Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (152)

Search Parameters:
Keywords = Pléiades

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6399 KiB  
Article
An Upscaling-Based Strategy to Improve the Ephemeral Gully Mapping Accuracy
by Solmaz Fathololoumi, Daniel D. Saurette, Harnoordeep Singh Mann, Naoya Kadota, Hiteshkumar B. Vasava, Mojtaba Naeimi, Prasad Daggupati and Asim Biswas
Land 2025, 14(7), 1344; https://doi.org/10.3390/land14071344 - 24 Jun 2025
Viewed by 389
Abstract
Understanding and mapping ephemeral gullies (EGs) are vital for enhancing agricultural productivity and achieving food security. This study proposes an upscaling-based strategy to refine the predictive mapping of EGs, utilizing high-resolution Pléiades Neo (0.6 m) and medium-resolution Sentinel-2 (10 m) satellite imagery, alongside [...] Read more.
Understanding and mapping ephemeral gullies (EGs) are vital for enhancing agricultural productivity and achieving food security. This study proposes an upscaling-based strategy to refine the predictive mapping of EGs, utilizing high-resolution Pléiades Neo (0.6 m) and medium-resolution Sentinel-2 (10 m) satellite imagery, alongside ground-truth EGs mapping in Niagara Region, Canada. The research involved generating spectral feature maps using Blue, Green, Red, and Near-infrared spectral bands, complemented by indices indicative of surface wetness, vegetation, color, and soil texture. Employing the Random Forest (RF) algorithm, this study executed three distinct strategies for EGs identification. The first strategy involved direct calibration using Sentinel-2 spectral features for 10 m resolution mapping. The second strategy utilized high-resolution Pléiades Neo data for model calibration, enabling EGs mapping at resolutions of 0.6, 2, 4, 6, and 8 m. The third, or upscaling strategy, applied the high-resolution calibrated model to medium-resolution Sentinel-2 imagery, producing 10 m resolution EGs maps. The accuracy of these maps was evaluated against actual data and compared across strategies. The findings highlight the Variable Importance Measure (VIM) of different spectral features in EGs identification, with normalized near-infrared (Norm NIR) and normalized red reflectance (Norm Red) exhibiting the highest and lowest VIM, respectively. Vegetation-related indices demonstrated a higher VIM compared to surface wetness indices. The overall classification error of the upscaling strategy at spatial resolutions of 0.6, 2, 4, 6, 8, and 10 m (Upscaled), as well as that of the direct Sentinel-2 model, were 7.9%, 8.2%, 9.1%, 10.3%, 11.2%, 12.5%, and 14.5%, respectively. The errors for EGs maps at various resolutions revealed an increase in identification error with higher spatial resolution. However, the upscaling strategy significantly improved the accuracy of EGs identification in medium spatial resolution scenarios. This study not only advances the methodology for EGs mapping but also contributes to the broader field of precision agriculture and environmental management. By providing a scalable and accessible approach to EGs mapping, this research supports enhanced soil conservation practices and sustainable land management, addressing key challenges in agricultural sustainability and environmental stewardship. Full article
Show Figures

Figure 1

28 pages, 27039 KiB  
Article
Deep Learning-Based Urban Tree Species Mapping with High-Resolution Pléiades Imagery in Nanjing, China
by Xiaolei Cui, Min Sun, Zhili Chen, Mingshi Li and Xiaowei Zhang
Forests 2025, 16(5), 783; https://doi.org/10.3390/f16050783 - 7 May 2025
Cited by 1 | Viewed by 677
Abstract
In rapidly urbanizing regions, encroachment on native green spaces has exacerbated ecological issues such as urban heat islands and flooding. Accurate mapping of tree species distribution is therefore vital for sustainable urban management. However, the high heterogeneity of urban landscapes, resulting from the [...] Read more.
In rapidly urbanizing regions, encroachment on native green spaces has exacerbated ecological issues such as urban heat islands and flooding. Accurate mapping of tree species distribution is therefore vital for sustainable urban management. However, the high heterogeneity of urban landscapes, resulting from the coexistence of diverse land covers, built infrastructure, and anthropogenic activities, often leads to reduced robustness and transferability of remote sensing classification methods across different images and regions. In this study, we used very high–resolution Pléiades imagery and field-verified samples of eight common urban trees and background land covers. By employing transfer learning with advanced segmentation networks, we evaluated each model’s accuracy, robustness, and efficiency. The best-performing network delivered markedly superior classification consistency and required substantially less training time than a model trained from scratch. These findings offer concise, practical guidance for selecting and deploying deep learning methods in urban tree species mapping, supporting improved ecological monitoring and planning. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

