Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Perturb and Observe (P& O)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10602 KiB  
Article
A Study of a Generalized Photovoltaic System with MPPT Using Perturb and Observer Algorithms under Varying Conditions
by Zulfiqar Ali, Syed Zagam Abbas, Anzar Mahmood, Syed Wajahat Ali, Syed Bilal Javed and Chun-Lien Su
Energies 2023, 16(9), 3638; https://doi.org/10.3390/en16093638 - 23 Apr 2023
Cited by 18 | Viewed by 3541
Abstract
In recent years, renewable energy (RE) has shown promise as a sustainable solution to the rising energy demand worldwide. Photovoltaic (PV) technology has emerged as a highly viable RE alternative. The majority of PV schemes use specific PV models with specified parameters. This [...] Read more.
In recent years, renewable energy (RE) has shown promise as a sustainable solution to the rising energy demand worldwide. Photovoltaic (PV) technology has emerged as a highly viable RE alternative. The majority of PV schemes use specific PV models with specified parameters. This study proposes a PV model with generic specifications, a PV array, a DC/DC converter, a DC/AC inverter, maximum power point tracking (MPPT), and grid synchronization using a feedback control system under the MATLAB/Simulink environment. Various MPPT techniques have been adapted to track the PV’s maximum power point (MPP); however, there are various uncertainties. To address these challenges, this paper presented a perturb and observe (P&O) strategy to track the MPP of PV systems reliably. The MPP of a PV system varies according to meteorological order, such as solar radiation and cell temperature. The MPPT primarily gathers the maximum current and voltage of the PV array and provides them to the load using a boost converter. The MPPT performance and PV array attributes are analyzed during abrupt weather changes. Finally, a feedback controller is configured to perform synchronization of the inverter with the grid. The validity and reliability of the PV module using P&O methods provide a higher efficacy of MPPT under MATLAB/simulation. Finally, the presented results endorse the strength of the proposed technique. Full article
Show Figures

Figure 1

17 pages, 4636 KiB  
Article
A Novel Combined Control Strategy for a Two-Stage Parallel Full-Wave ZCS Quasi Resonant Boost Converter for PV-Based Battery Charging Systems with Maximum Power Point Tracking
by Reza Sabzehgar, Rami Ghali and Poria Fajri
Electricity 2022, 3(1), 145-161; https://doi.org/10.3390/electricity3010009 - 8 Mar 2022
Cited by 5 | Viewed by 3553
Abstract
This work deals with the design and validation of a combined control strategy to satisfy the requirements for both soft switching and Maximum Power Point Tracking (MPPT) for a Photo Voltaic based (PV-based) battery charging system. The proposed controller is employed for a [...] Read more.
This work deals with the design and validation of a combined control strategy to satisfy the requirements for both soft switching and Maximum Power Point Tracking (MPPT) for a Photo Voltaic based (PV-based) battery charging system. The proposed controller is employed for a two-stage parallel full-wave Zero Current Switching (ZCS) quasi resonant boost converter to obtain maximum voltage using Perturb and Observation (P&O) method. The controller utilizes frequency modulation to regulate the output voltage, considering any changes experienced due to the intermittent nature of the PV system. Operating principles of the tow-stage parallel boost converter are thoroughly analyzed, and Matlab Simscape toolbox and its real-time workshop capability is utilized to evaluate the performance of the proposed controller for a battery charging system. Full article
(This article belongs to the Special Issue Recent Advances in Grid Connected Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 3119 KiB  
Article
Improvement of Self-Predictive Incremental Conductance Algorithm with the Ability to Detect Dynamic Conditions
by Sanaz Jalali Zand, Kuo-Hsien Hsia, Naser Eskandarian and Saleh Mobayen
Energies 2021, 14(5), 1234; https://doi.org/10.3390/en14051234 - 24 Feb 2021
Cited by 20 | Viewed by 2501
Abstract
This paper presents a new version of the incremental conductance algorithm for more accurate tracking of the maximum power point (MPP). The modified algorithm is called self-predictive incremental conductance (SPInC), and it recognizes the operational region. It is capable of detecting dynamic conditions, [...] Read more.
This paper presents a new version of the incremental conductance algorithm for more accurate tracking of the maximum power point (MPP). The modified algorithm is called self-predictive incremental conductance (SPInC), and it recognizes the operational region. It is capable of detecting dynamic conditions, and it detects sudden changes in power resulting from changes in the intensity of radiation or temperature. By selecting the appropriate step size, it obtains maximum power from the panel at any moment. The improved algorithm reduces output power ripple and increases the efficiency of the system by detecting the operating area and selecting the appropriate step size for each region. The SPInC algorithm divides the system’s work areas into three operating zones. It calculates the size of the appropriate step changes for each region after identifying the regions, which allows for more accurate tracking of the MPP and increases the system efficiency at a speed equal to the speed of the conventional method. These additional operations did not result in a system slowdown in the tracking maximum power. According to the MATLAB/Simulink simulation results, the SPInC algorithm is more efficient than conventional InC, and the ripple output power is reduced. SPInC is also compared to the improved perturb and observe (P&O) algorithm. In general, SPInC can compete with the popular algorithms that have been recently proposed for MPPT in the other researches. Full article
Show Figures

