic in a hyper-accumulating fern. Environ. Sci. Technol. 2003, 37, 754–760. [Google Scholar] [CrossRef]
- Pickering, I.J.; Gumaelius, L.; Harris, H.H.; Prince, R.C.; Hirsch, G.; Banks, J.A.; Salt, D.E.; George, G.N. Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ. Sci. Technol. 2006, 40, 5010–5014. [Google Scholar] [CrossRef]
- Audet, P. Examining the ecological paradox of the ‘mycorrhizal-metal-hyperaccumulators’. Arch. Agron. Soil Sci. 2013, 59, 549–558. [Google Scholar] [CrossRef]
- Marschener, H. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res. 1998, 56, 203–207. [Google Scholar] [CrossRef]
- Fitz, W.J.; Wenzel, W.W.; Zhang, H.; Nurmi, J.; Štipek, K.; Fischerova, Z.; Schweiger, P.; Köllensperger, G.; Ma, L.Q.; Stingeder, G. Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ. Sci. Technol. 2003, 37, 5008–5014. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Ma, L.; Luongo, T. Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant Soil 2004, 258, 9–19. [Google Scholar] [CrossRef]
- Gonzaga, M.I.S.; Santos, J.A.; Ma, L.Q. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environ. Pollut. 2006, 143, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Furrer, G.; Stumm, W. The coordination chemistry of weathering- I. Dissolution kinetics of δ-Al2O3 and BeO. Geochem. Et Cosmochim. Acta 1986, 50, 1847–1860. [Google Scholar] [CrossRef]
- Reichard, P.U.; Kretzschmar, R.; Kraemer, S.M. Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim. Et Cosmochim. Acta 2007, 71, 5635–5650. [Google Scholar] [CrossRef]
- Liu, X.; Fu, J.W.; Guan, D.X.; Cao, Y.; Luo, J.; Rathinasabapathi, B.; Chen, Y.; Ma, L.Q. Arsenic Induced Phytate Exudation, and Promoted FeAsO4 Dissolution and Plant Growth in As-Hyperaccumulator Pteris vittata. Environ. Sci. Technol. 2016, 50, 9070–9077. [Google Scholar] [CrossRef]
- Jones, D.L. Organic acids in the rhizosphere—A critical review. Plant Soil 1998, 205, 25–44. [Google Scholar] [CrossRef]
- Keiluweit, M.; Bougoure, J.J.; Nico, P.S.; Pett-Ridge, J.; Weber, P.K.; Kleber, M. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Chang. 2015, 5, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Shafi, M.; Wang, Y.; Wu, J.; Ye, Z.; Liu, C.; Zhong, B.; Guo, H.; He, L.; Liu, D. Organic acid compounds in root exudation of Moso Bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals. Environ. Sci. Pollut. Res. Int. 2016, 23, 20977–20984. [Google Scholar] [CrossRef]
- Shang, C.; Stewart, J.W.B.; Huang, P.M. pH effect on kinetics of adsorption of organic and inorganic phosphates by short-range ordered aluminum and iron precipitates. Geoderma 1992, 53, 1–14. [Google Scholar] [CrossRef]
- Liu, X.; Fu, J.W.; Da Silva, E.; Shi, X.X.; Cao, Y.; Rathinasabapathi, B.; Chen, Y.; Ma, L.Q. Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Environ. Pollut. 2017, 223, 230–237. [Google Scholar] [CrossRef]
- Matzen, S.L.; Lobo, G.P.; Fakra, S.C.; Kakouridis, A.; Nico, P.S.; Pallud, C.E. Arsenic hyperaccumulator Pteris vittata shows reduced biomass in soils with high arsenic and low nutrient availability, leading to increased arsenic leaching from soil. Sci. Total Environ. 2022, 818, 151803. [Google Scholar] [CrossRef]
- Liu, X.; Fu, J.W.; Tang, N.; da Silva, E.B.; Cao, Y.; Turner, B.L.; Chen, Y.; Ma, L.Q. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata. Environ. Pollut. 2017, 226, 212–218. [Google Scholar] [CrossRef]