22 pages, 5776 KiB  
Article
Using Pleiades Satellite Imagery to Monitor Multi-Annual Coastal Dune Morphological Changes
by Olivier Burvingt, Bruno Castelle, Vincent Marieu, Bertrand Lubac, Alexandre Nicolae Lerma and Nicolas Robin
Remote Sens. 2025, 17(9), 1522; https://doi.org/10.3390/rs17091522 - 25 Apr 2025
Viewed by 875
Abstract
In the context of sea levels rising, monitoring spatial and temporal topographic changes along coastal dunes is crucial to understand their dynamics since they represent natural barriers against coastal flooding and large sources of sediment that can mitigate coastal erosion. Different technologies are [...] Read more.
In the context of sea levels rising, monitoring spatial and temporal topographic changes along coastal dunes is crucial to understand their dynamics since they represent natural barriers against coastal flooding and large sources of sediment that can mitigate coastal erosion. Different technologies are currently used to monitor coastal dune topographic changes (GNSS, UAV, airborne LiDAR, etc.). Satellites recently emerged as a new source of topographic data by providing high-resolution images with a rather short revisit time at the global scale. Stereoscopic or tri-stereoscopic acquisition of some of these images enables the creation of 3D models using stereophotogrammetry methods. Here, the Ames Stereo Pipeline was used to produce digital elevation models (DEMs) from tri-stereo panchromatic and high-resolution Pleiades images along three 19 km long stretches of coastal dunes in SW France. The vertical errors of the Pleiades-derived DEMs were assessed by comparing them with DEMs produced from airborne LiDAR data collected a few months apart from the Pleiades images in 2017 and 2021 at the same three study sites. Results showed that the Pleiades-derived DEMs could reproduce the overall dune topography well, with averaged root mean square errors that ranged from 0.5 to 1.1 m for the six sets of tri-stereo images. The differences between DEMs also showed that Pleiades images can be used to monitor multi-annual coastal dune morphological changes. Strong erosion and accretion patterns over spatial scales ranging from hundreds of meters (e.g., blowouts) to tens of kilometers (e.g., dune retreat) were captured well, and allowed to quantify changes with reasonable errors (30%). Furthermore, relatively small averaged root mean square errors (0.63 m) can be obtained with a limited number of field-collected elevation points (five ground control points) to perform a simple vertical correction on the generated Pleiades DEMs. Among different potential sources of errors, shadow areas due to the steepness of the dune stoss slope and crest, along with planimetric errors that can also occur due to the steepness of the terrain, remain the major causes of errors still limiting accurate enough volumetric change assessment. However, ongoing improvements on the stereo matching algorithms and spatial resolution of the satellite sensors (e.g., Pleiades Neo) highlight the growing potential of Pleiades images as a cost-effective alternative to other mapping techniques of coastal dune topography. Full article
Show Figures

