Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Plinian eruptions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 65888 KiB  
Article
Unveiling the Volcanic History of Ancient Pompeii (Italy): New Insights from the Late Pleistocene to Holocene (Pre-79 CE) Stratigraphy
by Domenico Sparice, Mauro Antonio Di Vito, Vincenzo Amato, Valeria Amoretti, Alessandro Russo, Pierfrancesco Talamo and Gabriel Zuchtriegel
Quaternary 2025, 8(1), 4; https://doi.org/10.3390/quat8010004 - 21 Jan 2025
Viewed by 3946
Abstract
Many volcanological and geoarchaeological studies in the ancient city of Pompeii (Italy) have been devoted to the 79 CE Plinian eruption of Vesuvius, which sealed the city under a thick pyroclastic sequence. Only fragmentary information exists regarding the stratigraphy of the volcanic sediments [...] Read more.
Many volcanological and geoarchaeological studies in the ancient city of Pompeii (Italy) have been devoted to the 79 CE Plinian eruption of Vesuvius, which sealed the city under a thick pyroclastic sequence. Only fragmentary information exists regarding the stratigraphy of the volcanic sediments sandwiched between the 79 CE street level and the volcanic rocks that form the geological framework of the hill on which Pompeii was built, which constitutes the “Pompeii bedrock”. The stratigraphic survey of twenty-one trenches throughout the city, coupled with a geochemical characterization, highlighted that the pre-79 CE stratigraphy includes at least eight late Pleistocene to Holocene tephra layers. Six eruptions were sourced from Somma–Vesuvius (Pomici di Base, Mercato, AP1 to AP4) and two originated from Campi Flegrei (Neapolitan Yellow Tuff and Soccavo 4). The Pompeii bedrock is the product of local vents, the last activity of which possibly shortly predates the 22 ka Pomici di Base eruption. From a geoarchaeological perspective, a relevant result is the absence of the 3.9 ka Avellino tephra in all trenches. This evidence, along with the reappraisal of the stratigraphy of the nearby archaeological site of S. Abbondio, suggests that the Avellino eruption possibly only marginally affected the Pompeii area during the Early Bronze Age. Full article
Show Figures

Figure 1

20 pages, 20958 KiB  
Article
Geology, Archaeology, and Historical Studies of the Late 16th Century Plinian Eruption of Raung Volcano: A Potential Case for Disaster Geotourism in Ijen UNESCO Global Geopark, East Java, Indonesia
by Firman Sauqi Nur Sabila, Mirzam Abdurrachman, Asep Saepuloh, Idham Andri Kurniawan, Abdillah Baraas, Dwi Fitri Yudiantoro and Hery Kusdaryanto
Geosciences 2024, 14(11), 284; https://doi.org/10.3390/geosciences14110284 - 24 Oct 2024
Viewed by 2699
Abstract
The enigmatic major eruption in the late 16th century, believed to have originated from Raung, the most active stratovolcano in the Ijen UNESCO Global Geopark in East Java, Indonesia, has ignited significant debate among researchers and historians due to its profound impact on [...] Read more.
The enigmatic major eruption in the late 16th century, believed to have originated from Raung, the most active stratovolcano in the Ijen UNESCO Global Geopark in East Java, Indonesia, has ignited significant debate among researchers and historians due to its profound impact on the region. This research aims to substantiate Raung as the likely source of the major eruption by integrating geological, archaeological, and historical data. This study synthesizes current findings and explores ongoing debates surrounding historical volcanic activities. Eruption parameters suggest that the late 16th century eruption exhibited a Plinian type, characterized by an explosive eruption column reaching the stratosphere, widespread pumiceous tephra fallout, and pyroclastic density current (PDC). Stratigraphic succession reveals that the eruption occurred in five phases, with deposits from 10 eruptive units. These deposits are mainly concentrated on the northwestern flank of Raung. Archaeological findings, historical records, and local legends converge to pinpoint the occurrence of this catastrophic event in the late 16th century. These diverse sources estimate that the eruption resulted in approximately 10,000 casualties, marking it as one of the most significant volcanic disasters in the past 500 years. The implications of this eruption extend beyond historical documentation, providing a critical case study for advancing disaster mitigation strategies through geotourism in the geopark area. Moreover, the eruption record outcrops identified in this study can be proposed as potential new geosites within the Ijen UNESCO Global Geopark, enhancing its educational and touristic value. We propose the Jebung Kidul, Alas Sumur, and Batu Sappar sites as potential disaster-based geosites, considering that these sites record the eruption process and preserve archaeological structures. This addition would not only commemorate the historical event but also promote awareness and preparedness for future volcanic activities in the region. Full article
Show Figures

