Particle Sedimentation in Numerical Modelling: A Case Study from the Puyehue-Cordón Caulle 2011 Eruption with the PLUME-MoM/HYSPLIT Models
Abstract
:1. Introduction
2. Background
2.1. The 2011 Puyehue-Cordón Caulle Eruption
2.2. The PLUME-MoM/HYSPLIT Model
- The simulation of particle aggregation according either to the wet aggregation model proposed by Ref. [9] or to a constant “dry” aggregation kernel (see Appendix A for details);
- The possibility to add external water at the vent or incorporated through ingestion of moist atmospheric air, and the phase transition of water (vapor, liquid, or ice) according with the pressure-temperature conditions. By adding external water, magma-water mixing takes place at the vent, thermal equilibrium is reached, and PLUME-MoM updates magma temperature and water phases partitions before their interaction with the atmosphere;
- The possibility to simulate the spreading of the umbrella cloud intruding from the volcanic column into the atmosphere, with a transient shallow water system of equations which models the umbrella cloud as an intrusive gravity current affected by the wind;
- The possibility to model particle settling velocity with three different schemes, i.e., those of Ganser [61], Textor [62], and Pfeiffer [63] (see Appendix B for details);
- The possibility to model the presence of additional volcanic gases such as CO2 and SO2 (transported as passive components).
3. Methods
3.1. Comparison Parameters
3.2. Inversion Procedure
3.3. Parametric Analysis
4. Results
4.1. Effect of Initial Water and Dry/Wet Aggregation
- no aggregation (“NA”);
- no aggregation but with the addition of 10 wt% (weight %) of external water (“NAEW”);
- with the dry aggregation model with a constant aggregation kernel β = 10−15 m3/s (“AD”). This value is consistent with that used in Ref. [33];
- the aggregation model of Ref. [9], considering the addition of 10 wt% of external water (“AW”).
4.2. Effect of Different Settling Velocity Models
4.3. Inversion from Field Data
4.4. Parametric Analysis
5. Discussion
5.1. Effect of Initial Water, Dry/Wet Aggregation, and Different Settling Models
5.2. Inversion
5.3. Parametric Analysis
- Ganser is recommended as the best choice for modelling settling velocity, as the variation of the T2 function is lower compared to Textor and Pfeiffer (Figure 7a). A possible explanation for the best results obtained using the Ganser model is related to the amount of particles with regular and rounded shapes which, as shown by Ref. [56], make up 72 to 93 wt% of the particles within the deposit of Unit I (see Section 2.1). This type of particle has been shown by Ref. [36] as being well described by the sphericity (i.e., the shape factor ψ, see Appendix B). In turn, this parameter is considered to be well suited for the accuracy of the Ganser equation (see [73]);
- the NCEP/NCAR meteorological dataset is less accurate in reproducing the plume height and final deposit as compared to the other datasets, which instead produce a more or less equal variability (Figure 7b), and a high degree of uncertainty should be therefore considered if it is employed. A possible explanation for the lower accuracy of the NCEP/NCAR dataset is linked to the lower number of vertical pressure levels and by its low spatial (and temporal) resolution (see Table 1). Such low-quality features, as compared to the other datasets, do not allow for an optimal representation of small-scale atmospheric variability and therefore for good tephra dispersal representation.