Figure 1

18 pages, 1795 KiB  
Article
Impact of UAV-Derived RTK/PPK Products on Geometric Correction of VHR Satellite Imagery
by Muhammed Enes Atik, Mehmet Arkali and Saziye Ozge Atik
Drones 2025, 9(4), 291; https://doi.org/10.3390/drones9040291 - 9 Apr 2025
Cited by 1 | Viewed by 1150
Abstract
Satellite imagery is a widely used source of spatial information in many applications, such as land use/land cover, object detection, agricultural monitoring, and urban area monitoring. Numerous factors, including projection, tilt angle, scanner, atmospheric conditions, terrain curvature, and fluctuations, can cause satellite images [...] Read more.
Satellite imagery is a widely used source of spatial information in many applications, such as land use/land cover, object detection, agricultural monitoring, and urban area monitoring. Numerous factors, including projection, tilt angle, scanner, atmospheric conditions, terrain curvature, and fluctuations, can cause satellite images to become distorted. Eliminating systematic errors caused by the sensor and platform is a crucial step to obtaining reliable information from satellite images. To utilize satellite images directly in applications requiring high accuracy, the errors in the images should be removed by geometric correction. In this study, geometric correction was applied to the Pléiades 1A (PHR) image using non-parametric methods, and the effects of different transformation models and digital elevation models (DEMs) were investigated. Ground control points (GCPs) were obtained from orthophotos created by the photogrammetric method using precise positioning. The effect of photogrammetric DEMs with various spatial resolutions on geometric correction was investigated. Additionally, the effect of DEMs obtained using the photogrammetric method was compared with those from open-source DEMs, including SRTM, ASTER GDEM, COP30, AW3D30, and NASADEM. Two-dimensional polynomial transformation, the thin plate spline (TPS), and the rational function model (RFM) were applied as transformation methods. Our results showed that a higher-accuracy geometric correction process could be achieved with orthophotos and DEMs created using precise positioning techniques such as RTK and PPK. According to the results obtained, an RMSE of 0.633 m was achieved with RFM using RTK-DEM, while an RMSE of 0.615 m was achieved with RFM using PPK-DEM. Full article
(This article belongs to the Special Issue Applications of UVs in Digital Photogrammetry and Image Processing)
Show Figures

Figure 1

24 pages, 13944 KiB  
Article
A Comparative Analysis of Spatial Resolution Sentinel-2 and Pleiades Imagery for Mapping Urban Tree Species
by Fabio Recanatesi, Antonietta De Santis, Lorenzo Gatti, Alessio Patriarca, Eros Caputi, Giulia Mancini, Chiara Iavarone, Carlo Maria Rossi, Gabriele Delogu, Miriam Perretta, Lorenzo Boccia and Maria Nicolina Ripa
Land 2025, 14(1), 106; https://doi.org/10.3390/land14010106 - 7 Jan 2025
Cited by 2 | Viewed by 1681
Abstract
Urbanization poses significant challenges to ecosystems, resources, and human well-being, necessitating sustainable planning. Urban vegetation, particularly trees, provides critical ecosystem services such as carbon sequestration, air quality improvement, and biodiversity conservation. Traditional tree assessments are resource-intensive and time-consuming. Recent advances in remote sensing, [...] Read more.
Urbanization poses significant challenges to ecosystems, resources, and human well-being, necessitating sustainable planning. Urban vegetation, particularly trees, provides critical ecosystem services such as carbon sequestration, air quality improvement, and biodiversity conservation. Traditional tree assessments are resource-intensive and time-consuming. Recent advances in remote sensing, especially high-resolution multispectral imagery and object-based image analysis (OBIA), offer efficient alternatives for mapping urban vegetation. This study evaluates and compares the efficacy of Sentinel-2 and Pléiades satellite imagery in classifying tree species within historic urban parks in Rome—Villa Borghese, Villa Ada Savoia, and Villa Doria Pamphilj. Pléiades imagery demonstrated superior classification accuracy, achieving an overall accuracy (OA) of 89% and a Kappa index of 0.84 in Villa Ada Savoia, compared to Sentinel-2’s OA of 66% and Kappa index of 0.47. Specific tree species, such as Pinus pinea (Stone Pine), reached a user accuracy (UA) of 84% with Pléiades versus 53% with Sentinel-2. These insights underscore the potential of integrating high-resolution remote sensing data into urban forestry practices to support sustainable urban management and planning. Full article
Show Figures