- Brinch-Pedersen, H.; Sorensen, L.D.; Holm, P.B. Engineering crop plants- getting a handle on phosphate. Trends Plant Sci. 2002, 7, 118–125. [Google Scholar] [CrossRef]
- Gonzaga, M.I.; Ma, L.Q.; Santos, J.A.; Matias, M.I. Rhizosphere characteristics of two arsenic hyperaccumulating Pteris ferns. Sci. Total Environ. 2009, 407, 4711–4716. [Google Scholar] [CrossRef]
- Das, S.; Chou, M.L.; Jean, J.S.; Yang, H.J.; Kim, P.J. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata. J. Hazard Mater. 2017, 325, 279–287. [Google Scholar] [CrossRef]
- Hem, J.D. Chemical factors that influence the availability of iron and manganese in aqueous systems. Geol. Soc. Am. Bull. 1972, 83, 443–450. [Google Scholar] [CrossRef]
- Kraemer, S.M. Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci.—Res. Across Boundaries 2004, 66, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Fitz, W.J.; Wenzel, W.W. Arsenic tranformations in the soil-rhizosphere-plant system: Fundamentals and potentials application to phytoremediation. J. Biotechnol. 2002, 99, 259–278. [Google Scholar] [CrossRef]
- Sadiq, M. Arsenic chemistry in soils- An overview of thermodynamic predictions and field observations. Water Air Soil Pollut. 1997, 93, 117–136. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Brandstetter, A.; Wutte, H.; Lombi, E.; Prohaska, T.; Stingeder, G.; Adriano, D.C. Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards. J. Plant Nutr. Soil Sci. 2002, 165, 221–228. [Google Scholar] [CrossRef]
- Basta, N.T.; Ryan, J.A.; Chaney, R.L. Trace element chemistry in residual-treated soil: Key concepts and Metal Bioavailability. J. Environ. Qual. 2005, 34, 49–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salido, A.L.; Hasty, K.L.; Lim, J.-M.; Butcher, D.J. Phytoremediation of arsenic and lead in contaminated soil using Pteris vittata and Brassica juncea. Int. J. Phytoremediation 2003, 5, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.B.; Li, H.; Lei, M.; Wu, B.; Song, B.; Zhang, X. Accumulation of N, P, and K in Pteris vittata L. during phytoremediation: A five-year field study. Acta Sci. Circumstantiae 2010, 30, 402–408. [Google Scholar] [CrossRef]
- Yang, Q.; Tu, S.; Wang, G.; Liao, X.; Yan, X. Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int. J. Phytoremediation 2012, 14, 89–99. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y.; Yan, Y.; Yang, J.; Wan, X.; Guo, J.; Guo, J.; Chen, T.; Lei, M. Phytoaccumulation of As by Pteris vittata supplied with phosphorus fertilizers under different soil moisture regimes—A field case. Ecol. Eng. 2019, 138, 274–280. [Google Scholar] [CrossRef]
- Yang, C.; Ho, Y.N.; Inoue, C.; Chien, M.F. Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. Sci. Total Environ. 2020, 740, 140137. [Google Scholar] [CrossRef]
- Ma, J.; Lei, E.; Lei, M.; Liu, Y.; Chen, T. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere 2018, 194, 737–744. [Google Scholar] [CrossRef]
- Matzen, S.L.; Olson, A.L.; Pallud, C.E. Soil texture and climate limit cultivation of the arsenic hyperaccumulator Pteris vittata for phytoextraction in a long-term field study. J. Hazard Maters. 2022, 436, 129151. [Google Scholar] [CrossRef]
- Ciurli, A.; Lenzi, L.; Alpi, A.; Pardossi, A. Arsenic uptake and translocation by plants in pot and field experiments. Int. J. Phytoremediation 2014, 16, 804–823. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, X.; Lei, M. Application of arsenic hyperaccumulator Pteris vittata L. to contaminated soil in Northern China. J. Geochem. Explor. 2017, 182, 132–137. [Google Scholar] [CrossRef]