6. Conclusions
- The amount of external water added (10 wt%) does not significantly influence the final deposited mass, while the effect of considering both a wet/dry aggregation model is considerable. For the three settling velocity models tested, the Ganser model [61] produces slightly better results when compared to field data. For all of these latter simulations (performed using eruptive source parameters from the literature), however, the amount of deposited mass by the model in the first 120 km from the vent is more than 3 times higher than the deposited mass;
- Our inversion procedure (minimization through sets of 250 simulations of a function that consider, at the same time, the differences between observed/modelled values of plume height and deposited mass) reduced the overestimation of the model with respect of the deposited mass, which remains, however, two times higher than the deposited mass resulting from observations. While surely an improvement, more studies are necessary to explain such a discrepancy. For the current usage of this model, such an uncertainty should be considered for applied studies (i.e., hazard maps production);
- The parametric analysis (performed with additional 900 simulations with the same minimization function) highlighted a primary control exerted by the mass eruption rate on the model outputs, while the other parameters influence the outputs to a lesser degree. The Ganser settling velocity model produced a lower variability in the minimization function, and is therefore more indicated as a default option. On the other hand, the meteorological dataset that produced the largest variability in the minimization function is the NCEP/NCAR Reanalysis (which therefore has a large impact in the final outputs of the model and is not suggested to be employed), while the others produced similar variability. The parameters that control diffusion in HYSPLIT have instead a limited influence on the final outputs, and default values can be utilized.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Description of Aggregation Models of PLUME-MoM-TSM
Appendix B. Settling Velocity Models
Appendix C. Modifications Introduced in HYSPLIT
Appendix D. Parameters That Control Diffusion in HYSPLIT
- Kmix0 sets the minimum mixing depth, which has been varied between 100 and 500 m discretely every 50 m;
- Kzmix determines if any additional processing is to be performed on the vertical mixing profile. We have considered either that (a) vertical diffusivity in planetary boundary layer varies with height or (b) one average layer of vertical diffusivity in planetary boundary layer;
- Kdef defines the way the horizontal turbulence is computed. Two approaches are used here, computing the horizontal mixing in proportion to the vertical mixing or from the deformation of the horizontal wind field;
- Kbls determines how the boundary layer stability is computed, either from atmospheric heat and momentum fluxes or from wind and temperature profiles;
References
- Bonadonna, C.; Costa, A. Modeling of tephra sedimentation from volcanic plumes. In Modeling Volcanic Processes: The Physics and Mathematics of Volcanism; Cambridge University Press: Cambridge, UK, 2013; pp. 173–202. [Google Scholar]
- Costa, A.; Suzuki, Y.J.; Cerminara, M.; Devenish, B.J.; Esposti Ongaro, T.; Herzog, M.; Van Eaton, A.R.; Denby, L.C.; Bursik, M.I.; de’ Michieli Vitturi, M. Results of the eruptive column model inter-comparison study. J. Volcanol. Geotherm. Res. 2016, 326, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Gouhier, M.; Eychenne, J.; Azzaoui, N.; Guillin, A.; Deslandes, M.; Poret, M.; Costa, A.; Husson, P. Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pardini, F.; Corradini, S.; Costa, A.; Esposti Ongaro, T.; Merucci, L.; Neri, A.; Stelitano, D. Ensemble-Based Data Assimilation of Volcanic Ash Clouds from Satellite Observations: Application to the 24 December 2018 Mt. Etna Explosive Eruption. Atmosphere 2020, 11, 359. [Google Scholar] [CrossRef] [Green Version]
- Poret, M.; Costa, A.; Folch, A.; Martí, A. Modelling tephra dispersal and ash aggregation: The 26th April 1979 eruption, La Soufrière St. Vincent. J. Volcanol. Geotherm. Res. 2017, 347, 207–220. [Google Scholar] [CrossRef]
- Scollo, S.; Folch, A.; Costa, A. A parametric and comparative study of different tephra fallout models. J. Volcanol. Geotherm. Res. 2008, 176, 199–211. [Google Scholar] [CrossRef]