Figure 1

16 pages, 9121 KiB  
Technical Note
A Benchmark Dataset for Aircraft Detection in Optical Remote Sensing Imagery
by Jianming Hu, Xiyang Zhi, Bingxian Zhang, Tianjun Shi, Qi Cui and Xiaogang Sun
Remote Sens. 2024, 16(24), 4699; https://doi.org/10.3390/rs16244699 - 17 Dec 2024
Viewed by 1975
Abstract
The problem is that existing aircraft detection datasets rarely simultaneously consider the diversity of target features and the complexity of environmental factors, which has become an important factor restricting the effectiveness and reliability of aircraft detection algorithms. Although a large amount of research [...] Read more.
The problem is that existing aircraft detection datasets rarely simultaneously consider the diversity of target features and the complexity of environmental factors, which has become an important factor restricting the effectiveness and reliability of aircraft detection algorithms. Although a large amount of research has been devoted to breaking through few-sample-driven aircraft detection technology, most algorithms still struggle to effectively solve the problems of missed target detection and false alarms caused by numerous environmental interferences in bird-eye optical remote sensing scenes. To further aircraft detection research, we have established a new dataset, Aircraft Detection in Complex Optical Scene (ADCOS), sourced from various platforms including Google Earth, Microsoft Map, Worldview-3, Pleiades, Ikonos, Orbview-3, and Jilin-1 satellites. It integrates 3903 meticulously chosen images of over 400 famous airports worldwide, containing 33,831 annotated instances employing the oriented bounding box (OBB) format. Notably, this dataset encompasses a wide range of various targets characteristics including multi-scale, multi-direction, multi-type, multi-state, and dense arrangement, along with complex relationships between targets and backgrounds like cluttered backgrounds, low contrast, shadows, and occlusion interference conditions. Furthermore, we evaluated nine representative detection algorithms on the ADCOS dataset, establishing a performance benchmark for subsequent algorithm optimization. The latest dataset will soon be available on the Github website. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

20 pages, 8709 KiB  
Article
Automatic Fine Co-Registration of Datasets from Extremely High Resolution Satellite Multispectral Scanners by Means of Injection of Residues of Multivariate Regression
by Luciano Alparone, Alberto Arienzo and Andrea Garzelli
Remote Sens. 2024, 16(19), 3576; https://doi.org/10.3390/rs16193576 - 25 Sep 2024
Cited by 3 | Viewed by 1222
Abstract
This work presents two pre-processing patches to automatically correct the residual local misalignment of datasets acquired by very/extremely high resolution (VHR/EHR) satellite multispectral (MS) scanners, one for, e.g., GeoEye-1 and Pléiades, featuring two separate instruments for MS and panchromatic (Pan) data, the other [...] Read more.
This work presents two pre-processing patches to automatically correct the residual local misalignment of datasets acquired by very/extremely high resolution (VHR/EHR) satellite multispectral (MS) scanners, one for, e.g., GeoEye-1 and Pléiades, featuring two separate instruments for MS and panchromatic (Pan) data, the other for WorldView-2/3 featuring three instruments, two of which are visible and near-infra-red (VNIR) MS scanners. The misalignment arises because the two/three instruments onboard GeoEye-1 / WorldView-2 (four onboard WorldView-3) share the same optics and, thus, cannot have parallel optical axes. Consequently, they image the same swath area from different positions along the orbit. Local height changes (hills, buildings, trees, etc.) originate local shifts among corresponding points in the datasets. The latter would be accurately aligned only if the digital elevation surface model were known with sufficient spatial resolution, which is hardly feasible everywhere because of the extremely high resolution, with Pan pixels of less than 0.5 m. The refined co-registration is achieved by injecting the residue of the multivariate linear regression of each scanner towards lowpass-filtered Pan. Experiments with two and three instruments show that an almost perfect alignment is achieved. MS pansharpening is also shown to greatly benefit from the improved alignment. The proposed alignment procedures are real-time, fully automated, and do not require any additional or ancillary information, but rely uniquely on the unimodality of the MS and Pan sensors. Full article
Show Figures

