Slope Stability in a Multi-Hazard Eruption Scenario (Santorini, Greece)
Abstract
:1. Introduction
2. Geological and Volcanological Background
3. Materials and Methods
3.1. Landslide Susceptibility Map (Static Scenario)
3.2. Seismic Slope Stability Map
3.3. Ash Fallout Mobilization
3.4. Data
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- van Westen, C.J.; Kappes, M.S.; Luna, B.Q.; Frigerio, S.; Glade, T.; Malet, J.P. Medium-Scale Multi-hazard Risk Assessment of Gravitational Processes. In Mountain Risks: From Prediction to Management and Governance. Advances in Natural and Technological Hazards Research; Van Asch, T., Corominas, J., Greiving, S., Malet, J.P., Sterlacchini, S., Eds.; Springer: Dordrecht, The Netherland, 2014; Volume 34. [Google Scholar]
- Marzocchi, W.; Mastellone, M.; Di Ruocco, A. Principles of Multi-Risk Assessment: Interactions amongst Natural and Man-Induced Risks; Project Report; European Commission: Brussels, Belgium, 2009; printed in Luxembourg and coordinated by Doppiavoce, Napoli (Italy). [Google Scholar]
- Zuccaro, G.; Leone, M. Volcanic Crisis Management and Mitigation Strategies: A Multi-Risk Framework Case Study. Earthzine. 2011. Available online: https://earthzine.org/2011/03/21/volcanic-crisis-management-and-mitigation-strategies-a-multi-risk-framework-case-study/ (accessed on 20 September 2019).
- Fan, X.; Scaringi, G.; Korup, O.; West, A.J.J.; van Westen, C.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E.; et al. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef]
- Gill, J.C.; Malamud, B.D. Reviewing and visualizing the interactions of natural hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.C.; Malamud, B.D. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies. Earth Syst. Dyn. 2016, 7, 659–679. [Google Scholar] [CrossRef] [Green Version]
- NIBS (National Institute of Building Science). Earthquake loss estimation methodology. In HAZUS Technical Manual; FEMA: Washington, DC, USA, 2004. [Google Scholar]
- Kappes, M.S.; Gruber, K.; Frigerio, S.; Bell, R.; Keiler, M.; Glade, T. The MultiRISK platform: The technical concept and application of a regional-scale multihazard exposure analysis tool. Geomorphology 2012, 151, 139–155. [Google Scholar] [CrossRef]
- Forzieri, G.; Feyen, L.; Russo, S.; Vousdoukas, M.; Alfieri, L.; Outten, S.; Migliavacca, M.; Bianchi, A.; Rojas, R.; Cid, A. Multi-hazard assessment in Europe under climate change. Clim. Chang. 2016, 137, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Junttila, K.; Zuccaro, G.; De Gregorio, D.; Leone, M.F. D7.2: Report on Simulation. The Results of the Crisis Simulations in Finland, Poland and Greece (Santorini Reference Test Case). Deliverable of SNOWBALL FP7 EU-Project ‘Lower the Impact of Aggravating Factors in Crisis Situations Thanks to Adaptive Foresight and Decision-Support Tools’. 2017. Available online: https://cordis.europa.eu/project/rcn/185475/reporting/en (accessed on 16 July 2019).