- Del Bello, E.; Taddeucci, J.; de’ Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.; Ricci, T. Effect of particle volume fraction on the settling velocity of volcanic ash particles: Insights from joint experimental and numerical simulations. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Poulidis, A.P.; Biass, S.; Bagheri, G.; Takemi, T.; Iguchi, M. Atmospheric vertical velocity-a crucial component in understanding proximal deposition of volcanic ash. Earth Planet. Sci. Lett. 2021, 566, 116980. [Google Scholar] [CrossRef]
- Costa, A.; Folch, A.; Macedonio, G. A model for wet aggregation of ash particles in volcanic plumes and clouds: 1. Theoretical formulation. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- Bursik, M.I.; Yang, Q.; Bear-Crozier, A.; Pavolonis, M.; Tupper, A. The Development of Volcanic Ash Cloud Layers over Hours to Days Due to Atmospheric Turbulence Layering. Atmosphere 2021, 12, 285. [Google Scholar] [CrossRef]
- Rizza, U.; Donnadieu, F.; Magazu, S.; Passerini, G.; Castorina, G.; Semprebello, A.; Morichetti, M.; Virgili, S.; Mancinelli, E. Effects of Variable Eruption Source Parameters on Volcanic Plume Transport: Example of the 23 November 2013 Paroxysm of Etna. Remote Sens. 2021, 13, 4037. [Google Scholar] [CrossRef]
- Engwell, S.L.; Mastin, L.G.; Tupper, A.; Kibler, J.; Acethorp, P.; Lord, G.; Filgueira, R. Near-real-time volcanic cloud monitoring: Insights into global explosive volcanic eruptive activity through analysis of Volcanic Ash Advisories. Bull. Volcanol. 2021, 83, 1–17. [Google Scholar] [CrossRef]
- Gouhier, M.; Deslandes, M.; Guéhenneux, Y.; Hereil, P.; Cacault, P.; Josse, B. Operational Response to Volcanic Ash Risks Using HOTVOLC Satellite-Based System and MOCAGE-Accident Model at the Toulouse VAAC. Atmosphere 2020, 11, 864. [Google Scholar] [CrossRef]
- Witham, C.S.; Hort, M.; Thomson, D.; Leadbetter, S.; Devenish, B.J.; Webster, H.; Beckett, F.; Kristiansen, N. The current volcanic ash modelling setup at the London VAAC. In UK Meteorological Office Internal Report; Met Office: Devon, UK, 2012. [Google Scholar]
- Alpízar Segura, Y.; Fernández Arce, M.; Ramírez Umaña, C.; Arroyo Alpízar, D. Hazard Map of Rincón de la Vieja Volcano, Costa Rica: Qualitative Integration of Computer Simulations and Geological Data. Anu. Inst. Geocienc. 2019, 42, 474–488. [Google Scholar] [CrossRef]
- Barsotti, S.; Di Rienzo, D.I.; Thordarson, T.; Björnsson, B.B.; Karlsdóttir, S. Assessing impact to infrastructures due to tephra fallout from Öræfajökull volcano (Iceland) by using a scenario-based approach and a numerical model. Front. Earth Sci. 2018, 6, 196. [Google Scholar] [CrossRef]
- Biass, S.; Bonadonna, C. A fast GIS-based risk assessment for tephra fallout: The example of Cotopaxi volcano, Ecuador. Nat. Hazards 2013, 65, 477–495. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.; Dell’Erba, F.; Di Vito, M.A.; Isaia, R.; Macedonio, G.; Orsi, G.; Pfeiffer, T. Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull. Volcanol. 2009, 71, 259. [Google Scholar] [CrossRef]
- Vázquez, R.; Bonasia, R.; Folch, A.; Arce, J.L.; Macías, J.L. Tephra fallout hazard assessment at Tacaná volcano (Mexico). J. S. Am. Earth Sci. 2019, 91, 253–259. [Google Scholar] [CrossRef]
- Folch, A. A review of tephra transport and dispersal models: Evolution, current status, and future perspectives. J. Volcanol. Geotherm. Res. 2012, 235, 96–115. [Google Scholar] [CrossRef]
- WMO. Final Report, VAAC ‘Inputs and Outputs’ (Ins and Outs) Dispersion Modelling Workshop; WMO: Washington, DC, USA, 2013; p. 25. [Google Scholar]
- Mastin, L.G.; Van Eaton, A.R.; Schneider, D.; Denlinger, R.P. Ongoing Efforts to Make Ash-Cloud Model Forecasts More Accurate; NATO Science and Technology Organization: Brussels, Belgium, 2017. [Google Scholar]
- Witham, C.S.; Hort, M.C.; Potts, R.; Servranckx, R.; Husson, P.; Bonnardot, F. Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvötn eruption. Meteorol. Appl. J. Forecast. Pract. Appl. Train. Tech. Model. 2007, 14, 27–38. [Google Scholar] [CrossRef]
- Cao, Z.; Bursik, M.I.; Yang, Q.; Patra, A.K. Simulating the Transport and Dispersal of Volcanic Ash Clouds with Initial Conditions Created by a 3D Plume Model. Front. Earth Sci. 2021, 807. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Baker, W.E. Global numerical weather prediction at the National Meteorological Center. Bull. Am. Meteorol. Soc. 1990, 71, 1410–1428. [Google Scholar] [CrossRef]
- NOAA. Global Data Assimilation System (GDAS1) Archive Information. 2004. Available online: https://www.ready.noaa.gov/gdas1.php (accessed on 11 May 2018).