Figure 1

12 pages, 4670 KiB  
Article
Spatiotemporal Modeling of Aedes aegypti Risk: Enhancing Dengue Virus Control through Meteorological and Remote Sensing Data in French Guiana
by Sarah Bailly, Vanessa Machault, Samuel Beneteau, Philippe Palany, Camille Fritzell, Romain Girod, Jean-Pierre Lacaux, Philippe Quénel and Claude Flamand
Pathogens 2024, 13(9), 738; https://doi.org/10.3390/pathogens13090738 - 29 Aug 2024
Viewed by 1701
Abstract
French Guiana lacks a dedicated model for developing an early warning system tailored to its entomological contexts. We employed a spatiotemporal modeling approach to predict the risk of Aedes aegypti larvae presence in local households in French Guiana. The model integrated field data [...] Read more.
French Guiana lacks a dedicated model for developing an early warning system tailored to its entomological contexts. We employed a spatiotemporal modeling approach to predict the risk of Aedes aegypti larvae presence in local households in French Guiana. The model integrated field data on larvae, environmental data obtained from very high-spatial-resolution Pleiades imagery, and meteorological data collected from September 2011 to February 2013 in an urban area of French Guiana. The identified environmental and meteorological factors were used to generate dynamic maps with high spatial and temporal resolution. The study collected larval data from 261 different surveyed houses, with each house being surveyed between one and three times. Of the observations, 41% were positive for the presence of Aedes aegypti larvae. We modeled the Aedes larvae risk within a radius of 50 to 200 m around houses using six explanatory variables and extrapolated the findings to other urban municipalities during the 2020 dengue epidemic in French Guiana. This study highlights the potential of spatiotemporal modeling approaches to predict and monitor the evolution of vector-borne disease transmission risk, representing a major opportunity to monitor the evolution of vector risk and provide valuable information for public health authorities. Full article
(This article belongs to the Special Issue Viral Infections of Humans: Epidemiology and Control)
Show Figures

Figure 1

32 pages, 11825 KiB  
Article
Deep-Learning-Based Automatic Sinkhole Recognition: Application to the Eastern Dead Sea
by Osama Alrabayah, Danu Caus, Robert Alban Watson, Hanna Z. Schulten, Tobias Weigel, Lars Rüpke and Djamil Al-Halbouni
Remote Sens. 2024, 16(13), 2264; https://doi.org/10.3390/rs16132264 - 21 Jun 2024
Cited by 9 | Viewed by 3633
Abstract
Sinkholes can cause significant damage to infrastructures, agriculture, and endanger lives in active karst regions like the Dead Sea’s eastern shore at Ghor Al-Haditha. The common sinkhole mapping methods often require costly high-resolution data and manual, time-consuming expert analysis. This study introduces an [...] Read more.
Sinkholes can cause significant damage to infrastructures, agriculture, and endanger lives in active karst regions like the Dead Sea’s eastern shore at Ghor Al-Haditha. The common sinkhole mapping methods often require costly high-resolution data and manual, time-consuming expert analysis. This study introduces an efficient deep learning model designed to improve sinkhole mapping using accessible satellite imagery, which could enhance management practices related to sinkholes and other geohazards in evaporite karst regions. The developed AI system is centered around the U-Net architecture. The model was initially trained on a high-resolution drone dataset (0.1 m GSD, phase I), covering 250 sinkhole instances. Subsequently, it was additionally fine-tuned on a larger dataset from a Pleiades Neo satellite image (0.3 m GSD, phase II) with 1038 instances. The training process involved an automated image-processing workflow and strategic layer freezing and unfreezing to adapt the model to different input scales and resolutions. We show the usefulness of initial layer features learned on drone data, for the coarser, more readily-available satellite inputs. The validation revealed high detection accuracy for sinkholes, with phase I achieving a recall of 96.79% and an F1 score of 97.08%, and phase II reaching a recall of 92.06% and an F1 score of 91.23%. These results confirm the model’s accuracy and its capability to maintain high performance across varying resolutions. Our findings highlight the potential of using RGB visual bands for sinkhole detection across different karst environments. This approach provides a scalable, cost-effective solution for continuous mapping, monitoring, and risk mitigation related to sinkhole hazards. The developed system is not limited only to sinkholes however, and can be naturally extended to other geohazards as well. Moreover, since it currently uses U-Net as a backbone, the system can be extended to incorporate super-resolution techniques, leveraging U-Net based latent diffusion models to address the smaller-scale, ambiguous geo-structures that are often found in geoscientific data. Full article
(This article belongs to the Special Issue Artificial Intelligence for Natural Hazards (AI4NH))
Show Figures