- Papastamatiou, I. The age of crystalline limestones of Thira. Bull. Geol. Soc. Greece 1958, 3, 104–113. [Google Scholar]
- Tataris, A. The Metamorphic basement (Holocene) of Thira. Bull. Geol. Soc. Greece 1965, 6, 232–238. [Google Scholar]
- Druitt, T.H.; Mellors, R.A.; Pyle, D.M.; Sparks, R.S.J. Explosive volcanism on Santorini, Greece. Geol. Mag. 1989, 126, 95–126. [Google Scholar] [CrossRef]
- Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barriero, B. Santorini Volcano; Memoir N. 19; Geological Society of London: London, UK, 1999; p. 165. [Google Scholar]
- Vespa, M.; Keller, J.; Gertisser, R. Interplinian explosive activity of Santorini volcano (Greece) during the past 150,000 years. J. Volcanol. Geotherm. Res. 2006, 153, 262–286. [Google Scholar] [CrossRef]
- McCoy, F.W.; Heiken, G. Tsunami generated by the Late Bronze Age Eruption of Thera (Santorini), Greece. Pure Appl. Geophys. 2000, 157, 1227–1256. [Google Scholar] [CrossRef]
- Vougioukalakis, G.E.; Fytikas, M. Volcanic Hazards in the Aegean Area, Relative Risk Evaluation, Monitoring and Present State of the Active Volcanic Centers, in The South Aegean Active Volcanic Arc, Development in Volcanology; Fytikas, M., Vougioukalakis, G.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 7, pp. 161–183. [Google Scholar]
- Gertisser, R.; Preece, K.; Keller, J. The Plinian Lower Pumice 2 eruption, Santorini, Greece: Magma evolution and volatile behaviour. J. Volcanol. Geotherm. Res. 2009, 186, 387–406. [Google Scholar] [CrossRef]
- Fabbro, G.; Druitt, T.H.; Scaillet, S. Evolution of the crustal magma plumbing system during the build-up to the 22-ka caldera-forming eruption of Santorini (Greece). Bull. Volcanol. 2013, 75, 767. [Google Scholar] [CrossRef]
- Friedrich, W.L.; Kromer, B.; Friedrich, M.; Heinemeier, J.; Pfeiffer, T.; Talamo, S. Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 2006, 312, 548. [Google Scholar] [CrossRef] [PubMed]
- Druitt, T.H. New insights into the initiation and venting of the Bronze-Age eruption of Santorini, from component analysis. Bull. Volcanol. 2014, 76, 794. [Google Scholar] [CrossRef]
- Rizzo, A.L.; Barberi, F.; Carapezza, M.L.; Di Piazza, A.; Francalanci, L.; Sortino, F.; D’Alessandro, W. New mafic magma refilling a quiescent volcano: Evidence from He-Ne-Ar isotopes during the 2011–2012 unrest at Santorini, Greece. Geochem. Geophys. Geosyst. 2015, 16, 798–814. [Google Scholar] [CrossRef]
- Antoniou, V.; Lappas, S.; Leoussis, C.; Nomikou, P. Landslide Risk Assessment of the Santorini Volcanic Group. In Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2017), Porto, Portugal, 27–28 April 2017; pp. 131–141. [Google Scholar]
- Lekkas, E. Landslide hazard and risk in geologically active areas. The case of the caldera of Santorini (Thira) volcano island complex (Greece). In Proceedings of the 7th Asian Regional Conference for IAEG (International Association for Engineering Geology), Chengdu, China, 9–11 September 2009; pp. 417–423. [Google Scholar]
- Antoniou, A.A.; Lekkas, E. Rockfall susceptibility map for Athinios port, Santorini Island, Greece. Geomorphology 2010, 118, 152–166. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Brabb, E.E. Innovative approaches to landslide hazard and risk mapping. In Proceedings of the 4th International Symposium on Landslides, Toronto, ON, Canada, 16–21 September 1984; Volume 1, pp. 307–323. [Google Scholar]
- Varnes, D.J. Landslide hazard zonation: A review of principles and practice. UNESCO, Paris. Nat. Hazard Ser. 1984, 3, 63. [Google Scholar]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- van Westen, C.J. Geo-information tools for landslide risk assessment: An overview of recent developments. In Landslides Evaluation and Stabilization; Lacerda, W.A., Ehrlich, M., Fountoura, S.A.B., Sayao, A.S.F., Eds.; Balkema: Rotterdam, The Netherland, 2004; pp. 39–56. [Google Scholar]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; van den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Lee, S.; Talib, J.A. Probabilistic landslide susceptibility and factor effect analysis. Environ. Geol. 2005, 47, 982–990. [Google Scholar] [CrossRef]
- Yilmaz, I. Landslides susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat, Turkey). Comput. Geosci. 2009, 35, 1125–1138. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, Q.; Ye, S.; Ren, B. A novel hybrid approach for landslide susceptibility mapping integrating analytical hierarchy process and normalized frequency ratio methods with cloud model. Geomorphology 2019, 327, 170–187. [Google Scholar] [CrossRef]
- CLC (Corine Land Cover). 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 16 July 2019).
