Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Phasmarhabditis papillosa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1706 KiB  
Article
Root-Emitted Volatile Organic Compounds from Daucus carota Modulate Chemotaxis in Phasmarhabditis and Oscheius Nematodes
by Emre Sen, Tamás Lakatos, Tímea Tóth, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(8), 1793; https://doi.org/10.3390/agronomy15081793 - 25 Jul 2025
Viewed by 848
Abstract
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici [...] Read more.
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici—in response to four carrot (Daucus carota) root-derived VOCs: α-pinene, terpinolene, bornyl acetate, and 2-ethyl-1-hexanol. Using a modified Petri dish assay, infective juveniles (IJs) were exposed to each compound across four concentrations (pure, 1000 ppm, 10 ppm, and 0.03 ppm), and their directional movement was quantified using a chemotaxis index (CI). The results revealed strong species-specific and concentration-dependent patterns. O. myriophilus exhibited the highest motility and repellency, particularly toward bornyl acetate and terpinolene, indicating its potential for use in VOC-guided biocontrol strategies. O. onirici showed moderate but consistent attraction to most VOCs, while P. papillosa exhibited generally weak or repellent responses, especially at higher concentrations. None of the compounds tested functioned as strong attractants (CI ≥ 0.2), suggesting that plant-derived VOCs alone may not be sufficient to direct nematode recruitment under field conditions. However, their integration with other biotic cues could enhance nematode-based “lure-and-infect” systems for sustainable slug control in carrot cropping systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 890 KiB  
Article
Species-Specific Chemotactic Responses of Entomopathogenic and Slug-Parasitic Nematodes to Cannabinoids from Cannabis sativa L.
by Marko Flajšman, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(6), 1469; https://doi.org/10.3390/agronomy15061469 - 16 Jun 2025
Viewed by 399
Abstract
The increasing environmental and health concerns associated with synthetic pesticides underscore the need for sustainable alternatives in pest management. This study investigates the chemotactic responses of five nematode species—Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, Phasmarhabditis papillosa, and Oscheius [...] Read more.
The increasing environmental and health concerns associated with synthetic pesticides underscore the need for sustainable alternatives in pest management. This study investigates the chemotactic responses of five nematode species—Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, Phasmarhabditis papillosa, and Oscheius myriophilus—to three major cannabinoids from Cannabis sativa: Δ9-tetrahydrocannabinol (THC), cannabigerol (CBG), and cannabidiol (CBD). Using a standardized chemotaxis assay, we quantified infective juvenile movement and calculated Chemotaxis Index (CI) values across varying cannabinoid concentrations. Our results revealed strong species-specific and dose-dependent responses. THC and CBG elicited significant attractant effects in P. papillosa, S. feltiae, and H. bacteriophora, with CI values ≥ 0.2, indicating their potential as behavioral modulators. In contrast, CBD had weaker or repellent effects, particularly at higher concentrations. O. myriophilus exhibited no consistent response, underscoring species-specific variation in chemosensory sensitivity. These findings demonstrate the potential utility of cannabinoids, especially THC and CBG, as biocompatible cues to enhance the efficacy of nematode-based biological control agents in integrated pest management (IPM). Further field-based studies are recommended to validate these results under realistic agricultural conditions. Full article
(This article belongs to the Special Issue Nematode Diseases and Their Management in Crop Plants)
Show Figures