Graphical abstract

12 pages, 4103 KiB  
Article
Exploring Blood Cell Count-Derived Ratios as Practical Diagnostic Tools for Scabies in Vulnerable Populations
by Hoang Thao Giang Nguyen, Ha Long Hai Le, Hoang Viet Nguyen, Huyen My Le, Huy Luong Vu, Pleiades T. Inaoka, Ota Tetsuo, Quoc Trung Ly and J. Luis Espinoza
J. Pers. Med. 2024, 14(4), 373; https://doi.org/10.3390/jpm14040373 - 30 Mar 2024
Cited by 1 | Viewed by 6011
Abstract
Scabies is a neglected tropical disease and represents a considerable global burden. Although consensus diagnostic criteria for scabies have been recently published, diagnosing scabies infestation remains challenging in clinical practice. We investigated the diagnostic utility of complete blood cell count (CBC) and CBC-derived [...] Read more.
Scabies is a neglected tropical disease and represents a considerable global burden. Although consensus diagnostic criteria for scabies have been recently published, diagnosing scabies infestation remains challenging in clinical practice. We investigated the diagnostic utility of complete blood cell count (CBC) and CBC-derived ratios obtained at diagnosis in a set of 167 patients who are Vietnamese with confirmed scabies. These parameters were compared with those of patients with dermatophytosis (N = 800) and urticaria (N = 2023), two diseases frequent in Vietnam, which can present with similar skin manifestations to scabies and tend to pose a diagnostic challenge in vulnerable populations. Our analysis revealed that white blood cell, monocyte, and eosinophil counts were significantly higher among patients with scabies than the other two diseases. Similarly, the monocyte-to-lymphocyte ratio (MLR) and eosinophil-to-lymphocyte ratio (ELR) were significantly higher among patients with scabies. The optimal cut-off values to distinguish scabies from dermatophytosis and urticaria were 0.094 for ELR (sensitivity: 74.85%, specificity: 70.7%) and 0.295 for MLR (sensitivity: 52.69%, specificity: 73.54%). CBC, ELR, and MLR are low-cost and easily calculated parameters that may be helpful for the diagnosis of scabies. Full article
(This article belongs to the Section Disease Biomarker)
Show Figures

Figure 1

17 pages, 14008 KiB  
Article
Fusion of Dense Airborne LiDAR and Multispectral Sentinel-2 and Pleiades Satellite Imagery for Mapping Riparian Forest Species Biodiversity at Tree Level
by Houssem Njimi, Nesrine Chehata and Frédéric Revers
Sensors 2024, 24(6), 1753; https://doi.org/10.3390/s24061753 - 8 Mar 2024
Cited by 5 | Viewed by 2375
Abstract
Multispectral and 3D LiDAR remote sensing data sources are valuable tools for characterizing the 3D vegetation structure and thus understanding the relationship between forest structure, biodiversity, and microclimate. This study focuses on mapping riparian forest species in the canopy strata using a fusion [...] Read more.
Multispectral and 3D LiDAR remote sensing data sources are valuable tools for characterizing the 3D vegetation structure and thus understanding the relationship between forest structure, biodiversity, and microclimate. This study focuses on mapping riparian forest species in the canopy strata using a fusion of Airborne LiDAR data and multispectral multi-source and multi-resolution satellite imagery: Sentinel-2 and Pleiades at tree level. The idea is to assess the contribution of each data source in the tree species classification at the considered level. The data fusion was processed at the feature level and the decision level. At the feature level, LiDAR 2D attributes were derived and combined with multispectral imagery vegetation indices. At the decision level, LiDAR data were used for 3D tree crown delimitation, providing unique trees or groups of trees. The segmented tree crowns were used as a support for an object-based species classification at tree level. Data augmentation techniques were used to improve the training process, and classification was carried out with a random forest classifier. The workflow was entirely automated using a Python script, which allowed the assessment of four different fusion configurations. The best results were obtained by the fusion of Sentinel-2 time series and LiDAR data with a kappa of 0.66, thanks to red edge-based indices that better discriminate vegetation species and the temporal resolution of Sentinel-2 images that allows monitoring the phenological stages, helping to discriminate the species. Full article
(This article belongs to the Special Issue Innovative Approaches in Earth Remote Sensing Technology)
Show Figures