- Adams, N.M.; Hand, D.J. Comparing classifiers when the misallocations costs are uncertain. Pattern Recogn. 1999, 32, 1139–1147. [Google Scholar] [CrossRef]
- Provost, F.; Fawcett, T. Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, AAAI, Menlo Park, CA, USA, 14–17 August 1997; pp. 43–48. [Google Scholar]
- Miles, S.B.; Ho, C.L. Rigorous landslide hazard zonation using Newmark’s method and stochastic ground motion simulation. Soil Dyn. Earthq. Eng. 1999, 18, 305–323. [Google Scholar] [CrossRef]
- Jibson, R.W. Methods for assessing the stability of slopes during earthquakes—A retrospective. Eng. Geol. 2011, 122, 43–50. [Google Scholar] [CrossRef]
- d’Onofrio, A.; Mastrangelo, A.; Penna, A.; Santo, A.; Silvestri, F. Seismic risk analysis of buried pipelines: The case of L’Aquila gas network. Rivista Italiana Geotecnica 2013, 47, 65–86. [Google Scholar]
- Forte, G.; Fabbrocino, S.; Santucci de Magistris, F.; Silvestri, F. Seismic permanent ground deformations: Earthquake-triggered landslides in Molise Apennines. Rendiconti Online Della Società Geologica Italiana 2013, 24, 134–136. [Google Scholar]
- Silvestri, F.; Forte, G.; Calvello, M. Multi-level approach for zonation of seismic slope stability: Experiences and perspectives in Italy. In Landslides and Engineered Slopes. Experience, Theory and Practice; Aversa, S., Cascini, L., Picarelli, L., Scavia, C., Eds.; Associazione Geotecnica Italiana: Rome, Italy, 2016. [Google Scholar]
- Caccavale, M.; Matano, F.; Sacchi, M. An integrated approach to earthquake-induced landslide hazard zoning based on probabilistic seismic scenario for Phlegrean Islands (Ischia, Procida and Vivara), Italy. Geomorphology 2017, 295, 235–259. [Google Scholar] [CrossRef]
- Newmark, N.M. Effects of earthquakes on dams and embankments. Géotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef]
- Ambraseys, N.; Srbulov, M. Earthquake induced displacement of slopes. Soil Dyn. Earthq. Eng. 1995, 14, 59–71. [Google Scholar] [CrossRef]
- Ausilio, E.; Silvestri, F.; Troncone, A.; Tropeano, G. Seismic displacement analysis of homogeneous slopes: A review of existing simplified methods with reference to Italian seismicity. In Proceedings of the IV International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece, 25–28 June 2007; p. 1614. [Google Scholar]
- Bray, J.D.; Rathje, E.M. Earthquake-induced displacements of solid–waste landfills. J. Geotech. Geoenviron. Eng. 1998, 124, 242–253. [Google Scholar] [CrossRef]
- Rampello, S.; Callisto, L.; Fargnoli, P. Valutazione del coefficiente sismico equivalente. In Report of Task 6.3 ‘Slope stability’; Internal Research Reports; ReLUIS Consortium: Rieti, Italy, 2006; pp. 23–38. (In Italian) [Google Scholar]
- Tropeano, G.; Silvestri, F.; Ausilio, E. An uncoupled procedure for performance assessment of slopes in seismic conditions. Bull. Earthq. Eng. 2017, 15, 3611–3637. [Google Scholar] [CrossRef] [Green Version]
