Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,187)

Search Parameters:
Keywords = Polar M400

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 236 KiB  
Article
Full Automorphism Group of (m,2)-Graph in Finite Classical Polar Spaces
by Yang Zhang, Shuxia Liu and Liwei Zeng
Axioms 2025, 14(8), 614; https://doi.org/10.3390/axioms14080614 (registering DOI) - 6 Aug 2025
Abstract
Let \( \mathcal{Q} \) be the finite classical polar space of rank \( \nu\geq 1 \) over \( \mathbb{F}_q \), and \( \mathcal{Q}_m \) be the set of all m-dimensional subspaces of \( \mathcal{Q} \). In this paper, we introduce the \( [...] Read more.
Let \( \mathcal{Q} \) be the finite classical polar space of rank \( \nu\geq 1 \) over \( \mathbb{F}_q \), and \( \mathcal{Q}_m \) be the set of all m-dimensional subspaces of \( \mathcal{Q} \). In this paper, we introduce the \( (m,2) \)-graph with \( \mathcal{Q}_m \) as its vertex set, and two vertices \(P,Q\) are adjacent if and only if \( P+Q \) is an \( (m+2) \)-dimensional subspace of \( \mathcal{Q} \). The full automorphism group of \( (m,2)\)-graph is determined. Full article
31 pages, 4260 KiB  
Article
Analysis of Spatiotemporal Characteristics of Global TCWV and AI Hybrid Model Prediction
by Longhao Xu, Kebiao Mao, Zhonghua Guo, Jiancheng Shi, Sayed M. Bateni and Zijin Yuan
Hydrology 2025, 12(8), 206; https://doi.org/10.3390/hydrology12080206 - 6 Aug 2025
Abstract
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall [...] Read more.
Extreme precipitation events severely impact agriculture, reducing yields and land use efficiency. The spatiotemporal distribution of Total Column Water Vapor (TCWV), the primary gaseous form of water, directly influences sustainable agricultural management. This study, through multi-source data fusion, employs methods including the Mann–Kendall test, sliding change-point detection, wavelet transform, pixel-scale trend estimation, and linear regression to analyze the spatiotemporal dynamics of global TCWV from 1959 to 2023 and its impacts on agricultural systems, surpassing the limitations of single-method approaches. Results reveal a global TCWV increase of 0.0168 kg/m2/year from 1959–2023, with a pivotal shift in 2002 amplifying changes, notably in tropical regions (e.g., Amazon, Congo Basins, Southeast Asia) where cumulative increases exceeded 2 kg/m2 since 2000, while mid-to-high latitudes remained stable and polar regions showed minimal content. These dynamics escalate weather risks, impacting sustainable agricultural management with irrigation and crop adaptation. To enhance prediction accuracy, we propose a novel hybrid model combining wavelet transform with LSTM, TCN, and GRU deep learning models, substantially improving multidimensional feature extraction and nonstationary trend capture. Comparative analysis shows that WT-TCN performs the best (MAE = 0.170, R2 = 0.953), demonstrating its potential for addressing climate change uncertainties. These findings provide valuable applications for precision agriculture, sustainable water resource management, and disaster early warning. Full article
12 pages, 598 KiB  
Article
Mechanistic Insights and Real-World Evidence of Autologous Protein Solution (APS) in Clinical Use
by Jennifer Woodell-May, Kathleen Steckbeck, William King, Katie Miller, Bo Han, Vikas Vedi and Elizaveta Kon
Int. J. Mol. Sci. 2025, 26(15), 7577; https://doi.org/10.3390/ijms26157577 - 5 Aug 2025
Abstract
Autologous therapies are currently being studied to determine if they can modulate the course of knee osteoarthritis symptoms and/or disease progression. One potential therapeutic target is the polarization of pro-inflammatory M1 macrophages to pro-healing M2 macrophages. The autologous therapy, Autologous Protein Solution (APS), [...] Read more.
Autologous therapies are currently being studied to determine if they can modulate the course of knee osteoarthritis symptoms and/or disease progression. One potential therapeutic target is the polarization of pro-inflammatory M1 macrophages to pro-healing M2 macrophages. The autologous therapy, Autologous Protein Solution (APS), was incubated with donor-matched human peripheral-derived macrophages for 10 days. M1 pro-inflammatory macrophages were determined by the percentage of CD80+ and M2 pro-healing macrophages were determined by CD68+ and CD163+ by epifluorescent microscopy. To determine clinical effectiveness, an APS-specific minimal clinically important improvement (MCII) using an anchor-based method was calculated in a randomized controlled trial of APS (n = 46) and then applied to a real-world registry study (n = 78) to determine the percentage of pain responders. Compared to control media, APS statistically increased the percentage of M2 macrophages and decreased the percentage of M1 macrophages, while platelet-poor plasma had no effect on polarization. In the randomized controlled trial (RCT), the MCII at the 12-month follow-up visit was calculated as 2.0 points on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain scale and 7.5 points on the WOMAC function scale. Applying this MCII to the real-world registry data, 62.5% of patients met the MCII with an average of 4.7 ± 2.5 points of improvement in pain. Autologous therapies can influence macrophage polarization and have demonstrated clinical effectiveness in a real-world patient setting. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapeutic Approaches to Osteoarthritis)
Show Figures