Figure 1

14 pages, 799 KiB  
Article
Chemotactic Responses of Slug-Parasitic Nematodes to Potato-Tuber-Emitted Volatile Organic Compounds
by Žiga Laznik, Stanislav Trdan and Mohammad Yonesi
Agronomy 2025, 15(4), 951; https://doi.org/10.3390/agronomy15040951 - 14 Apr 2025
Cited by 2 | Viewed by 409
Abstract
Parasitic nematodes play a vital role in soil ecosystems, contributing to natural pest suppression. Among them, slug-parasitic species such as Phasmarhabditis papillosa (Schneider) Andrassy, Oscheius myriophilus (Poinar), and Oscheius onirici Torrini et al. are promising biological control agents against mollusk pests. These nematodes [...] Read more.
Parasitic nematodes play a vital role in soil ecosystems, contributing to natural pest suppression. Among them, slug-parasitic species such as Phasmarhabditis papillosa (Schneider) Andrassy, Oscheius myriophilus (Poinar), and Oscheius onirici Torrini et al. are promising biological control agents against mollusk pests. These nematodes rely on plant-emitted volatile organic compounds (VOCs) for host location, yet their chemotactic responses to specific VOCs remain unclear. This study assessed the responses of P. papillosa, O. myriophilus, and O. onirici to VOCs emitted by potato (S. tuberosum) tubers under varying temperature (18 °C, 22 °C) and concentration conditions (pure compound, 0.03 ppm). The results indicate that octanal was the strongest attractant, particularly for O. myriophilus, while nonanal exhibited species-dependent effects. Hydrocarbons such as undecane and 1,2,4-trimethylbenzene had minimal or repellent effects, whereas 6-methyl-5-hepten-2-one showed moderate attraction. Chemotactic responses were stronger at 18 °C, and attraction increased with higher VOC concentrations, suggesting a threshold-dependent response. These findings enhance our understanding of plant–nematode interactions and suggest that octanal and 6-methyl-5-hepten-2-one could improve nematode-based slug control strategies. However, environmental factors such as soil composition and microbial activity may influence VOC diffusion and nematode recruitment. Future research should focus on optimizing VOC formulations, assessing field applicability, and integrating these findings into sustainable pest management programs. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 1277 KiB  
Article
Responses of Parasitic Nematodes to Volatile Organic Compounds Emitted by Brassica nigra Roots
by Žiga Laznik, Tímea Tóth, Szabolcs Ádám, Stanislav Trdan, Ivana Majić and Tamás Lakatos
Agronomy 2025, 15(3), 664; https://doi.org/10.3390/agronomy15030664 - 6 Mar 2025
Cited by 3 | Viewed by 1139
Abstract
Parasitic nematodes, particularly those in the Rhabditidae family, are vital components of belowground ecosystems, contributing to pest regulation and sustainable agriculture. This study investigated the chemotactic responses of three nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and O. onirici—to volatile organic [...] Read more.
Parasitic nematodes, particularly those in the Rhabditidae family, are vital components of belowground ecosystems, contributing to pest regulation and sustainable agriculture. This study investigated the chemotactic responses of three nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and O. onirici—to volatile organic compounds (VOCs) emitted by Brassica nigra roots under herbivory by Delia radicum larvae. Using a chemotaxis assay, the effects of five VOCs (dimethyl sulfide, dimethyl disulfide, allyl isothiocyanate, phenylethyl isothiocyanate, and benzonitrile) were tested at two concentrations (pure and 0.03 ppm) and two temperatures (18 °C and 22 °C). The results revealed that VOCs and temperature significantly influenced nematode responses, while nematode species and VOC concentration showed limited effects. Benzonitrile consistently demonstrated strong chemoattractant properties, particularly for O. myriophilus and O. onirici. Conversely, allyl isothiocyanate exhibited potent nematicidal effects, inhibiting motility and causing mortality. Dimethyl disulfide and dimethyl sulfide elicited moderate to strong attractant responses, with species- and temperature-dependent variations. Significant interactions between VOCs, temperature, and nematode species highlighted the complexity of these ecological interactions. These findings emphasize the ecological roles of VOCs in mediating nematode behavior and their potential applications in sustainable pest management. Benzonitrile emerged as a promising candidate for nematode-based biocontrol strategies, while allyl isothiocyanate showed potential as a direct nematicidal agent. The study underscores the importance of integrating chemical cues into pest management systems to enhance agricultural sustainability and reduce reliance on chemical pesticides. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