- Berrisford, P.; Dee, D.P.; Poli, P.; Brugge, R.; Fielding, M.; Fuentes, M.; Kållberg, P.W.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim Archive Version 2.0; ECMWF: Reading, UK, 2011. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.J.; Bonadonna, C.; Durant, A.J. A review of volcanic ash aggregation. Phys. Chem. Earth Parts A/B/C 2012, 45, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Egan, S.D.; Stuefer, M.; Webley, P.W.; Lopez, T.; Cahill, C.F.; Hirtl, M. Modeling volcanic ash aggregation processes and related impacts on the April–May 2010 eruptions of Eyjafjallajökull volcano with WRF-Chem. Nat. Hazards Earth Syst. Sci. 2020, 20, 2721–2737. [Google Scholar] [CrossRef]
- Beckett, F.; Rossi, E.; Devenish, B.J.; Witham, C.S.; Bonadonna, C. Modelling the size distribution of aggregated volcanic ash and implications for operational atmospheric dispersion modelling. Atmos. Chem. Phys. 2022, 22, 3409–3431. [Google Scholar] [CrossRef]
- De’ Michieli Vitturi, M.; Pardini, F. PLUME-MoM-TSM 1.0.0: A volcanic column and umbrella cloud spreading model. Geosci. Model Dev. 2021, 14, 1345–1377. [Google Scholar] [CrossRef]
- Folch, A.; Costa, A.; Macedonio, G. FPLUME-1.0: An integral volcanic plume model accounting for ash aggregation. Geosci. Model Dev. 2016, 9, 431–450. [Google Scholar] [CrossRef] [Green Version]
- Folch, A.; Mingari, L.; Gutierrez, N.; Hanzich, M.; Macedonio, G.; Costa, A. FALL3D-8.0: A computational model for atmospheric transport and deposition of particles, aerosols and radionuclides–Part 1: Model physics and numerics. Geosci. Model Dev. 2020, 13, 1431–1458. [Google Scholar] [CrossRef] [Green Version]
- Freret-Lorgeril, V.; Gilchrist, J.T.; Donnadieu, F.; Jellinek, A.M.; Delanoë, J.; Latchimy, T.; Vinson, J.P.; Caudoux, C.; Peyrin, F.; Hervier, C. Ash sedimentation by fingering and sediment thermals from wind-affected volcanic plumes. Earth Planet. Sci. Lett. 2020, 534, 116072. [Google Scholar] [CrossRef]
- Carazzo, G.; Jellinek, A.M. A new view of the dynamics, stability and longevity of volcanic clouds. Earth Planet. Sci. Lett. 2012, 325, 39–51. [Google Scholar] [CrossRef]
- Manzella, I.; Bonadonna, C.; Phillips, J.C.; Monnard, H. The role of gravitational instabilities in deposition of volcanic ash. Geology 2015, 43, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, J.T.; Jellinek, A.M. Sediment waves and the gravitational stability of volcanic jets. Bull. Volcanol. 2021, 83, 1–59. [Google Scholar] [CrossRef]
- Tadini, A.; Roche, O.; Samaniego, P.; Guillin, A.; Azzaoui, N.; Gouhier, M.; de’ Michieli Vitturi, M.; Pardini, F.; Eychenne, J.; Bernard, B. Quantifying the uncertainty of a coupled plume and tephra dispersal model: PLUME-MOM/HYSPLIT simulations applied to Andean volcanoes. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018390. [Google Scholar] [CrossRef]
- Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, validation, and confirmation of numerical models in the earth sciences. Science 1994, 263, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Prata, A.T.; Mingari, L.; Folch, A.; Macedonio, G.; Costa, A. FALL3D-8.0: A computational model for atmospheric transport and deposition of particles, aerosols and radionuclides–Part 2: Model validation. Geosci. Model Dev. 2021, 14, 409–436. [Google Scholar] [CrossRef]
- Schwaiger, H.F.; Denlinger, R.P.; Mastin, L.G. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Devenish, B.J.; Francis, P.; Johnson, B.; Sparks, R.S.J.; Thomson, D.J. Sensitivity analysis of a mathematical model of volcanic ash dispersion. J. Geophys. Res. Solid Earth 2012, 117, D00U21. [Google Scholar] [CrossRef]