- Wei, C.Y.; Chen, T.B. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere 2006, 63, 1048–1053. [Google Scholar] [CrossRef]
- Chao, Y.S.; Rouhan, G.; Amoroso, V.B.; Chiou, W.L. Molecular phylogeny and biogeography of the fern genus Pteris (Pteridaceae). Ann. Bot. 2014, 114, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Robinson, B.H.; Anderson, C.W.N.; Dickinson, N.M. Phytoextraction: Where’s the action? J. Geochem. Explor. 2015, 151, 34–40. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Ma, L.Q.; Cao, X.; Rathinasabapathi, B. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ. Pollut. 2004, 132, 289–296. [Google Scholar] [CrossRef]
- Mandal, A.; Purakayastha, T.J.; Patra, A.K.; Sanyal, S.K. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests. Int. J. Phytoremediation 2012, 14, 978–995. [Google Scholar] [CrossRef]
- Wei, C.Y.; Sun, X.; Wang, C.; Wang, W.Y. Factors influencing arsenic accumulation by Pteris vittata: A comparative field study at two sites. Environ. Pollut. 2006, 141, 488–493. [Google Scholar] [CrossRef]
- Xu, W.; Kachenko, A.G.; Singh, B. Effect of soil properties on arsenic hyperaccumulation in Pteris vittata and Pityrogramma calomelanos var. austroamericana. Int. J. Phytoremediation 2010, 12, 174–187. [Google Scholar] [CrossRef]
- Woolson, E.A.; Axley, J.H.; Kearne, P.C. The chemistry and phytotoxicity of arsenic in soils—II. Effects of time and phosphorus. Soil Sci. Soc. Am. Proc. 1973, 37, 254–259. [Google Scholar] [CrossRef]
- Lombi, E.; Sletten, R.S.; Wenzel, W.W. Sequentially Extracted Arsenic from Different Size Fractions of Contaminated Soils. Water Air Soil Pollut. 2000, 124, 319–332. [Google Scholar] [CrossRef]
- Gonzaga, M.I.; Santos, J.A.; Ma, L.Q. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Environ. Pollut. 2008, 154, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Ma, L.Q. Effects of Arsenic Concentrations and Forms on Arsenic Uptake by the Hyperaccumulator Ladder Brake. J. Environ. Qual. 2002, 31, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.M.; Wu, F.Y.; Cheung, K.C.; Ye, Z.H.; Wong, M.H. Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator. J. Hazard Mater. 2010, 181, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Tong-Bin, C.; Xiao-Yong, L.; Ze-Chun, H.; Mei, L.; Wen-Xue, L.; Liang-Yu, M.; Zhi-Zhuang, A.; Chao-Yang, W.; Xi-Yuan, X.; Hua, X. Phytoremediation of arsenic-contaminated soil in China. In Phytoremediation: Methods and Reviews; Humana Press: Totowa, NJ, USA, 2007; p. 467. [Google Scholar]
- Wan, X.M.; Lei, M.; Liu, Y.R.; Huang, Z.C.; Chen, T.B.; Gao, D. A comparison of arsenic accumulation and tolerance among four populations of Pteris vittata from habitats with a gradient of arsenic concentration. Sci. Total Environ. 2013, 442, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Ma, L.Q. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environ. Pollut. 2005, 135, 333–340. [Google Scholar] [CrossRef]
- Audet, P.; Charest, C. Allocation plasticity and plant-metal partitioning: Meta-analytical perspectives in phytoremediation. Environ. Pollut. 2008, 156, 290–296. [Google Scholar] [CrossRef]
- Wu, F.Y.; Leung, H.M.; Wu, S.C.; Ye, Z.H.; Wong, M.H. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of i L. from China. Environ. Pollut. 2009, 157, 2394–2404. [Google Scholar] [CrossRef]