18 pages, 4042 KiB  
Article
The Role of Ascorbate–Glutathione System and Volatiles Emitted by Insect-Damaged Lettuce Roots as Navigation Signals for Insect and Slug Parasitic Nematodes
by Žiga Laznik, Mitja Križman, Jure Zekič, Mihaela Roškarič, Stanislav Trdan and Andreja Urbanek Krajnc
Insects 2023, 14(6), 559; https://doi.org/10.3390/insects14060559 - 15 Jun 2023
Cited by 1 | Viewed by 1797
Abstract
The effect of wireworm-damaged lettuce roots on the antioxidative defense system (ascorbate–glutathione cycle, photosynthetic pigments) and movement of insect/slug parasitic nematodes towards determined root exudates was studied in a glasshouse experiment. Lettuce seedlings were grown in a substrate soil in the absence/presence of [...] Read more.
The effect of wireworm-damaged lettuce roots on the antioxidative defense system (ascorbate–glutathione cycle, photosynthetic pigments) and movement of insect/slug parasitic nematodes towards determined root exudates was studied in a glasshouse experiment. Lettuce seedlings were grown in a substrate soil in the absence/presence of wireworms (Elateridae). The ascorbate–glutathione system and photosynthetic pigments were analyzed by HPLC, while volatile organic compounds (VOC) emitted by lettuce roots were investigated by GC-MS. Herbivore-induced root compounds, namely 2,4-nonadienal, glutathione, and ascorbic acid, were selected for a chemotaxis assay with nematodes Steinernema feltiae, S. carpocapsae, Heterorhabditis bacteriophora, Phasmarhabditis papillosa, and Oscheius myriophilus. Root pests had a negative effect on the content of photosynthetic pigments in the leaves of infested plants, indicating that they reacted to the presence of reactive oxygen species (ROS). Using lettuce as a model plant, we recognized the ascorbate–glutathione system as a redox hub in defense response against wireworms and analyzed its role in root-exudate-mediated chemotaxis of nematodes. Infected plants also demonstrated increased levels of volatile 2,4-nonadienal. Entomopathogenic nematodes (EPNs, S. feltiae, S. carpocapsae, and H. bacteriophora) proved to be more mobile than parasitic nematodes O. myriophilus and P. papillosa towards chemotaxis compounds. Among them, 2,4-nonadienal repelled all tested nematodes. Most exudates that are involved in belowground tritrophic interactions remain unknown, but an increasing effort is being made in this field of research. Understanding more of these complex interactions would not only allow a better understanding of the rhizosphere but could also offer ecologically sound alternatives in the pest management of agricultural systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 1467 KiB  
Article
Discovery of Oscheius myriophilus (Nematoda: Rhabditidae) in Gastropods and Its Similar Virulence to Phasmarhabditis papillosa against Arion vulgaris, Deroceras reticulatum, and Cernuella virgata
by Žiga Laznik, Stanislav Trdan, Tímea Tóth, Szabolcs Ádám, Tamás Lakatos and Ivana Majić
Agronomy 2023, 13(5), 1386; https://doi.org/10.3390/agronomy13051386 - 17 May 2023
Cited by 6 | Viewed by 2205
Abstract
Between July and September 2021, researchers collected 100 specimens of the Spanish slug, Arion vulgaris, and dissected their cadavers to examine them for parasitic nematodes. Molecular techniques were used to identify the nematodes, which confirmed the presence of Oscheius myriophilus, marking [...] Read more.
Between July and September 2021, researchers collected 100 specimens of the Spanish slug, Arion vulgaris, and dissected their cadavers to examine them for parasitic nematodes. Molecular techniques were used to identify the nematodes, which confirmed the presence of Oscheius myriophilus, marking the first recorded instance of this nematode in a gastropod host. To test the virulence of Slovenian strains of O. myriophilus and Phasmarhabditis papillosa and their effects on the feeding behavior of the Spanish slug, grey field slug (Deroceras reticulatum), and vineyard snail (Cernuella virgata), laboratory bioassays were conducted using nematodes grown in vivo. Nematodes were applied at various doses ranging from 10 to 500 nematodes/gastropod. The results showed that O. myriophilus and P. papillosa caused significant mortality (82.5% ± 2.5% at 15 °C) of the Spanish slug while being less effective against the vineyard snail and grey field slug. Nematodes were more virulent at a lower temperature (15 °C) than at the higher temperature (20 °C) tested in the experiment. Additionally, both nematode species significantly reduced gastropod herbivory. The potential use of O. myriophilus and P. papillosa as biological control agents against gastropods is discussed. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