- Papazachos, C. Annex II Earthquakes in Santorini. 127–194. In D7.2: Report on Simulation. The Results of the Crisis Simulations in Finland, Poland and Greece (Santorini Reference Test Case); Junttila, K., Zuccaro, G., De Gregorio, D., Leone, M.F., Eds.; Deliverable of SNOWBALL FP7 EU-project ‘Lower the impact of aggravating factors in crisis situations thanks to adaptive foresight and decision-support tools’; 2017. [Google Scholar]
- Code, P. Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings; CEN European Committee for Standardization: Brussels, Belgium, 2005. [Google Scholar]
- Frattini, P.; Crosta, G.; Fusi, N.; Dal Negro, P. Shallow landslides in pyroclastic soils: A distributed modelling approach for hazard assessment. Eng. Geol. 2004, 73, 277–295. [Google Scholar] [CrossRef]
- Hungr, O.; Evans, S.G.; Bovis, M.J.; Hutchinson, J.N. A review of the classification of landslides of the flow type. Environ. Eng. Geosci. 2001, 7, 221–238. [Google Scholar] [CrossRef]
- Mead, S.; Magill, C.; Hilton, J. Rain-triggered lahar susceptibility using a shallow landslide and surface erosion model. Geomorphology 2016, 273, 168–177. [Google Scholar] [CrossRef]
- De Vita, P.; Agrello, D.; Ambrosino, F. Landslide susceptibility assessment in ash-fall pyroclastic deposits surrounding Mount Somma-Vesuvius: Application of geophysical surveys for soil thickness mapping. J. Appl. Geophys. 2006, 59, 126–139. [Google Scholar] [CrossRef]
- De Vita, P.; Napolitano, E.; Godt, J.W.; Baum, R.L. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: Case study from the Somma-Vesuvius area of southern Italy. Landslides 2013, 10, 713–728. [Google Scholar] [CrossRef]
- Jenkins, S.F.; Barsotti, S.; Hincks, T.K.; Neri, A.; Phillips, J.C.; Sparks, R.S.J.; Sheldrake, T.; Vougioukalakis, G. Rapid emergency assessment of ash and gas hazard for future eruptions at Santorini Volcano, Greece. J. Appl. Volcanol. 2015, 4, 16. [Google Scholar] [CrossRef]
- Druitt, T.H.; Francaviglia, V. Caldera formation on Santorini and the physiography of the islands in the late Bronze Age. Bull. Volcanol. 1992, 54, 484–493. [Google Scholar] [CrossRef]
- Lipman, P.W. Caldera-collapse breccias in the western San Juan Mountains, Colorado. Geol. Soc. Am. Bull. 1976, 87, 1397–1410. [Google Scholar] [CrossRef]
- Ermini, L.; Catani, F.; Casagli, N. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 2005, 66, 327–343. [Google Scholar] [CrossRef]
- Catani, F.; Casagli, N.; Ermini, L.; Righini, G.; Menduni, G. Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2005, 2, 329–342. [Google Scholar] [CrossRef]
DRY CONDITIONS (Groundwater Table Below the Sliding Surface) | ||||||
---|---|---|---|---|---|---|
Geolithological Group | Slope Angle (Degrees) | |||||
0–10 | 10–15 | 15–20 | 20–30 | 30–40 | >40 | |
A | None | None | 0.6 | 0.5 | 0.35 | 0.25 |
B | None | 0.4 | 0.35 | 0.3 | 0.25 | 0.2 |
C | 0.3 | 0.25 | 0.2 | 0.1 | 0.1 | 0.1 |
Factor | Class | N° of Pixels in Factor Class | Factor Class (%) | N° of Landslides Pixels within the Factor Class | Landslides (%) | FR |
---|---|---|---|---|---|---|
Lithology (HAZUS class) | Lavas (B) | 379,352 | 11.80 | 1758 | 50.21 | 4.26 |
Tuff (B) | 2,512,417 | 78.12 | 649 | 18.54 | 0.24 | |
Metamorphic rocks (B) | 21,475 | 0.67 | 229 | 6.54 | 9.80 | |
Carbonates (A) | 195,486 | 6.08 | 7 | 0.20 | 0.03 | |