- Baker, A.J. Metal tolerance. New Phytol. 1987, 106, 93–111. [Google Scholar] [CrossRef]
- Kachenko, A.G.; Singh, B.; Bhatia, N.P. Heavy metal tolerance in common fern species. Aust. J. Bot. 2007, 55, 63–73. [Google Scholar] [CrossRef]
- Wu, F.Y.; Ye, Z.H.; Wu, S.C.; Wong, M.H. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta 2007, 226, 1363–1378. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Chen, T.B.; An, Z.Z.; Lei, M.; Huang, Z.C.; Liao, X.Y.; Liu, Y.R. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: The tolerance and accumulation. J. Environ. Sci. 2008, 20, 62–67. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; Ma, L.Q.; Santos, J.A.; Guilherme, L.R.; Lessl, J.T. Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environ. Pollut. 2014, 184, 187–192. [Google Scholar] [CrossRef]
- Wan, X.M.; Lei, M.; Chen, T.B.; Zhou, G.D.; Yang, J.; Zhou, X.Y.; Zhang, X.; Xu, R.X. Phytoremediation potential of Pteris vittata L. under the combined contamination of As and Pb: Beneficial interaction between As and Pb. Environ. Sci. Pollut. Res. Int. 2014, 21, 325–336. [Google Scholar] [CrossRef]
- Nishizono, H.; Ichikawa, H.; Suziki, S.; Ishii, F. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil 1987, 101, 15–20. [Google Scholar] [CrossRef]
- Xu, M.; Lin, Y.; da Silva, E.B.; Cui, Q.; Gao, P.; Wu, J.; Ma, L.Q. Effects of copper and arsenic on their uptake and distribution in As-hyperaccumulator Pteris vittata. Environ. Pollut. 2022, 300, 118982. [Google Scholar] [CrossRef]
- Zheng, M.X.; Xu, J.M.; Smith, L.; Naidu, R. Why Pteris multifida does not accumulate arsenic. J. Phys. IV Fr. 2003, 107, 1409–1412. [Google Scholar] [CrossRef]
- Wang, L.; Hou, D.; Shen, Z.; Zhu, J.; Jia, X.; Ok, Y.S.; Tack, F.M.; Rinklebe, J. Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. Crit. Rev. Environ. Sci. Technol. 2019, 50, 2724–2774. [Google Scholar] [CrossRef]
- Han, W.; Fang, J.; Guo, D.; Zhang, Y. Leaf Nitrogen and Phosphorus Stoichiometry across 753 Terrestrial Plant Species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef]
- Amatangelo, K.L.; Vitousek, P.M. Stoichiometry of Ferns in Hawaii: Implications for Nutrient Cycling. Oecologia 2008, 157, 619–627. [Google Scholar] [CrossRef]
- Tu, C.; Ma, L. Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L. Plant Soil 2003, 249, 373–382. [Google Scholar] [CrossRef]
- Hua, C.Y.; Chen, J.X.; Cao, Y.; Li, H.B.; Chen, Y.; Ma, L.Q. Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil. Chemosphere 2020, 247, 125916. [Google Scholar] [CrossRef] [PubMed]
- Peryea, F.J. Phosphate-induced release of arsenic from soils contaminated with lead arsenate. Soil Sci. Soc. Am. J. 1991, 55, 1301–1306. [Google Scholar] [CrossRef]
- Manning, B.A.; Goldberg, S. Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci. Soc. Am. J. 1996, 60, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Parfitt, R.L. Anion Adsorption by Soils and Soil Materials. Adv. Agron. 1979, 30, 1–50. [Google Scholar]
- Smith, E.; Naidu, R. Chemistry of inorganic arsenic in soils: Kinetics of arsenic adsorption-desorption. Environ. Geochem Health 2009, 31 (Suppl. 1), 49–59. [Google Scholar] [CrossRef]
- Darland, J.E.; Inskeep, W.P. Effects of pH and phosphate competition on the transport of arsenate. J. Environ. Qual. 1997, 26, 1133–1139. [Google Scholar] [CrossRef]