8 pages, 1004 KiB  
Article
Lethality of Three Phasmarhabditis spp. (P. hermaphrodita, P. californica, and P. papillosa) to Succinea Snails
by Jacob Schurkman, Irma Tandingan De Ley and Adler R. Dillman
Agriculture 2022, 12(6), 837; https://doi.org/10.3390/agriculture12060837 - 10 Jun 2022
Cited by 2 | Viewed by 2617
Abstract
Succinea snails are considered to be invasive and pestiferous gastropods to those in the floricultural industry. Their small size makes them difficult to locate within large plant shipments, and their presence on decorative plants can constitute for an entire shipment to be rejected [...] Read more.
Succinea snails are considered to be invasive and pestiferous gastropods to those in the floricultural industry. Their small size makes them difficult to locate within large plant shipments, and their presence on decorative plants can constitute for an entire shipment to be rejected for sale and distribution. Research performed on Succinea snails is limited, especially in terms of effective mitigation strategies. The nematode Phasmarhabditis hermaphrodita is a biological control agent used on pestiferous gastropods throughout some European nations. Here, three strains of Phasmarhabditis from the United States (P. hermaphrodita, P. californica, and P. papillosa) were assessed as biological control agents against Succinea snails in controlled laboratory conditions, along with the molluscicide Sluggo Plus® as a control. All species of Phasmarhabditis applied at 30 IJs/cm2 caused significant mortality compared to the non-treated control and treatment with Sluggo Plus®. P. californica caused 100% mortality 6 days after exposure, while P. hermaphrodita and P. papillosa caused the same mortality rate 7 days after exposure. The molluscicide was unable to cause significant mortality compared to the non-treated control. Additional research with US Phasmarhabditis strains, including their non-target effects and distribution may lead to their being a viable option for biological control against Succinea snails. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

11 pages, 1531 KiB  
Article
Lethality of Phasmarhabditis spp. (P. hermaphrodita, P. californica, and P. papillosa) Nematodes to the Grey Field Slug Deroceras reticulatum on Canna Lilies in a Lath House
by Jacob Schurkman, Christine Dodge, Rory Mc Donnell, Irma Tandingan De Ley and Adler R. Dillman
Agronomy 2022, 12(1), 20; https://doi.org/10.3390/agronomy12010020 - 23 Dec 2021
Cited by 7 | Viewed by 4554
Abstract
The grey field slug, Deroceras reticulatum, is an agricultural pest causing damage to a wide variety of crops each year. The nematode Phasmarhabditis hermaphrodita has been shown to effectively kill this slug in field-simulated conditions, leading to its widespread use as a [...] Read more.
The grey field slug, Deroceras reticulatum, is an agricultural pest causing damage to a wide variety of crops each year. The nematode Phasmarhabditis hermaphrodita has been shown to effectively kill this slug in field-simulated conditions, leading to its widespread use as a biological control agent in Europe. However, recently discovered isolates of Phasmarhabditis from California have not been tested in a field-simulated environment. The lethality of three local isolates of Phasmarhabditis (P. hermaphrodita, P. californica, & P. papillosa) as well as the molluscicide Sluggo Plus® was assessed on D. reticulatum in a lath house. Remaining leaf area on Canna lilies and slug mortality were recorded after 3 weeks of exposure to treatments. Local isolates efficiently killed D. reticulatum and protection from leaf damage was attained by treatment with P. papillosa. Further experimentation is required to assess plant protection afforded by Phasmarhabditis as plants in some trials may have been in poor health. The three tested Phasmarhabditis isolates are reasonable candidates for biological control within the United States but additional information, particularly on the lethality to non-target gastropods, is needed before an informed decision on their use can be made. Full article
(This article belongs to the Special Issue Nematodes: Drivers of Agricultural Ecosystem Performance)
Show Figures

Figure 1

Back to TopTop