Figure 1

20 pages, 6034 KiB  
Article
Pexidartinib and Nintedanib Combination Therapy Targets Macrophage Polarization to Reverse Pulmonary Fibrosis: A Preclinical Study
by Ji-Hee Kim, Jae-Kyung Nam, Min-Sik Park, Seungyoul Seo, Hyung Chul Ryu, Hae-June Lee, Jeeyong Lee and Yoon-Jin Lee
Int. J. Mol. Sci. 2025, 26(15), 7570; https://doi.org/10.3390/ijms26157570 - 5 Aug 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with limited therapeutic options and increasing global incidence, with a median survival of only 2–5 years. The clinical utility of macrophage polarization to regulate the progression of pulmonary fibrosis remains understudied. This [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with limited therapeutic options and increasing global incidence, with a median survival of only 2–5 years. The clinical utility of macrophage polarization to regulate the progression of pulmonary fibrosis remains understudied. This study determined the efficacy of nintedanib and pexidartinib (PLX3397) combination therapy for treating IPF. Combination treatment effectively inhibited the progression of radiation-induced pulmonary fibrosis (RIPF) and prolonged survival in bleomycin-treated mice. Micro-CT analysis revealed a significant tissue repair efficacy. The therapy significantly normalized the abnormal vascular structure observed during RIPF and bleomycin-induced pulmonary fibrosis progression and was accompanied by a decrease in the M2 population. Polarized M1 macrophages enhanced normalized tube formation of irradiated endothelial cells (ECs) in vitro; M2 macrophages increased adhesion in irradiated ECs and abnormal tube formation. Single-cell RNA sequencing data from patients with IPF further supports colony stimulating factor (CSF) 1 upregulation in macrophages and downregulation of capillary EC markers. This study highlights a promising combination strategy to overcome the therapeutic limitations of monotherapy with nintedanib for the treatment of IPF. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 12012 KiB  
Article
Complement Receptor 3 Regulates Microglial Exosome Release and Related Neurotoxicity via NADPH Oxidase in Neuroinflammation Associated with Parkinson’s Disease
by Yu Ma, Xiaomeng Zhang, Jiaqi Xu, Runnan Luo, Sheng Li, Hong Su, Qingshan Wang and Liyan Hou
Antioxidants 2025, 14(8), 963; https://doi.org/10.3390/antiox14080963 (registering DOI) - 5 Aug 2025
Abstract
Microglia-mediated chronic neuroinflammation is a common pathological feature of Parkinson’s disease (PD). Strong evidence suggests that activated microglia can lesion neurons by releasing exosomes. However, the mechanisms of exosome release from activated microglia remain unclear. We recently revealed a key role of complement [...] Read more.
Microglia-mediated chronic neuroinflammation is a common pathological feature of Parkinson’s disease (PD). Strong evidence suggests that activated microglia can lesion neurons by releasing exosomes. However, the mechanisms of exosome release from activated microglia remain unclear. We recently revealed a key role of complement receptor 3 (CR3) in regulating microglial activation in the process of progressive neurodegeneration. This study aimed to investigate whether CR3 can regulate exosome release from activated microglia, as well as the underlying mechanisms. We found that LPS, an inducer of microglial M1 activation, induced exosome release from activated microglia. Inhibition of exosome synthesis suppressed LPS-induced microglial activation, gene expression of proinflammatory factors, and related neurotoxicity. Silencing or knocking out CR3 attenuated LPS-induced exosome release in microglia. NADPH oxidase (NOX2) was further identified as a downstream signal of CR3, mediating microglial exosome release and related neurotoxicity. CR3 silencing blocked LPS-induced NOX2 activation and superoxide production through inhibition of p47phox phosphorylation and membrane translocation. Moreover, NOX2 activation elicited by PMA or supplementation of H2O2 recovered exosome release from CR3-silenced microglia. Subsequently, we demonstrated that the CR3-NOX2 axis regulates syntenin-1 to control microglial exosome release. Finally, we observed that the expression of CR3 was increased in the brain of LPS-treated mice, and genetic ablation of CR3 significantly reduced LPS-induced NOX2 activation, microglial M1 polarization, and exosome production in mice. Overall, our findings revealed a critical role of the CR3-NOX2 axis in controlling microglial exosome release and related neurotoxicity through syntenin-1, providing a novel target for the development of a therapeutic strategy for neuroinflammation-mediated neurodegeneration. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Graphical abstract