Pyroclastic deposits (B) | 64,631 | 2.01 | 752 | 21.48 | 10.69 | |
Sandy beach (C) | 23,865 | 0.74 | 0 | 0.00 | 0.00 | |
Debris (C) | 18,898 | 0.59 | 106 | 3.03 | 5.15 | |
SLOPE Angle (Degree) | 0–10 | 1,756,692 | 54.44 | 8 | 0.23 | 0.00 |
10–15 | 435,677 | 13.50 | 20 | 0.57 | 0.04 | |
15–20 | 276,025 | 8.55 | 26 | 0.74 | 0.09 | |
20–30 | 335,243 | 10.39 | 132 | 3.77 | 0.36 | |
30–40 | 252,708 | 7.83 | 853 | 24.35 | 3.11 | |
>40 | 170,201 | 5.28 | 2464 | 70.34 | 13.33 | |
Aspect | flat | 139,041 | 4.31 | 0 | 0 | 0.00 |
North | 191,437 | 5.93 | 226 | 6.45 | 1.09 | |
Northeast | 540,487 | 16.75 | 149 | 4.25 | 0.25 | |
East | 555,459 | 17.22 | 60 | 1.71 | 0.10 | |
Southeast | 463,310 | 14.36 | 169 | 4.82 | 0.34 | |
South | 330,241 | 10.24 | 786 | 22.44 | 2.19 | |
Southwest | 297,117 | 9.21 | 763 | 21.78 | 2.37 | |
West | 255,385 | 7.92 | 721 | 20.58 | 2.60 | |
Northwest | 265,937 | 8.24 | 432 | 12.33 | 1.50 | |
North | 188,138 | 5.83 | 197 | 5.62 | 0.96 | |
MGU | Structural (MGU I) | 391,226 | 13.33 | 20 | 0.57 | 0.04 |
Inner slope (MGU II) | 252,953 | 8.62 | 3134 | 89.49 | 10.38 | |
Outer slope (20°–35°) (MGU III) | 347,456 | 11.84 | 307 | 8.77 | 0.74 | |
Outer (slope < 20°) (MGU IV) | 1,943,575 | 66.22 | 41 | 1.17 | 0.02 | |
Land Cover (CLC) | (111) Continuous urban fabric | 13,083 | 0.41 | 9 | 0.25 | 0.62 |
(112) Discontinuous urban fabric | 390,992 | 12.26 | 81 | 2.29 | 0.19 | |
(124) Airports | 69,214 | 2.17 | 0 | 0.00 | 0.00 | |
(131) Mineral extraction sites | 10,156 | 0.32 | 22 | 0.62 | 1.95 | |
(142) Sport and leisure facilities | 103,711 | 3.25 | 72 | 2.04 | 0.63 | |
(211) Non-irrigated arable land | 22,685 | 0.71 | 0 | 0.00 | 0.00 | |
(221) Vineyards | 562,301 | 17.63 | 20 | 0.57 | 0.03 | |
(231) Pastures | 72,841 | 2.28 | 6 | 0.17 | 0.07 | |
(242) Complex cultivation pattern | 936,460 | 29.37 | 62 | 1.75 | 0.06 | |
(243) Land occupied by agriculture and natural vegetation | 287,800 | 9.02 | 38 | 1.08 | 0.12 | |
(321) Natural grassland | 111,591 | 3.50 | 0 | 0.00 | 0.00 | |
(323) Sclerophyllous vegetation | 118,459 | 3.71 | 154 | 4.36 | 1.17 | |
(332) Bare rocks | 260,516 | 8.17 | 1855 | 52.49 | 6.43 | |
(333) Sparsely vegetated area | 229,139 | 7.19 | 1215 | 34.38 | 4.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forte, G.; De Falco, M.; Santangelo, N.; Santo, A. Slope Stability in a Multi-Hazard Eruption Scenario (Santorini, Greece). Geosciences 2019, 9, 412. https://doi.org/10.3390/geosciences9100412
Forte G, De Falco M, Santangelo N, Santo A. Slope Stability in a Multi-Hazard Eruption Scenario (Santorini, Greece). Geosciences. 2019; 9(10):412. https://doi.org/10.3390/geosciences9100412
Chicago/Turabian StyleForte, Giovanni, Melania De Falco, Nicoletta Santangelo, and Antonio Santo. 2019. "Slope Stability in a Multi-Hazard Eruption Scenario (Santorini, Greece)" Geosciences 9, no. 10: 412. https://doi.org/10.3390/geosciences9100412
APA StyleForte, G., De Falco, M., Santangelo, N., & Santo, A. (2019). Slope Stability in a Multi-Hazard Eruption Scenario (Santorini, Greece). Geosciences, 9(10), 412. https://doi.org/10.3390/geosciences9100412