Figure 1

6 pages, 228 KiB  
Proceeding Paper
Can Magmatic Volcanoes Produce Black Carbon Aerosol at Powerful Explosive Eruptions?
by Sergey Beresnev, Maria Vasileva and Elvira Ganieva
Environ. Sci. Proc. 2023, 27(1), 17; https://doi.org/10.3390/ecas2023-15921 - 8 Nov 2023
Viewed by 1003
Abstract
Volcanoes are not traditionally considered to be significant sources of black carbon particles for the stratosphere. The main reason for this well-established view is the absence of appreciable traces of black carbon in volcanic emissions. Recently, a new hypothesis of the formation and [...] Read more.
Volcanoes are not traditionally considered to be significant sources of black carbon particles for the stratosphere. The main reason for this well-established view is the absence of appreciable traces of black carbon in volcanic emissions. Recently, a new hypothesis of the formation and injection of nanodisperse carbon into the stratosphere during explosive volcanic eruptions due to the transformation of carbon-containing volcanic gases into black carbon particles was proposed. Critical analysis of this hypothesis and new observational data have shown that it does not contradict the existing ideas about the principal possibility of the process but can and should be substantially supplemented and corrected. The data on the detection of carbon particles in the stratosphere and in volcanic ash confirm the possibility of the formation of the predicted particles and their identity with particles formed by known technological processes and found after powerful volcanic eruptions in Kamchatka (Russia). The main limiting factors determining both the possibility and the lower boundary of the conditions for the formation of particles of different types of black carbon have been identified: temperature and concentration of carbon-bearing gases in the volcanic column. For Plinian-type eruptions, these parameters appear to be insufficient for the formation of black carbon particles in appreciable amounts and their accumulation in the stratosphere, which contradicts the previously mentioned hypothesis. Virtually, all of the black carbon produced must remain in volcanic ash and volcanic sediments. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Atmospheric Sciences)
30 pages, 24245 KiB  
Article
Dynamics of Two Caldera-Forming Eruptions (Banda Besar and Naira) in the Marine Conservation Zone of Banda, Maluku, Indonesia
by Indranova Suhendro, Bachtiar W. Mutaqin, Dyan Primana Sobaruddin, Lestari Agustiningtyas, Hanik Humaida, Muh Aris Marfai and Danang Sri Hadmoko
Geosciences 2022, 12(11), 428; https://doi.org/10.3390/geosciences12110428 - 21 Nov 2022
Cited by 1 | Viewed by 4238
Abstract
This is the first study discussing the dynamics of two caldera-forming eruptions in the Banda volcanic complex (BVC) in the marine conservation zone of Banda, Maluku, Indonesia. The first and second caldera episodes are, hereafter, termed as Banda Besar and Naira, respectively. The [...] Read more.
This is the first study discussing the dynamics of two caldera-forming eruptions in the Banda volcanic complex (BVC) in the marine conservation zone of Banda, Maluku, Indonesia. The first and second caldera episodes are, hereafter, termed as Banda Besar and Naira, respectively. The formation of Banda Besar caldera (ca. 8 × 7 km) ejected homogeneous rhyolitic magmas (bulk-rock, 73.1–73.8 wt.% SiO2) in the following three stages: (1) sub-Plinian (BB-5a), (2) intra-sub-Plinian flow (BB-5b), and (3) caldera collapse (BB-5c and BB-5d). The BB-5a stage produced a reversely graded white pumice fall layer with moderate lithics (2–11%), which originated from a sub-Plinian eruption with an estimated plume height of 22–23 km. Subsequently, intensive erosion of wall rock (13–25%) causes conduit enlargement, leading to the partial collapse of the eruption columns, forming intra-sub-Plinian flow deposits (BB-5b). It is likely that conduit size surpassed the minimum threshold value for a buoyant plume during the final phase of the second stage, causing the complete formation of a pumice-rich pyroclastic density current (PDC) during the early-third stage (BB-5c). Finally, the evacuation of voluminous magma from the reservoir yields the first caldera collapse during the late-third stage, producing a lithic-dominated PDC with minor pumices (BB-5d). The formation of the Naira caldera (ca. 3 × 3 km) ejected homogeneous dacitic magmas (bulk-rock, 66.2–67.2 wt.% SiO2) in the following three stages: (1) early sub-Plinian (N-2a and 2b), (2) late sub-Plinian (N-2c, 2d, 2e), and (3) caldera collapse (N-2f). This research distinguishes the sub-Plinian into two stages on the basis of different vent locations (assumed from the isopach map). In particular, this research suggests that the early sub-Plinian stage (N-2a and 2b) erupted from the northern vent, producing 14 and 8 km eruption plume heights, respectively. Additionally, the late sub-Plinian stage (N-2c, 2d, 2e) was generated from a newly-formed conduit located in the relatively southern position, producing 12–17, 9, and 6 km eruption plume heights, respectively. Conduit enlargement is expected to occur during at both sub-Plinian stages, as lithic portions are considerably high (10–72%) and ultimately generate PDCs during the third stage (caldera collapse; N-2f). Because most of the erupted materials (for both caldera-forming eruptions) are emplaced in the ocean, estimating the erupted volume becomes difficult. However, with the assumption that the caldera dimension represents the erupted volume of magma (Vmagma), and that the total erupted volume (Vtotal) is a summation of Vmagma and the now-vanished pre-caldera island (Vvanished, represented by average lithic fractions), the first and second caldera might produce (at least) 35.2 and 2.4 km3 of erupted materials, scaling them as VEI (volcano explosivity index) 6 and 5, respectively. That VEI is more than enough to initiate a secondary hazard in the form of tsunamis triggered by volcanic activities. Full article
(This article belongs to the Special Issue Present and Past Submarine Volcanic Activity II)
Show Figures