4 pages, 5595 KiB  
Correction
Correction: Zhu et al. HIF-1α-Overexpressing Mesenchymal Stem Cells Attenuate Colitis by Regulating M1-like Macrophages Polarization toward M2-like Macrophages. Biomedicines 2023, 11, 825
by Wenya Zhu, Qianqian Chen, Yi Li, Jun Wan, Jia Li and Shuai Tang
Biomedicines 2025, 13(8), 1903; https://doi.org/10.3390/biomedicines13081903 - 5 Aug 2025
Abstract
In the original publication [...] Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 4

30 pages, 15717 KiB  
Article
Channel Amplitude and Phase Error Estimation of Fully Polarimetric Airborne SAR with 0.1 m Resolution
by Jianmin Hu, Yanfei Wang, Jinting Xie, Guangyou Fang, Huanjun Chen, Yan Shen, Zhenyu Yang and Xinwen Zhang
Remote Sens. 2025, 17(15), 2699; https://doi.org/10.3390/rs17152699 - 4 Aug 2025
Abstract
In order to achieve 0.1 m resolution and fully polarimetric observation capabilities for airborne SAR systems, the adoption of stepped-frequency modulation waveform combined with the polarization time-division transmit/receive (T/R) technique proves to be an effective technical approach. Considering the issue of range resolution [...] Read more.
In order to achieve 0.1 m resolution and fully polarimetric observation capabilities for airborne SAR systems, the adoption of stepped-frequency modulation waveform combined with the polarization time-division transmit/receive (T/R) technique proves to be an effective technical approach. Considering the issue of range resolution degradation and paired echoes caused by multichannel amplitude–phase mismatch in fully polarimetric airborne SAR with 0.1 m resolution, an amplitude–phase error estimation algorithm based on echo data is proposed in this paper. Firstly, the subband amplitude spectrum correction curve is obtained by the statistical average of the subband amplitude spectrum. Secondly, the paired-echo broadening function is obtained by selecting high-quality sample points after single-band imaging and the nonlinear phase error within the subbands is estimated via Sinusoidal Frequency Modulation Fourier Transform (SMFT). Thirdly, based on the minimum entropy criterion of the synthesized compressed pulse image, residual linear phase errors between subbands are quickly acquired. Finally, two-dimensional cross-correlation of the image slice is utilized to estimate the positional deviation between polarization channels. This method only requires high-quality data samples from the echo data, then rapidly estimates both intra-band and inter-band amplitude/phase errors by using SMFT and the minimum entropy criterion, respectively, with the characteristics of low computational complexity and fast convergence speed. The effectiveness of this method is verified by the imaging results of the experimental data. Full article
Show Figures