- Poynton, C.Y.; Huang, J.W.; Blaylock, M.J.; Kochian, L.V.; Elless, M.P. Mechanisms of arsenic hyperaccumulation in Pteris species: Root As influx and translocation. Planta 2004, 219, 1080–1088. [Google Scholar] [CrossRef]
- Huang, Z.C.; An, Z.Z.; Chen, T.B.; Mei, L.E.; Xiao, X.Y.; Liao, X.Y. Arsenic uptake and transport of Pteris vittata L. as influenced by phosphate and inorganic arsenic species under sand culture. J. Environ. Sci. 2007, 19, 714–718. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Ma, L.Q.; Rathinasabapathi, B. Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environ. Exp. Bot. 2008, 62, 231–237. [Google Scholar] [CrossRef]
- Natarajan, S.; Stamps, R.H.; Saha, U.K.; Ma, L.Q. Effects of Nitrogen and Phosphorus Levels, and Frond-Harvesting on Absorption, Translocation and Accumulation of Arsenic by Chinese Brake Fern (Pteris vittata L.). Int. J. Phytoremediation 2009, 11, 313–328. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Liao, X.Y.; Chen, T.B.; Xiao, X.Y.; Xie, H.; Yan, X.L.; Zhai, L.M.; Wu, B. Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata: A new approach in phytoremediation. Int. J. Phytoremediation 2007, 9, 269–280. [Google Scholar] [CrossRef]
- Treseder, K.K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 2004, 164, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Leung, H.M.; Leung, A.O.; Ye, Z.H.; Cheung, K.C.; Yung, K.K. Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil. Chemosphere 2013, 92, 1367–1374. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.G.; Chen, B.D.; Christie, P.; Li, X.L. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 2005, 15, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Trotta, A.; Falaschi, P.; Cornara, L.; Minganti, V.; Fusconi, A.; Drava, G.; Berta, G. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 2006, 65, 74–81. [Google Scholar] [CrossRef]
- Wei, S.; Ma, L.Q.; Saha, U.; Mathews, S.; Sundaram, S.; Rathinasabapathi, B.; Zhou, Q. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L. Environ. Pollut 2010, 158, 1530–1535. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Bothe, J.V.; Brown, P.W. The stabilities of calcium arsenates at 23 ± 1 °C. J. Hazard Mater. B 1999, 69, 197–207. [Google Scholar] [CrossRef]
- Bothe, J.V.; Brown, P.W. Arsenic Immobilization by Calcium Arsenate Formation. Environ. Sci. Technol. 1999, 33, 3806–3811. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Zhang, M.; Liao, X.; Tu, S. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L. Chemosphere 2012, 88, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Fleming, M.; Tai, Y.; Zhuang, P.; McBride, M.B. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: Effects of compost amendments. Environ. Pollut. 2013, 177, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ames, R.N.; Reid, C.P.P.; Porter, L.K.; Cambardella, C. Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol. 1983, 95, 381–396. [Google Scholar] [CrossRef]
- Hattingh, M.J.; Gray, L.E.; Gerdemann, J.W. Uptake and translocation of 32P-labeled phosphate to onion roots by endomycorrhizal fungi. Soil Sci. 1973, 116, 383–387. [Google Scholar] [CrossRef]
- Leung, H.M.; Ye, Z.H.; Wong, M.H. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ. Pollut. 2006, 139, 1–8. [Google Scholar] [CrossRef]
- Al Agely, A.; Sylvia, D.M.; Ma, L.Q. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J. Environ. Qual. 2005, 34, 2181–2186. [Google Scholar] [CrossRef] [Green Version]