Figure 1

17 pages, 3760 KiB  
Article
Geochemical and Sr-Isotopic Study of Clinopyroxenes from Somma-Vesuvius Lavas: Inferences for Magmatic Processes and Eruptive Behavior
by Valeria Di Renzo, Carlo Pelullo, Ilenia Arienzo, Lucia Civetta, Paola Petrosino and Massimo D’Antonio
Minerals 2022, 12(9), 1114; https://doi.org/10.3390/min12091114 - 31 Aug 2022
Cited by 4 | Viewed by 2971
Abstract
Somma-Vesuvius is one of the most dangerous active Italian volcanoes, due to the explosive character of its activity and because it is surrounded by an intensely urbanized area. For mitigating the volcanic risks, it is important to define how the Somma-Vesuvius magmatic system [...] Read more.
Somma-Vesuvius is one of the most dangerous active Italian volcanoes, due to the explosive character of its activity and because it is surrounded by an intensely urbanized area. For mitigating the volcanic risks, it is important to define how the Somma-Vesuvius magmatic system worked during the past activity and what processes took place. A continuous coring borehole drilled at Camaldoli della Torre, along the southern slopes of Somma-Vesuvius, allowed reconstructing its volcanic and magmatic history in a previous study. In this work, the wide range of chemical (Mg# = 92–69) and isotopic (87Sr/86Sr = 0.70781–0.70681) compositions, collected on single clinopyroxene crystals separated from selected lava flow units of the Camaldoli della Torre sequence, have been integrated with the already available bulk geochemical and Sr-isotopic data. The detected chemical and isotopic signatures and their variation through time allow us to better constrain the behavior of the volcano magmatic feeding system, highlighting that mixing and/or assimilation processes occurred before a significant change in the eruptive dynamics at Somma-Vesuvius during a period of polycyclic caldera formation, starting with the Pomici di Base Plinian eruption (ca. 22 ka). Full article
Show Figures