Figure 1

14 pages, 2905 KiB  
Article
Optimal Design of a Lightweight Terahertz Absorber Featuring Ultra-Wideband Polarization-Insensitive Characteristics
by Yafeng Hao, Tengteng Li, Pu Zhu, Fupeng Ma, Huijia Wu, Cheng Lei, Meihong Liu, Ting Liang and Jianquan Yao
Photonics 2025, 12(8), 787; https://doi.org/10.3390/photonics12080787 - 4 Aug 2025
Abstract
Metamaterial absorbers in terahertz (THz) based bands have garnered significant attention for their potential applications in military stealth, terahertz imaging, and other fields. Nevertheless, the limited bandwidth, low absorption rate, and heavy weight greatly reduce the further development and wide application of terahertz [...] Read more.
Metamaterial absorbers in terahertz (THz) based bands have garnered significant attention for their potential applications in military stealth, terahertz imaging, and other fields. Nevertheless, the limited bandwidth, low absorption rate, and heavy weight greatly reduce the further development and wide application of terahertz absorbers. To solve these problems, we propose a polystyrene (PS)-based ultra-broadband metamaterial absorber integrated with a polyethylene terephthalate (PET) double-sided adhesive layer and a patterned indium tin oxide (ITO) film through the simulation method, which operates in the THz band. The electromagnetic wave absorption properties and underlying physical absorption mechanisms of the proposed metamaterial absorbers are comprehensively modeled and rigorously numerically simulated. The research demonstrates the metamaterial absorber can achieve absorption performance of over 90% for fully polarized incident waves in the ultra-wideband range of 1.2–10 THz, especially achieving perfect absorption characteristics of over 99.9% near 1.8–1.9 THz and 5.8–6.2 THz. The proposed absorber has a lightweight physical property of 0.7 kg/m2 and polarization-insensitive characteristic, and it achieves a broad-angle that allows a range of incidence angles up to 60°. The simulation research results of this article provide theoretical support for the design of terahertz absorbers with ultra-wideband absorption characteristics. Full article
(This article belongs to the Special Issue Metamaterials and Nanophotonics: Fundamentals and Applications)
Show Figures

Figure 1

12 pages, 4237 KiB  
Article
Ultra-Stable Anode-Free Na Metal Batteries Enabled by Al2O3-Functionalized Separators
by Han Wang, Yiheng Zhao, Jiaqi Huang, Lu Wang, Canglong Li and Yuejiao Chen
Batteries 2025, 11(8), 297; https://doi.org/10.3390/batteries11080297 - 4 Aug 2025
Abstract
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is [...] Read more.
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is a pivotal strategy for stabilizing AFSMBs. Through systematic evaluation of four separators—2500 separator (PP), 2325 separator (PP/PE/PP), glass fiber (GF), and an Al2O3-coated PE membrane, we reveal that the Al2O3-coated separator uniquely enables exceptional interfacial kinetics and morphological control. Na||Na symmetric cells with Al2O3 coated separator exhibit ultralow polarization (4.5 mV) and the highest exchange current density (1.77 × 10−2 mA cm−2), while the anode-free AlC-NFPP full cells retain 91.6% capacity after 150 cycles at 2C. Specifically, the Al2O3 coating homogenizes Na+ flux, promotes dense and planar Na deposition, and facilitates near-complete stripping with minimal “dead Na”. This work establishes ceramic-functionalized separators as essential enablers of practical high-energy AFSMBs. Full article
Show Figures