- Beckett, F.M.; Witham, C.S.; Hort, M.C.; Stevenson, J.A.; Bonadonna, C.; Millington, S.C. The sensitivity of NAME forecasts of the transport of volcanic ash clouds to the physical characteristics assigned to the particles. In UK Met Office Forecasting Research Technical Report; Met Office: Devon, UK, 2014; Volume 592, pp. 1–39. [Google Scholar] [CrossRef] [Green Version]
- Mulena, G.C.; Allende, D.G.; Puliafito, S.E.; Lakkis, S.G.; Cremades, P.G.; Ulke, A.G. Examining the influence of meteorological simulations forced by different initial and boundary conditions in volcanic ash dispersion modelling. Atmos. Res. 2016, 176, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Scollo, S.; Tarantola, S.; Bonadonna, C.; Coltelli, M.; Saltelli, A. Sensitivity analysis and uncertainty estimation for tephra dispersal models. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Poulidis, A.P.; Iguchi, M. Model sensitivities in the case of high-resolution Eulerian simulations of local tephra transport and deposition. Atmos. Res. 2021, 247, 105136. [Google Scholar] [CrossRef]
- De’Michieli Vitturi, M.; Engwell, S.L.; Neri, A.; Barsotti, S. Uncertainty quantification and sensitivity analysis of volcanic columns models: Results from the integral model PLUME-MoM. J. Volcanol. Geotherm. Res. 2016, 326, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Constantinescu, R.; Hopulele-Gligor, A.; Connor, C.B.; Bonadonna, C.; Connor, L.J.; Lindsay, J.M.; Charbonnier, S.J.; Volentik, A.C.M. The radius of the umbrella cloud helps characterize large explosive volcanic eruptions. Commun. Earth Environ. 2021, 2, 1–8. [Google Scholar] [CrossRef]
- Tadini, A.; Azzaoui, N.; Roche, O.; Samaniego, P.; Bernard, B.; Bevilacqua, A.; Hidalgo, S.; Guillin, A.; Gouhier, M. Tephra fallout probabilistic hazard maps for Cotopaxi and Guagua Pichincha volcanoes (Ecuador) with uncertainty quantification. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022780. [Google Scholar] [CrossRef]
- Collini, E.; Osores, M.S.; Folch, A.; Viramonte, J.G.; Villarosa, G.; Salmuni, G. Volcanic ash forecast during the June 2011 Cordón Caulle eruption. Nat. Hazards 2013, 66, 389–412. [Google Scholar] [CrossRef]
- Bonadonna, C.; Cioni, R.; Pistolesi, M.; Elissondo, M.; Baumann, V. Sedimentation of long-lasting wind-affected volcanic plumes: The example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull. Volcanol. 2015, 77, 13. [Google Scholar] [CrossRef]
- Jay, J.; Costa, F.; Pritchard, M.; Lara, L.; Singer, B.; Herrin, J. Locating magma reservoirs using InSAR and petrology before and during the 2011–2012 Cordón Caulle silicic eruption. Earth Planet. Sci. Lett. 2014, 395, 254–266. [Google Scholar] [CrossRef]
- Tuffen, H.; James, M.R.; Castro, J.M.; Schipper, C.I. Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pistolesi, M.; Cioni, R.; Bonadonna, C.; Elissondo, M.; Baumann, V.; Bertagnini, A.; Chiari, L.; Gonzales, R.; Rosi, M.; Francalanci, L. Complex dynamics of small-moderate volcanic events: The example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull. Volcanol. 2015, 77, 3. [Google Scholar] [CrossRef]
- Bonadonna, C.; Pistolesi, M.; Cioni, R.; Degruyter, W.; Elissondo, M.; Baumann, V. Dynamics of wind-affected volcanic plumes: The example of the 2011 Cordón Caulle eruption, Chile. J. Geophys. Res. Solid Earth 2015, 120, 2242–2261. [Google Scholar] [CrossRef] [Green Version]
- Biondi, R.; Steiner, A.K.; Kirchengast, G.; Brenot, H.; Rieckh, T. Supporting the detection and monitoring of volcanic clouds: A promising new application of Global Navigation Satellite System radio occultation. Adv. Space Res. 2017, 60, 2707–2722. [Google Scholar] [CrossRef]
- Marti, A.; Folch, A.; Jorba, O.; Janjic, Z. Volcanic ash modeling with the online NMMB-MONARCH-ASH v1. 0 model: Model description, case simulation, and evaluation. Atmos. Chem. Phys. 2017, 17, 4005–4030. [Google Scholar] [CrossRef] [Green Version]