Figure 1

27 pages, 9096 KiB  
Article
Particle Sedimentation in Numerical Modelling: A Case Study from the Puyehue-Cordón Caulle 2011 Eruption with the PLUME-MoM/HYSPLIT Models
by Alessandro Tadini, Mathieu Gouhier, Franck Donnadieu, Mattia de’ Michieli Vitturi and Federica Pardini
Atmosphere 2022, 13(5), 784; https://doi.org/10.3390/atmos13050784 - 12 May 2022
Cited by 5 | Viewed by 3242
Abstract
Numerical modelling of tephra fallout is a fast-developing research area in volcanology. Several models are currently available both to forecast the dispersion of volcanic particles in the atmosphere and to calculate the particles deposited at different locations on the ground. Data from these [...] Read more.
Numerical modelling of tephra fallout is a fast-developing research area in volcanology. Several models are currently available both to forecast the dispersion of volcanic particles in the atmosphere and to calculate the particles deposited at different locations on the ground. Data from these simulations can then be used both to manage volcanic crises (e.g., protect air traffic) or perform long-term hazard assessment studies (e.g., through hazard maps). Given the importance of these tasks, it is important that each model is thoroughly tested in order to assess advantages and limitations, and to provide useful information for quantifying the model uncertainty. In this study we tested the coupled PLUME-MoM/HYSPLIT models by applying them to the Puyehue–Cordon Caulle 2011 sub-Plinian eruption. More specifically, we tested new features recently introduced in these well-established models (ash aggregation, external water addition, and settling velocity models), we implemented a new inversion procedure, and we performed a parametric analysis. Our main results reaffirm the pivotal role played by mass eruption rate on the final deposit and show that some choices for the input parameters of the model can lead to the large overestimation in total deposited mass (which can be reduced with our inversion procedure). The parametric analysis suggests a most likely value of the mass eruption rate in the range 2.0–6.3 × 106 kg/s. More studies with a similar approach would be advisable in order to provide final users with useful indications about the parameters that should be carefully evaluated before being used as input for this kind of model. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