Figure 1

25 pages, 394 KiB  
Article
SMART DShot: Secure Machine-Learning-Based Adaptive Real-Time Timing Correction
by Hyunmin Kim, Zahid Basha Shaik Kadu and Kyusuk Han
Appl. Sci. 2025, 15(15), 8619; https://doi.org/10.3390/app15158619 (registering DOI) - 4 Aug 2025
Viewed by 27
Abstract
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems [...] Read more.
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems through seamless integration of adaptive timing correction and real-time anomaly detection within Digital Shot (DShot) communication protocols. Our approach addresses critical vulnerabilities in Electronic Speed Controller (ESC) interfaces by deploying four synergistic algorithms—Kalman Filter Timing Correction (KFTC), Recursive Least Squares Timing Correction (RLSTC), Fuzzy Logic Timing Correction (FLTC), and Hybrid Adaptive Timing Correction (HATC)—each optimized for specific error characteristics and attack scenarios. Through comprehensive evaluation encompassing 32,000 Monte Carlo test iterations (500 per scenario × 16 scenarios × 4 algorithms) across 16 distinct operational scenarios and PolarFire SoC Field-Programmable Gate Array (FPGA) implementation, we demonstrate exceptional performance with 88.3% attack detection rate, only 2.3% false positive incidence, and substantial vulnerability mitigation reducing Common Vulnerability Scoring System (CVSS) severity from High (7.3) to Low (3.1). Hardware validation on PolarFire SoC confirms practical viability with minimal resource overhead (2.16% Look-Up Table utilization, 16.57 mW per channel) and deterministic sub-10 microsecond execution latency. The Hybrid Adaptive Timing Correction algorithm achieves 31.01% success rate (95% CI: [30.2%, 31.8%]), representing a 26.5% improvement over baseline approaches through intelligent meta-learning-based algorithm selection. Statistical validation using Analysis of Variance confirms significant performance differences (F(3,1996) = 30.30, p < 0.001) with large effect sizes (Cohen’s d up to 4.57), where 64.6% of algorithm comparisons showed large practical significance. SMART DShot establishes a paradigmatic shift from reactive to proactive embedded security, demonstrating that sophisticated artificial intelligence can operate effectively within microsecond-scale real-time constraints while providing comprehensive protection against timing manipulation, de-synchronization, burst interference, replay attacks, coordinated multi-channel attacks, and firmware-level compromises. This work provides essential foundations for trustworthy autonomous systems across critical domains including aerospace, automotive, industrial automation, and cyber–physical infrastructure. These results conclusively demonstrate that ML-enhanced motor control systems can achieve both superior security (88.3% attack detection rate with 2.3% false positives) and operational performance (31.01% timing correction success rate, 26.5% improvement over baseline) simultaneously, establishing SMART DShot as a practical, deployable solution for next-generation autonomous systems. Full article
Show Figures

Figure 1

21 pages, 26631 KiB  
Technical Note
Induced Polarization Imaging: A Geophysical Tool for the Identification of Unmarked Graves
by Matthias Steiner and Adrián Flores Orozco
Remote Sens. 2025, 17(15), 2687; https://doi.org/10.3390/rs17152687 - 3 Aug 2025
Viewed by 183
Abstract
The identification of unmarked graves is important in archaeology, forensics, and cemetery management, but invasive methods are often restricted due to ethical or cultural concerns. This necessitates the use of non-invasive geophysical techniques. Our study demonstrates the potential of induced polarization (IP) imaging [...] Read more.
The identification of unmarked graves is important in archaeology, forensics, and cemetery management, but invasive methods are often restricted due to ethical or cultural concerns. This necessitates the use of non-invasive geophysical techniques. Our study demonstrates the potential of induced polarization (IP) imaging as a non-invasive remote sensing technique specifically suited for detecting and characterizing unmarked graves. IP leverages changes in the electrical properties of soil and pore water, influenced by the accumulation of organic matter from decomposition processes. Measurements were conducted at an inactive cemetery using non-invasive textile electrodes to map a documented grave from the early 1990s, with a survey design optimized for high spatial resolution. The results reveal a distinct polarizable anomaly at a 0.75–1.0 m depth with phase shifts exceeding 12 mrad, attributed to organic carbon from wooden burial boxes, and a plume-shaped conductive anomaly indicating the migration of dissolved organic matter. While electrical conductivity alone yielded diffuse grave boundaries, the polarization response sharply delineated the grave, aligning with photographic documentation. These findings underscore the value of IP imaging as a non-invasive, data-driven approach for the accurate localization and characterization of graves. The methodology presented here offers a promising new tool for archaeological prospection and forensic search operations, expanding the geophysical toolkit available for remote sensing in culturally and legally sensitive contexts. Full article
Show Figures