- De’Michieli Vitturi, M.; Neri, A.; Barsotti, S. PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments. Geosci. Model Dev. 2015, 8, 2447. [Google Scholar] [CrossRef] [Green Version]
- Ganser, G.H. A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol. 1993, 77, 143–152. [Google Scholar] [CrossRef]
- Textor, C.; Graf, H.F.; Herzog, M.; Oberhuber, J.M.; Rose, W.I.; Ernst, G.G.J. Volcanic particle aggregation in explosive eruption columns. Part I: Parameterization of the microphysics of hydrometeors and ash. J. Volcanol. Geotherm. Res. 2006, 150, 359–377. [Google Scholar] [CrossRef]
- Pfeiffer, T.; Costa, A.; Macedonio, G. A model for the numerical simulation of tephra fall deposits. J. Volcanol. Geotherm. Res. 2005, 140, 273–294. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Connor, L.J.; Connor, C.B. Inversion is the key to dispersion: Understanding eruption dynamics by inverting tephra fallout. In Statistics in Volcanology; Mader, H.M., Coles, S.G., Connor, C.B., Connor, L.J., Eds.; IAVCEI Special Publications; The Geological Society of London: London, UK, 2006; Volume 1, pp. 231–241. [Google Scholar]
- James, M.R.; Gilbert, J.S.; Lane, S.J. Experimental investigation of volcanic particle aggregation in the absence of a liquid phase. J. Geophys. Res. Solid Earth 2002, 107, ECV 4-1–ECV 4-13. [Google Scholar] [CrossRef] [Green Version]
- Bonasia, R.; Scaini, C.; Capra, L.; Nathenson, M.; Siebe, C.; Arana-Salinas, L.; Folch, A. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): Implications for civil aviation safety. Bull. Volcanol. 2014, 76, 1–16. [Google Scholar] [CrossRef]
- Folch, A.; Costa, A.; Macedonio, G. FALL3D: A computational model for transport and deposition of volcanic ash. Comput. Geosci. 2009, 35, 1334–1342. [Google Scholar] [CrossRef]
- Dalbey, K.R.; Eldred, M.; Geraci, G.; Jakeman, J.; Maupin, K.; Monschke, J.A.; Seidl, D.; Tran, A.; Menhorn, F.; Zeng, X. Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization Parameter Estimation Uncertainty Quantification and Sensitivity Analysis: Version 6.15 User’s Manual; Sandia National Laboratory (SNL-NM): Albuquerque, NM, USA, 2021. [Google Scholar]
- Iman, R.L.; Davenport, J.M.; Zeigler, D.K. Latin Hypercube Sampling (Program User’s Guide); Sandia National Laboratory: Albuquerque, NM, USA, 1980. [Google Scholar]
- Koyaguchi, T.; Woods, A.W. On the formation of eruption columns following explosive mixing of magma and surface-water. J. Geophys. Res. Solid Earth 1996, 101, 5561–5574. [Google Scholar] [CrossRef]
- Lemus, J.; Fries, A.; Jarvis, P.A.; Bonadonna, C.; Chopard, B.; Lätt, J. Modelling Settling-Driven Gravitational Instabilities at the Base of Volcanic Clouds Using the Lattice Boltzmann Method. Front. Earth Sci. 2021, 9. [Google Scholar] [CrossRef]
- Alfano, F.; Bonadonna, C.; Delmelle, P.; Costantini, L. Insights on tephra settling velocity from morphological observations. J. Volcanol. Geotherm. Res. 2011, 208, 86–98. [Google Scholar] [CrossRef]
- Wilson, L.; Huang, T.C. The influence of shape on the atmospheric settling velocity of volcanic ash particles. Earth Planet. Sci. Lett. 1979, 44, 311–324. [Google Scholar] [CrossRef]
- Beljaars, A.C.M.; Holtslag, A.A.M. Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteorol. Climatol. 1991, 30, 327–341. [Google Scholar] [CrossRef]
- Kantha, L.H.; Clayson, C.A. Small Scale Processes in Geophysical Fluid Flows; Academic Press: San Diego, CA, USA, 2000; Volume 67, p. 883. [Google Scholar]
Name | Type | Atmospheric Parameters | Pressure Levels | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|