- Gerhardt, K.E.; Huang, X.-D.; Glick, B.R.; Greenberg, B.M. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 2009, 176, 20–30. [Google Scholar] [CrossRef]
- Chen, T.; Lei, M.; Wan, X.; Zhou, X.; Yang, J.; Guo, G.; Cai, W. Element Case Studies: Arsenic. In Agromining: Farming for Metals; Mineral Resource Reviews; Springer: Berlin/Heidelberg, Germany, 2021; Chapter 22; pp. 443–451. [Google Scholar]
- Gahoonia, T.S.; Raza, S.; Nielsen, N.E. Phosphorus depletion in the rhizosphere as influenced by soil moisture. Plant Soil 1994, 159, 213–218. [Google Scholar] [CrossRef]
- Thoma, G.J.; Lam, T.B.; Wolf, D.C. A mathematical model of phytoremediation for petroleum-contaminated soil: Model development. Int. J. Phytoremediation 2003, 5, 41–55. [Google Scholar] [CrossRef]
- Yanai, R. A Steady State Model of Nutrient Uptake Accounting for Newly Grown Roots. Soil Sci. Soc. Am. J. 1994, 58, 1562–1571. [Google Scholar] [CrossRef]
- Clarkson, D.T.; Sanderson, J.; Russell, R.S. Ion uptake and root age. Nature 1968, 220, 805–806. [Google Scholar] [CrossRef]
- Lessl, J.T.; Luo, J.; Ma, L.Q. Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction. J. Hazard Mater. 2014, 279, 485–492. [Google Scholar] [CrossRef]
- Yan, X.L.; Liao, X.Y.; Chen, T.B. Leaching potential of arsenic from Pteris vittata L. under field conditions. Sci. Total Environ. 2009, 408, 425–430. [Google Scholar] [CrossRef]
- Liu, W.S.; van der Ent, A.; Erskine, P.D.; Morel, J.L.; Echevarria, G.; Spiers, K.M.; Montargès-Pelletier, E.; Qiu, R.L.; Tang, Y.T. Spatially Resolved Localization of Lanthanum and Cerium in the Rare Earth Element Hyperaccumulator Fern Dicranopteris linearis from China. Environ. Sci. Technol. 2020, 54, 2287–2294. [Google Scholar] [CrossRef]
Experimental Approach | Arsenic Source/Form | Arsenic Concentrations and Distribution | Advantages | Drawbacks | Complexity |
---|---|---|---|---|---|
Hydroponic | Aqueous arsenic | Typically, higher concentrations of arsenic (101–105 μg/L) than those found in the soil solution (1–4 μg/L). | Easy replication. Mechanistic information on arsenic uptake into roots. | Results cannot be easily extrapolated to behavior in soil. Soil properties influence the solubility and therefore the supply of nutrients and arsenic to the fern. | Simple |
Greenhouse pot study | Spiked soils | Typically, higher concentrations of plant-available arsenic than historically contaminated soils. Uniform soil arsenic distributions. | Easy replication. Controlled conditions help avoid confounding factors (e.g., effects of weather/climate). | Overestimate arsenic accumulation due to high arsenic availability and ideal greenhouse conditions. | Simple |
Greenhouse pot study | Historically contaminated soils | Easier to mix soil well and decrease soil arsenic heterogeneity, compared to field studies. | Easy replication. Controlled conditions help avoid confounding factors (e.g., effects of weather/climate). | Overestimate arsenic accumulation due to ideal greenhouse conditions. | Moderate |
Field study | Historically contaminated soils | Often 101–102 mg As/kg, heterogeneously distributed over large scales even if soil is tilled to decrease heterogeneity at small scales. | Best approximate of practical application of phytoextraction. | Soil arsenic heterogeneity masks changes in soil arsenic concentrations during phytoextraction. Weather/climate effects confound treatment effects. | Complex |