Figure 1

19 pages, 1377 KiB  
Article
Analysis of a Traditional and a Fuzzy Logic Enhanced Perturb and Observe Algorithm for the MPPT of a Photovoltaic System
by Diogo Remoaldo and Isabel Jesus
Algorithms 2021, 14(1), 24; https://doi.org/10.3390/a14010024 - 14 Jan 2021
Cited by 40 | Viewed by 5772
Abstract
This paper presents the results obtained for the maximum power point tracking (MPPT) technique applied to a photovoltaic (PV) system, composed of five solar panels in series using two different methodologies. First, we considered a traditional Perturb and Observe (P&O) algorithm and in [...] Read more.
This paper presents the results obtained for the maximum power point tracking (MPPT) technique applied to a photovoltaic (PV) system, composed of five solar panels in series using two different methodologies. First, we considered a traditional Perturb and Observe (P&O) algorithm and in a second stage we applied a Fuzzy Logic Controller (FLC) that uses fuzzy logic concepts to improve the traditional P&O; both were implemented in a boost converter. The main aim of this paper is to study if an artificial intelligence (AI) based MPPT method, can be more efficient, stable and adaptable than a traditional MPPT method, in varying environment conditions, namely solar irradiation and/or environment temperature and also to analyze their behaviour in steady state conditions. The proposed FLC with a rule base collection of 25 rules outperformed the controller using the traditional P&O algorithm due to its adaptative step size, enabling the FLC to adapt the PV system faster to changing environment conditions, guessing the correct maximum power point (MPP) faster and achieving lower oscillations in steady state conditions, leading to higher generated energy due to lower losses both in steady state and dynamic environment conditions. The simulations in this study were performed using MATLAB (Version 2018)/Simulink. Full article
(This article belongs to the Special Issue Algorithms for PID Controller 2021)
Show Figures

Figure 1

24 pages, 10717 KiB  
Article
A Novel Hybrid Approach for Maximizing the Extracted Photovoltaic Power under Complex Partial Shading Conditions
by Altwallbah Neda Mahmod Mohammad, Mohd Amran Mohd Radzi, Norhafiz Azis, Suhaidi Shafie and Muhammad Ammirrul Atiqi Mohd Zainuri
Sustainability 2020, 12(14), 5786; https://doi.org/10.3390/su12145786 - 18 Jul 2020
Cited by 17 | Viewed by 2836
Abstract
The convenient design of a maximum power point tracking (MPPT) controller is key to the success of photovoltaic (PV) system performance in order to maximize the extracted power, which is affected significantly by weather fluctuations, particularly partial shading condition (PSC). This paper proposes [...] Read more.
The convenient design of a maximum power point tracking (MPPT) controller is key to the success of photovoltaic (PV) system performance in order to maximize the extracted power, which is affected significantly by weather fluctuations, particularly partial shading condition (PSC). This paper proposes a novel hybrid MPPT approach based on a modified Perturb and Observe (P&O) assisted by the Extremum Seeking Control (ESC) strategy, combining the benefits of these simple algorithms and, meanwhile, eliminating their drawbacks. The proposed algorithm is able to track the maximum possible power under any level of weather fluctuation, with comprehensive enhancement on all aspects of high performance, boosting the PV array efficiency to 100%, reducing the convergence time to less than 100 ms, completely eradicating the oscillations around the achieved power, and maintaining the simplicity levels of both involved strategies. More importantly, this algorithm is applicable for any PV array configuration, which enhances the robustness and novelty of the algorithm. The performance is verified using MATLAB/Simulink. A boost converter is used for controlling DC to DC (direct current to direct current) power. The proposed algorithm’s performance is compared with the conventional P&O and incremental conductance (IC) algorithms under four different cases of weather conditions. The shortcomings of these algorithms are illustrated and the analysis confirms the effectiveness of the proposed algorithm accordingly. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