23 pages, 10409 KiB  
Article
Construction and Destruction of Bontău Composite Volcano in the Extensional Setting of Zărand Basin during Miocene (Apuseni Mts., Romania)
by Ioan Seghedi, Viorel M. Mirea and Gabriel C. Ștefan
Minerals 2022, 12(2), 243; https://doi.org/10.3390/min12020243 - 14 Feb 2022
Cited by 1 | Viewed by 2559
Abstract
The Eastern part of the Miocene Zărand extensional basin witnessed the generation and evolution of the largest composite volcano in Apuseni Mts., named recently Bontău. The volcano is filling the basin at the junction between the South and North Apuseni Mountains. The Bontău [...] Read more.
The Eastern part of the Miocene Zărand extensional basin witnessed the generation and evolution of the largest composite volcano in Apuseni Mts., named recently Bontău. The volcano is filling the basin at the junction between the South and North Apuseni Mountains. The Bontău Volcano is known to be active roughly between ~14–10. In spite of heavily forested and poorly exposed volcanic deposits, it was possible to identify its complex evolution. The volcano suggests an original oval-shaped edifice base currently showing a north-oriented horseshoe-shaped debris avalanche eroded crater. The early effusive volcanic activity was contemporaneous with the emplacement of individual and/or clustered volcanic lava Domes. Late-stage summit dome generation was followed by several volcanic collapses all around the volcanic edifice producing large volcanic debris avalanche deposits (DADs), accompanied by numerous debris flows all around the volcano periphery. Thick pumice pyroclastic flow deposits found below DADs at the periphery may suggest that the slope failures were proceeded by a Plinian eruption. The debris avalanche crater is the last event in the volcano evolution exposing several intrusive andesitic-dioritic bodies and associated hydrothermal and mineralization processes, most probably including the former central vent area of the volcano. The volcano proximal effusive and explosive deposits display a change in the composition of the erupting magma (increased SiO2 from 53.4% to 60.6%) that resulted in an increase of viscosity and the construction of the summit lava domes. Such domes are however only found as various size blocks in DADs. The volcanism connects with the two steps of geotectonic evolution of the Zărand Basin: The initial construction period during regional extension started ~16 Ma up to 12.3–12.1 when the Bontău volcano and surrounding domes were generated. The second period, younger than 12 Ma, corresponds to NW-SE compressional tectonics developed only in the Bontău volcano with summit dome generation and, finally, assists volcano destruction and DADs generation. Newly performed geochemical and Sr and Nd isotopic data studies attest to a calc-alkaline character and suggest an evolution via assimilation-fractional crystallization processes of a dominant MORB-like mantle source magma. Also, they confirm the amphibole (±pyroxene) andesites to be the most evolved lithology. The stepwise changes in fracture propagation in the Zărand extensional setting along with a change to more hydrated and fractionated magma favored in ~4 Myrs of the evolution of the Bontău volcano lead to multiple pulses of the longest-lived magma chamber in the whole Miocene volcanism of the Apuseni Mts. Full article
Show Figures

Figure 1

20 pages, 4845 KiB  
Article
Chemical Signals in Tree Rings from Northern Patagonia as Indicators of Calbuco Volcano Eruptions since the 16th Century
by Lizette J. Bertin, Duncan A. Christie, Paul R. Sheppard, Ariel A. Muñoz, Antonio Lara and Claudio Alvarez
Forests 2021, 12(10), 1305; https://doi.org/10.3390/f12101305 - 25 Sep 2021
Cited by 8 | Viewed by 7082
Abstract
The Calbuco volcano ranks third in the specific risk classification of volcanoes in Chile and has a detailed eruption record since 1853. During 2015, Calbuco had a sub-Plinian eruption with negative impacts in Chile and Argentina, highlighting the need to determine the long-term [...] Read more.
The Calbuco volcano ranks third in the specific risk classification of volcanoes in Chile and has a detailed eruption record since 1853. During 2015, Calbuco had a sub-Plinian eruption with negative impacts in Chile and Argentina, highlighting the need to determine the long-term history of its activity at a high-resolution time scale to obtain a better understanding of its eruptive frequency. We developed a continuous eruptive record of Calbuco for the 1514–2016 period by dendrochemical analysis of Fitzroya cupressoides tree rings at a biennium resolution using inductively coupled plasma–mass spectrometry. After comparing the chemical record of 20 elements contained in tree rings with historical eruptions, one group exhibited positive anomalies during (Pb/Sn) and immediately after (Mo/P/Zn/Cu) eruptions, with a Volcanic Explosivity Index (VEI) ≥ 3, and so were classified as chemical tracers of past eruptions (TPE). The tree-ring width chronology also exhibited significant decreases in tree growth associated with eruptions of VEI ≥ 3. According to these records, we identified 11 new eruptive events of Calbuco, extending its eruptive chronology back to the 16th century and determining a mean eruptive frequency of ~23 years. Our results show the potential to use dendrochemical analysis to infer past volcanic eruptions in Northern Patagonia. This information provides a long-term perspective for assessing eruptive history in Northern Patagonia, with implications for territorial planning. Full article
Show Figures