Field survey | Historically contaminated soils | Often 102–104 mg As/kg, heterogeneously distributed at small to large scales. | Well-established populations allow investigating long-term arsenic uptake. Indicate the range of environmental conditions in which P. vittata is hardy. | P. vittata can hybridize and arsenic uptake and fern behavior can be population-dependent. Not representative of cultivated fern arsenic uptake. | Complex |
Study | Chemical Form of Phosphorus | Soil | Type of Study |
---|---|---|---|
Increased arsenic phytoextraction | |||
Chen et al., 2002 [16] | NaH2PO4 | 26% clay, spiked with As | Greenhouse pot |
Cao et al., 2003 [17] | Phosphate rock | Sandy, contaminated with chromated copper arsenate | Greenhouse pot |
Tu and Ma, 2003 [18] | NaH2PO4 | Sandy, spiked with As | Greenhouse pot |
Fayiga and Ma, 2006 [19] | Phosphate rock | Sandy, spiked with As and metals | Greenhouse pot |
Mandal et al., 2012 [153] | Monocalcium phosphate, diammonium phosphate | Silty clay, historically contaminated | Greenhouse pot |
Lessl and Ma, 2013 [14] | Phosphate rock | Sandy, contaminated with chromated copper arsenate | Large outdoor container |
Decreased arsenic phytoextraction | |||
Shelmerdine et al., 2009 [21] | Not reported | Sewage sludge-amended soil (texture not reported), high phosphorus | Greenhouse pot |
Matzen et al., 2022 [129] | Calcium phosphate | Sandy clay loam, historically contaminated | Greenhouse soil column |
Matzen et al., 2022 [129] | Inorganic P (superphosphate) and organic P (blood meal) | Sandy loam, silty clay loam, both historically contaminated | Field |
Hua et al., 2020 [179] | KH2PO4 | Farmland (texture not reported), historically contaminated | Greenhouse pot |
No effect on arsenic phytoextraction | |||
Chen et al., 2002 [16] | NaH2PO4 | 26% clay, spiked with As | Greenhouse pot |
Cao et al., 2003 [17] | Phosphate rock | Sandy, spiked with As | Greenhouse pot |
Tu and Ma, 2003 [18] | NaH2PO4 | Sandy, spiked with As | Greenhouse pot |
Caille et al., 2004 [20] | NaH2PO4 | Loam, historically contaminated | Greenhouse pot |
Fayiga and Ma, 2006 [19] | Phosphate rock | Sandy, spiked with As | Greenhouse pot |
Hua et al., 2020 [179] | Phosphate rock | Farmland (texture not reported), historically contaminated | Greenhouse pot |
Matzen et al., 2020 [12] | Calcium phosphate | Sandy loam, historically contaminated | Field |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matzen, S.; Pallud, C. Critical Perspectives on Soil Geochemical Properties Limiting Arsenic Phytoextraction with Hyperaccumulator Pteris vittata. Geosciences 2023, 13, 8. https://doi.org/10.3390/geosciences13010008
Matzen S, Pallud C. Critical Perspectives on Soil Geochemical Properties Limiting Arsenic Phytoextraction with Hyperaccumulator Pteris vittata. Geosciences. 2023; 13(1):8. https://doi.org/10.3390/geosciences13010008
Chicago/Turabian StyleMatzen, Sarick, and Céline Pallud. 2023. "Critical Perspectives on Soil Geochemical Properties Limiting Arsenic Phytoextraction with Hyperaccumulator Pteris vittata" Geosciences 13, no. 1: 8. https://doi.org/10.3390/geosciences13010008
APA StyleMatzen, S., & Pallud, C. (2023). Critical Perspectives on Soil Geochemical Properties Limiting Arsenic Phytoextraction with Hyperaccumulator Pteris vittata. Geosciences, 13(1), 8. https://doi.org/10.3390/geosciences13010008