Figure 1

22 pages, 1641 KiB  
Article
Site-Specific Trafficking of Lipid and Polar Metabolites in Adipose and Muscle Tissue Reveals the Impact of Bariatric Surgery-Induced Weight Loss: A 6-Month Follow-Up Study
by Aidan Joblin-Mills, Zhanxuan E. Wu, Garth J. S. Cooper, Ivana R. Sequeira-Bisson, Jennifer L. Miles-Chan, Anne-Thea McGill, Sally D. Poppitt and Karl Fraser
Metabolites 2025, 15(8), 525; https://doi.org/10.3390/metabo15080525 - 2 Aug 2025
Viewed by 233
Abstract
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not [...] Read more.
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not known. Methods: Women with obesity scheduled to undergo bariatric surgery were assessed at baseline (BL, n = 28) and at 6-month follow-up (6m_FU, n = 26) after weight loss. Fasting plasma (Pla), subcutaneous thigh adipose (STA), subcutaneous abdominal adipose, (SAA), and thigh vastus lateralis muscle (VLM) samples were collected at BL through surgery and at 6m_FU using needle biopsy. An untargeted liquid chromatography mass spectrometry metabolomics platform was used. Pla and tissue-specific lipid and polar metabolite profiles were modelled as changes from BL and 6m_FU. Results: There was significant body weight (−24.5 kg) loss at 6m_FU (p < 0.05). BL vs. 6m_FU tissue metabolomics profiles showed the largest difference in lipid profiles in SAA tissue in response to surgery. Conversely, polar metabolites were more susceptible to change in STA and VLM. In Pla samples, both lipid and polar metabolite profiles showed significant differences between timepoints. Jaccard–Tanimoto coefficient t-tests identified a sub-group of gut microbiome and dietary-derived omega-3-fatty-acid-containing lipid species and core energy metabolism and adipose catabolism-associated polar metabolites that are trafficked between sample types in response to bariatric surgery. Conclusions: In this first report on channelling of lipids and polar metabolites to alternative tissues in bariatric-induced weight loss, adaptive shuttling of small molecules was identified, further promoting adipose processing and highlighting the dynamic and coordinated nature of post-surgical metabolic regulation. Full article
Show Figures

Figure 1

18 pages, 3020 KiB  
Article
JAK2/STAT3 Signaling in Myeloid Cells Contributes to Obesity-Induced Inflammation and Insulin Resistance
by Chunyan Zhang, Jieun Song, Wang Zhang, Rui Huang, Yi-Jia Li, Zhifang Zhang, Hong Xin, Qianqian Zhao, Wenzhao Li, Saul J. Priceman, Jiehui Deng, Yong Liu, David Ann, Victoria Seewaldt and Hua Yu
Cells 2025, 14(15), 1194; https://doi.org/10.3390/cells14151194 - 2 Aug 2025
Viewed by 302
Abstract
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to [...] Read more.
Adipose tissue inflammation contributes to obesity-induced insulin resistance. However, increasing evidence shows that high BMI (obesity) is not an accurate predictor of poor metabolic health in individuals. The molecular mechanisms regulating the metabolically activated M1 macrophage phenotype in the adipose tissues leading to insulin resistance remain largely unknown. Although the Janus Kinase (Jak)/signal transducer and activator of transcription 3 (Stat3) signaling in myeloid cells are known to promote the M2 phenotype in tumors, we demonstrate here that the Jak2/Stat3 pathway amplifies M1-mediated adipose tissue inflammation and insulin resistance under metabolic challenges. Ablating Jak2 in the myeloid compartment reduces insulin resistance in obese mice, which is associated with a decrease in infiltration of adipose tissue macrophages (ATMs). We show that the adoptive transfer of Jak2-deficient myeloid cells improves insulin sensitivity in obese mice. Furthermore, the protection of obese mice with myeloid-specific Stat3 deficiency against insulin resistance is also associated with reduced tissue infiltration by macrophages. Jak2/Stat3 in the macrophage is required for the production of pro-inflammatory cytokines that promote M1 macrophage polarization in the adipose tissues of obese mice. Moreover, free fatty acids (FFAs) activate Stat3 in macrophages, leading to the induction of M1 cytokines. Silencing the myeloid cell Stat3 with an in vivo siRNA targeted delivery approach reduces metabolically activated pro-inflammatory ATMs, thereby alleviating obesity-induced insulin resistance. These results demonstrate Jak2/Stat3 in myeloid cells is required for obesity-induced insulin resistance and inflammation. Moreover, targeting Stat3 in myeloid cells may be a novel approach to ameliorate obesity-induced insulin resistance. Full article
Show Figures