Figure 1

14 pages, 5327 KiB  
Article
Capillary Barriers during Rainfall Events in Pyroclastic Deposits of the Vesuvian Area
by Ciro Sepe, Domenico Calcaterra, Manuela Cecconi, Diego Di Martire, Lucia Pappalardo, Riccardo Scarfone, Enza Vitale and Giacomo Russo
Geosciences 2021, 11(7), 274; https://doi.org/10.3390/geosciences11070274 - 29 Jun 2021
Cited by 4 | Viewed by 2542
Abstract
In the present paper, the capillary barrier formation at the interface between soil layers, which is characterized by textural discontinuities, has been analyzed. This mechanism has been investigated by means of a finite element model of a two-layer soil stratification. The two considered [...] Read more.
In the present paper, the capillary barrier formation at the interface between soil layers, which is characterized by textural discontinuities, has been analyzed. This mechanism has been investigated by means of a finite element model of a two-layer soil stratification. The two considered formations, belonging to the pyroclastic succession of the “Pomici di Base” Plinian eruption (22 ka, Santacroce et al., 2008) of the Somma–Vesuvius volcano, are affected by shallow instability phenomena likely caused by progressive saturation during the rainfall events. This mechanism could be compatible with the formation of capillary barriers at the interface between layers of different grain size distributions during infiltration. One-dimensional infiltration into the stratified soil was parametrically simulated considering rainfall events of increasing intensity and duration. The variations in the suction and degree of saturation over time allowed for the evaluation of stability variations in the layers, which were assumed as part of stratified unsaturated infinite slopes. Full article
(This article belongs to the Special Issue Natural and Artificial Unsaturated Soil Slopes)
Show Figures

Figure 1

28 pages, 12198 KiB  
Article
The Use of a Numerical Weather Prediction Model to Simulate Near-Field Volcanic Plumes
by Ralph R. Burton, Mark J. Woodhouse, Alan M. Gadian and Stephen D. Mobbs
Atmosphere 2020, 11(6), 594; https://doi.org/10.3390/atmos11060594 - 4 Jun 2020
Cited by 7 | Viewed by 3844
Abstract
In this paper, a state-of the art numerical weather prediction (NWP) model is used to simulate the near-field plume of a Plinian-type volcanic eruption. The NWP model is run at very high resolution (of the order of 100 m) and includes a representation [...] Read more.
In this paper, a state-of the art numerical weather prediction (NWP) model is used to simulate the near-field plume of a Plinian-type volcanic eruption. The NWP model is run at very high resolution (of the order of 100 m) and includes a representation of physical processes, including turbulence and buoyancy, that are essential components of eruption column dynamics. Results are shown that illustrate buoyant gas plume dynamics in an atmosphere at rest and in an atmosphere with background wind, and we show that these results agree well with those from theoretical models in the quiescent atmosphere. For wind-blown plumes, we show that features observed in experimental and natural settings are reproduced in our model. However, when comparing with predictions from an integral model using existing entrainment closures there are marked differences. We speculate that these are signatures of a difference in turbulent mixing for uniform and shear flow profiles in a stratified atmosphere. A more complex implementation is given to show that the model may also be used to examine the dispersion of heavy volcanic gases such as sulphur dioxide. Starting from the standard version of the weather research and forecasting (WRF) model, we show that minimal modifications are needed in order to model volcanic plumes. This suggests that the modified NWP model can be used in the forecasting of plume evolution during future volcanic events, in addition to providing a virtual laboratory for the testing of hypotheses regarding plume behaviour. Full article
(This article belongs to the Special Issue Forecasting the Transport of Volcanic Ash in the Atmosphere)
Show Figures