ERA-Interim | Reanalysis | 10 | 37 | 1° (~100 km) | 6 h |
NCEP/NCAR | Reanalysis | 11 | 17 | 2.5° (~250 km) | 6 h |
GDAS | Forecast | 35 | 23 | 1° (~100 km) | 3 h |
ERA5 | Reanalysis | 10 | 37 | 0.28° (~31 km) | 1 h |
Parameter | Description | Used in PLUME-MOM (PM) or HYSPLIT (HY) | Unit | Continuous (C) or Discrete (D) | Type | Lower Value | Upper Value |
---|---|---|---|---|---|---|---|
MER | Mass eruption rate of particles transported in plume | PM | kg/s | C | - | 105.5 | 107 |
Water mass fraction | Water mass fraction of the magma | PM | wt% | C | - | 4 | 7 |
At-vent velocity | Initial exit velocity from the vent | PM | m/s | C | - | 135 | 275 |
Tmix0 | Initial temperature of the erupted mixture | PM | K | C | - | 1073 | 1273 |
ρ1 | Particle density assigned to Φ = −4 | PM | kg/m3 | C | - | 500 | 1000 |
ρ2 | Particle density assigned to Φ = 5 | PM | kg/m3 | C | - | 2500 | 2670 |
Cp | Particle heat capacity | PM | J/(kg × K) | C | - | 1100 | 1600 |
SF | Particle shape factor | PM/HY | - | C | - | 0.6 | 0.7 |
Settling velocity | Settling velocity model considered | PM/HY | m/s | D | Ganser | - | - |
Textor | |||||||
Pfeiffer | |||||||
Meteorological file | Meteorological dataset considered | PM/HY | - | D | GDAS | - | - |
NCEP/NCAR | |||||||
ERA-Interim | |||||||
ERA5 | |||||||
Kmix0 | Minimum mixing depth | HY | m | D | Every 100 m | 100 | 500 |
Kzmix | Vertical Mixing Profile | HY | - | D | Varies with height | - | - |
Single average value | |||||||
Kdef | Horizontal Turbulence | HY | - | D | Proportional to vertical turbulence | - | - |
From velocity deformation | |||||||
Kbls | Boundary Layer Stability | HY | - | D | Heat/momentum flux | - | - |
Wind/temperature profile | |||||||
Kblt | Vertical Turbulence | HY | - | D | Beljaars/Holstag | - | - |
Kantha/Clayson | |||||||
Velocity variance |
Simulation(s) Code | N° Simulations | Aggregation | External Water | Settling Velocity Model | Other Parameters |
---|---|---|---|---|---|
NA | 1 | No | No | Ganser | Table S1 |
NAEW | 1 | No | Yes | Ganser | Table S1 |
AD | 1 | Yes (dry) | No | Ganser | Table S1 |
AW | 1 | Yes (wet) | Yes | Ganser | Table S1 |
NAP | 1 | No | No | Pfeiffer | Table S1 |
NAT | 1 | No | No | Textor | Table S1 |
Inv-NA | 250 | No | No | All | Table 2 |
Inv-NAProx | 250 | No | No | All | Table 2 |
S-Dak | 900 | No | No | All | Table 2 |
Simulation Code | T2PH | T2ML | T2Total |
---|---|---|---|
NA | 41 | 520 | 561 |
Inv-NA (best) | 81 | 167 | 248 |
Inv-NAProx (best) | 46 | 122 | 168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadini, A.; Gouhier, M.; Donnadieu, F.; de’ Michieli Vitturi, M.; Pardini, F. Particle Sedimentation in Numerical Modelling: A Case Study from the Puyehue-Cordón Caulle 2011 Eruption with the PLUME-MoM/HYSPLIT Models. Atmosphere 2022, 13, 784. https://doi.org/10.3390/atmos13050784
Tadini A, Gouhier M, Donnadieu F, de’ Michieli Vitturi M, Pardini F. Particle Sedimentation in Numerical Modelling: A Case Study from the Puyehue-Cordón Caulle 2011 Eruption with the PLUME-MoM/HYSPLIT Models. Atmosphere. 2022; 13(5):784. https://doi.org/10.3390/atmos13050784
Chicago/Turabian StyleTadini, Alessandro, Mathieu Gouhier, Franck Donnadieu, Mattia de’ Michieli Vitturi, and Federica Pardini. 2022. "Particle Sedimentation in Numerical Modelling: A Case Study from the Puyehue-Cordón Caulle 2011 Eruption with the PLUME-MoM/HYSPLIT Models" Atmosphere 13, no. 5: 784. https://doi.org/10.3390/atmos13050784
APA StyleTadini, A., Gouhier, M., Donnadieu, F., de’ Michieli Vitturi, M., & Pardini, F. (2022). Particle Sedimentation in Numerical Modelling: A Case Study from the Puyehue-Cordón Caulle 2011 Eruption with the PLUME-MoM/HYSPLIT Models. Atmosphere, 13(5), 784. https://doi.org/10.3390/atmos13050784