Figure 1

13 pages, 2812 KiB  
Article
Fungal Laccases with High and Medium Redox Potential: Is the T1 Center Potential a Key Characteristic of Catalytic Efficiency in Heterogeneous and Homogeneous Reactions?
by Olga Morozova, Maria Khlupova, Irina Vasil’eva, Alexander Yaropolov and Tatyana Fedorova
Int. J. Mol. Sci. 2025, 26(15), 7488; https://doi.org/10.3390/ijms26157488 - 2 Aug 2025
Viewed by 217
Abstract
Catalytic and bioelectrocatalytic properties of four white rot fungal laccases (Trametes hirsuta, ThL; Coriolopsis caperata, CcL; Steccherinum murashkinskyi, SmL; and Antrodiella faginea, AfL) from different orthologous groups were comparatively studied in homogeneous reactions of electron donor substrate oxidation [...] Read more.
Catalytic and bioelectrocatalytic properties of four white rot fungal laccases (Trametes hirsuta, ThL; Coriolopsis caperata, CcL; Steccherinum murashkinskyi, SmL; and Antrodiella faginea, AfL) from different orthologous groups were comparatively studied in homogeneous reactions of electron donor substrate oxidation and in a heterogeneous reaction of dioxygen electroreduction. The ThL and CcL laccases belong to high-redox-potential enzymes (E0T1 = 780 mV), while the AfL and SmL laccases are medium-redox-potential enzymes (E0T1 = 620 and 650 mV). We evaluated the efficiency of laccases in mediatorless bioelectrocatalytic dioxygen reduction by the steady-state potential (Ess), onset potential (Eonset), half-wave potential (E1/2), and the slope of the linear segment of the polarization curve. A good correlation was observed between the T1 center potential of the laccases and their electrocatalytic characteristics; however, no correlation with the homogeneous reactions of electron donor substrates’ oxidation was detected. The results obtained are discussed in the light of the known data on the three-dimensional structures of the laccases studied. Full article
(This article belongs to the Special Issue Advanced Research on Enzymes in Biocatalysis)
Show Figures

Graphical abstract

11 pages, 1695 KiB  
Article
A Pilot Study of the Effect of Locomotor and Mechanical Loads on Elite Rowers During Competition Days
by Ferenc Ihász, Johanna Takács, Zoltán Alföldi, Lili Kósa, Robert Podstawski, Antonio Ferraz, Bożena Hinca, István Barthalos and Zsolt Bálint Katona
Sports 2025, 13(8), 254; https://doi.org/10.3390/sports13080254 - 1 Aug 2025
Viewed by 151
Abstract
(1) Background: Fatigue impacts neuromuscular performance, especially in endurance sports like rowing. The aim is to explore how continuous workload affects explosiveness and fatigue progression. This study examines acute fatigue during repeated race events by assessing vertical jump height, force output, and subjective [...] Read more.
(1) Background: Fatigue impacts neuromuscular performance, especially in endurance sports like rowing. The aim is to explore how continuous workload affects explosiveness and fatigue progression. This study examines acute fatigue during repeated race events by assessing vertical jump height, force output, and subjective fatigue over three consecutive days at the 2024 Hungarian National Rowing Championships. (2) Methods: Nine rowers (five women, four men; mean age 20.17 ± 1.73 years) competed in multiple 2000 m races over three days. Lower limb explosiveness was measured via countermovement jump (CMJ) using a Kistler force plate, pre- and post-race. Heart rate data were recorded with Polar Team Pro®. Subjective fatigue was assessed using the ‘Daily Wellness Questionnaire’. (3) Results: We found a significant difference in the pattern of the medians of the force exerted by males during the jump between the results of the Thursday preliminaries (ThuQMe = 13.3) and the second final (ThuF2Me = −75.5). Women showed no notable changes. (4) Conclusion: Repeated high-intensity races induce neuromuscular fatigue in men, reflected in reduced explosiveness and increased subjective fatigue. Future research should incorporate biochemical markers to deepen the understanding of fatigue mechanisms. Full article
Show Figures

Figure 1

Back to TopTop