Figure 1

30 pages, 16242 KiB  
Article
Influence of Weather Conditions in the Northwestern Russian Federation on Flax Fiber Characters According to the Results of a 30-Year Study
by Andrey V. Pavlov, Elizaveta A. Porokhovinova, Anastasia A. Slobodkina, Inna I. Matvienko, Natalya V. Kishlyan and Nina B. Brutch
Plants 2024, 13(6), 762; https://doi.org/10.3390/plants13060762 - 7 Mar 2024
Cited by 2 | Viewed by 1304
Abstract
Weather has significant impact on plant growth and development. It is important to analyze the influence of changing climate conditions on the expression of plant agronomic characters. Two flax varieties were grown from 1987 to 2018 in the Northwest of Russia. Weather conditions [...] Read more.
Weather has significant impact on plant growth and development. It is important to analyze the influence of changing climate conditions on the expression of plant agronomic characters. Two flax varieties were grown from 1987 to 2018 in the Northwest of Russia. Weather conditions and their influence on flax agronomic characters were analyzed using the variance and correlations analyses. Significant influence of conditions of a particular year on the manifestation of all evaluated characters was revealed. Starting from June, high temperatures accelerate plant development at all stages. Prolongation of the germination-flowering period is most important for improving fiber productivity, while fast ripening in hot weather after flowering is preferable for the formation of high-quality fiber. Such data give a possibility to predict the yield amount and quality. The use of weather conditions data also makes possible a comparison of the results obtained in different years. The suggested method of classifying meteorological conditions of a year can be used in other genebanks for systematizing and analyzing the results of crop evaluation in the field. The correlation analysis revealed 3 correlated pleiades, namely (1) of productivity, (2) of fiber quality and yield, and (3) of the growing season phase durations, the sums of active temperatures and precipitation during each period. The great influence of growing conditions on the economically valuable traits indicates the necessity of searching for genotypes with stable character manifestations for breeding new varieties with stable yields and good fiber quality. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

26 pages, 4823 KiB  
Article
Enhancing Urban Above-Ground Vegetation Carbon Density Mapping: An Integrated Approach Incorporating De-Shadowing, Spectral Unmixing, and Machine Learning
by Guangping Qie, Jianneng Ye, Guangxing Wang and Minzi Wang
Forests 2024, 15(3), 480; https://doi.org/10.3390/f15030480 - 4 Mar 2024
Viewed by 1876
Abstract
Accurately mapping urban above-ground vegetation carbon density presents challenges due to fragmented landscapes, mixed pixels, and shadows induced by buildings and mountains. To address these issues, a novel methodological framework is introduced, utilizing a linear spectral unmixing analysis (LSUA) for shadow removal and [...] Read more.
Accurately mapping urban above-ground vegetation carbon density presents challenges due to fragmented landscapes, mixed pixels, and shadows induced by buildings and mountains. To address these issues, a novel methodological framework is introduced, utilizing a linear spectral unmixing analysis (LSUA) for shadow removal and vegetation information extraction from mixed pixels. Parametric and nonparametric models, incorporating LSUA-derived vegetation fraction, are compared, including linear stepwise regression, logistic model-based stepwise regression, k-Nearest Neighbors, Decision Trees, and Random Forests. Applied in Shenzhen, China, the framework integrates Landsat 8, Pleiades 1A & 1B, DEM, and field measurements. Among the key findings, the shadow removal algorithm is effective in mountainous areas, while LSUA-enhanced models improve urban vegetation carbon density mapping, albeit with marginal gains. Integrating kNN and RF with LSUA reduces errors, and Decision Trees, especially when integrated with LSUA, outperform other models. This study underscores the potential of the proposed framework, particularly the integration of Decision Trees with LSUA, for advancing the accuracy of urban vegetation carbon density mapping. Full article
Show Figures