Figure 1

19 pages, 8469 KiB  
Article
Slope Stability in a Multi-Hazard Eruption Scenario (Santorini, Greece)
by Giovanni Forte, Melania De Falco, Nicoletta Santangelo and Antonio Santo
Geosciences 2019, 9(10), 412; https://doi.org/10.3390/geosciences9100412 - 24 Sep 2019
Cited by 9 | Viewed by 6368
Abstract
Under the European FP7 SNOWBALL project (2014–2017), the island of Santorini was used as a case study to validate a procedure to assess the possible multiple cascading effects caused by volcanic eruptions. From January 2011 to April 2012, the area was affected by [...] Read more.
Under the European FP7 SNOWBALL project (2014–2017), the island of Santorini was used as a case study to validate a procedure to assess the possible multiple cascading effects caused by volcanic eruptions. From January 2011 to April 2012, the area was affected by low to moderate (Mw <3.2) seismic shaking, which caused concern regarding a possible volcanic eruption that ultimately failed to materialize. Assuming the worst-case scenario of a sub-Plinian eruption, this study provides insights into the approach adopted by the SNOWBALL project to identify the most critical areas (hot spots) for slope stability. Geological field surveys, thematic maps, and geomorphological data on aerial photos and landform interpretation were adopted to assess the static susceptibility. The eruption scenario is related to two different phenomena: a pre-eruption earthquake (Mw 5.2) and the subsequent ash fallout deposition following the prevailing winds. Landslide susceptibility in seismic conditions was assessed through the HAZUS approach and the estimate of Newmark displacements (u), while the critical areas for ash fallout mobilization were assessed adopting empirical relationships. The findings are summarized in a scenario map reporting the most critical areas and the infrastructures most vulnerable to such phenomena. Full article
Show Figures

Graphical abstract

20 pages, 15094 KiB  
Article
Chronology of the 2014–2016 Eruptive Phase of Volcán de Colima and Volume Estimation of Associated Lava Flows and Pyroclastic Flows Based on Optical Multi-Sensors
by Norma Dávila, Lucia Capra, Dolors Ferrés, Juan Carlos Gavilanes-Ruiz and Pablo Flores
Remote Sens. 2019, 11(10), 1167; https://doi.org/10.3390/rs11101167 - 16 May 2019
Cited by 10 | Viewed by 4799
Abstract
The eruption at Volcán de Colima (México) on 10–11 July 2015 represents the most violent eruption that has occurred at this volcano since the 1913 Plinian eruption. The extraordinary runout of the associated pyroclastic flows was never observed during the past dome collapse [...] Read more.
The eruption at Volcán de Colima (México) on 10–11 July 2015 represents the most violent eruption that has occurred at this volcano since the 1913 Plinian eruption. The extraordinary runout of the associated pyroclastic flows was never observed during the past dome collapse events in 1991 or 2004–2005. Based on Satellite Pour l’Observation de la Terre (SPOT) and Earth Observing-1 (EO-1) ALI (Advanced Land Imager), the chronology of the different eruptive phases from September 2014 to September 2016 is reconstructed here. A digital image segmentation procedure allowed for the mapping of the trajectory of the lava flows emplaced on the main cone as well as the pyroclastic flow deposits that inundated the Montegrande ravine on the southern flank of the volcano. Digital surface models (DSMs) obtained from SPOT/6 dual-stereoscopic and tri-stereopair images were used to estimate the volumes of some lava flows and the main pyroclastic flow deposits. We estimated that the total volume of the magma that erupted during the 2014–2016 event was approximately 40 × 107 m3, which is one order of magnitude lower than that of the 1913 Plinian eruption. These data are fundamental for improving hazard assessment because the July 2015 eruption represents a unique scenario that has never before been observed at Volcán de Colima. Volume estimation provides complementary data to better understand eruptive processes, and detailed maps of the distributions of lava flows and pyroclastic flows represent fundamental tools for calibrating numerical modeling for hazard assessment. The stereo capabilities of the SPOT6/7 satellites for the detection of topographic changes and the and the availability of EO-1 ALI imagery are useful tools for reconstructing multitemporal eruptive events, even in areas that are not accessible due to ongoing eruptive activity. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

Back to TopTop