Figure 1

16 pages, 5579 KiB  
Article
Changes in the Hydrological Characteristics of the Attabad Landslide-Dammed Lake on the Karakoram Highway
by Yousan Li, Hongkui Yang, Youhui Qi, Wenqian Ye, Guangchao Cao and Yanhe Wang
Water 2024, 16(5), 714; https://doi.org/10.3390/w16050714 - 28 Feb 2024
Cited by 2 | Viewed by 2748
Abstract
Understanding the evolving hydrological characteristics of landslide-induced barrier lakes is crucial for flood control, forecasting, early warning, and safety measures in reservoir areas. This study examines the changes in the hydrological characteristics of the Attabad landslide-dammed lake over the past decade after the [...] Read more.
Understanding the evolving hydrological characteristics of landslide-induced barrier lakes is crucial for flood control, forecasting, early warning, and safety measures in reservoir areas. This study examines the changes in the hydrological characteristics of the Attabad landslide-dammed lake over the past decade after the occurrence of the landslide, focusing on lake area dynamics and sediment concentration. High-resolution satellite images from QuickBird, Pleiades, and WorldView2 over seven periods were analyzed. The findings indicate that the lake area has gradually decreased, with the center of mass shifting towards the lake dam, indicating a trend towards stability. The suspended sediment in the barrier lake is distributed in a strip running from north to south, then northeast to southwest, with the sediment concentration decreasing from the lake entrance to the dam and from the lake bank to the center. Over time, the average sediment concentration has decreased from 2010 to 2020, with higher concentrations in summer than in winter. Notably, during the 2017–2020 period, the lower-middle parts of the lake experienced a higher sediment concentration, while the dam area witnessed lower concentrations, thereby reducing the sediment impact on the dam. Furthermore, the sediment content in the middle of the dammed lake is relatively high, which may lead to the formation of a new dammed dam in the middle and the division of the original dammed lake into two smaller lakes, which will affect the stability of the dammed lake. Full article
(This article belongs to the Special Issue Water, Geohazards, and Artificial Intelligence)
Show Figures

Figure 1

31 pages, 30389 KiB  
Article
Preharvest Durum Wheat Yield, Protein Content, and Protein Yield Estimation Using Unmanned Aerial Vehicle Imagery and Pléiades Satellite Data in Field Breeding Experiments
by Dessislava Ganeva, Eugenia Roumenina, Petar Dimitrov, Alexander Gikov, Violeta Bozhanova, Rangel Dragov, Georgi Jelev and Krasimira Taneva
Remote Sens. 2024, 16(3), 559; https://doi.org/10.3390/rs16030559 - 31 Jan 2024
Cited by 3 | Viewed by 1937
Abstract
Unmanned aerial vehicles (UAVs) are extensively used to gather remote sensing data, offering high image resolution and swift data acquisition despite being labor-intensive. In contrast, satellite-based remote sensing, providing sub-meter spatial resolution and frequent revisit times, could serve as an alternative data source [...] Read more.
Unmanned aerial vehicles (UAVs) are extensively used to gather remote sensing data, offering high image resolution and swift data acquisition despite being labor-intensive. In contrast, satellite-based remote sensing, providing sub-meter spatial resolution and frequent revisit times, could serve as an alternative data source for phenotyping. In this study, we separately evaluated pan-sharpened Pléiades satellite imagery (50 cm) and UAV imagery (2.5 cm) to phenotype durum wheat in small-plot (12 m × 1.10 m) breeding trials. The Gaussian process regression (GPR) algorithm, which provides predictions with uncertainty estimates, was trained with spectral bands and а selected set of vegetation indexes (VIs) as independent variables. Grain protein content (GPC) was better predicted with Pléiades data at the growth stage of 20% of inflorescence emerged but with only moderate accuracy (validation R2: 0.58). The grain yield (GY) and protein yield (PY) were better predicted using UAV data at the late milk and watery ripe growth stages, respectively (validation: R2 0.67 and 0.62, respectively). The cumulative VIs (the sum of VIs over the available images within the growing season) did not increase the accuracy of the models for either sensor. When mapping the estimated parameters, the spatial resolution of Pléiades revealed certain limitations. Nevertheless, our findings regarding GPC suggested that the usefulness of pan-sharpened Pléiades images for phenotyping should not be dismissed and warrants further exploration, particularly for breeding experiments with larger plot sizes. Full article
Show Figures

Figure 1

Back to TopTop