29 pages, 9835 KiB  
Article
An Enhanced Adaptive Perturb and Observe Technique for Efficient Maximum Power Point Tracking Under Partial Shading Conditions
by Altwallbah Neda Mahmod Mohammad, Mohd Amran Mohd Radzi, Norhafiz Azis, Suhaidi Shafie and Muhammad Ammirrul Atiqi Mohd Zainuri
Appl. Sci. 2020, 10(11), 3912; https://doi.org/10.3390/app10113912 - 5 Jun 2020
Cited by 47 | Viewed by 5401
Abstract
In this paper, we propose enhanced adaptive step size Perturb and Observe (P&O) maximum power point tracking (MPPT) with properly organized comparison sequences which lead to achieving the actual maximum power point (MPP) effectively in the presence of partial shading conditions, taking into [...] Read more.
In this paper, we propose enhanced adaptive step size Perturb and Observe (P&O) maximum power point tracking (MPPT) with properly organized comparison sequences which lead to achieving the actual maximum power point (MPP) effectively in the presence of partial shading conditions, taking into account the optimization of all aspects of high-performance MPPT to be novel, simpler, fast, and accurate, with the best efficiency reaching up to almost 100%. In this study, the proposed algorithm, along with a boost converter, was designed and simulated in MATLAB/Simulink to validate the performance of the suggested technique. Four different levels of partial shading conditions were considered for system examination: weak, moderate, and two different levels of strong shading. Each case was applied separately first and then combined in a sequence arrangement to provide robust and comprehensive testing which can provide a guaranteed assessment of the proposed algorithm. The performance of the suggested technique is discussed and compared with that of conventional P&O and conventional incremental conductance (IC) MPPT techniques. The failure of the conventional techniques to work efficiently in the presence of partial shading conditions was observed from the simulation results. Meanwhile, the success of the proposed technique and its high performance were clearly confirmed under partial shading conditions with no increase in complexity or convergence time. Full article
(This article belongs to the Special Issue Power Electronic Applications in Power and Energy Systems)
Show Figures

Figure 1

16 pages, 1486 KiB  
Article
A Novel Fast MPPT Strategy for High Efficiency PV Battery Chargers
by Jose Miguel Espi and Jaime Castello
Energies 2019, 12(6), 1152; https://doi.org/10.3390/en12061152 - 25 Mar 2019
Cited by 9 | Viewed by 3176
Abstract
The paper presents a new maximum power point tracking (MPPT) method for photovoltaic (PV) battery chargers. It consists of adding a low frequency modulation to the duty-cycle and then multiplying the ac components of the panel voltage and power. The obtained parameter, proportional [...] Read more.
The paper presents a new maximum power point tracking (MPPT) method for photovoltaic (PV) battery chargers. It consists of adding a low frequency modulation to the duty-cycle and then multiplying the ac components of the panel voltage and power. The obtained parameter, proportional to the conductance error, is used as a gain for the integral action in the charging current control. The resulting maximum power point (MPP) is very still, since the integral gain tends to zero at the MPP, yielding PV efficiencies above 99%. Nevertheless, when the operating point is not the MPP, the integral gain is large enough to provide a fast convergence to the MPP. Furthermore, a fast power regulation on the right side of the MPP is achieved in case the demanded power is lower than the available maximum PV power. In addition, the MPPT is compatible with the control of a parallel arrangement of converters by means of a droop law. The MPPT algorithm gives an averaged duty-cycle, and the droop compensation allows duty-cycles to be distributed to all active converters to control their currents individually. Moreover, the droop strategy allows activation and deactivation of converters without affecting the MPP and battery charging operation. The proposed control has been assayed in a battery charger formed by three step-down converters in parallel using synchronous rectification, and is solved in a microcontroller at a sampling frequency of 4 kHz. Experimental results show that, in the worst case, the MPPT converges in 50 ms against irradiance changes and in 100 ms in case of power reference changes. Full article
(This article belongs to the Special Issue Photovoltaic and Wind Energy Conversion Systems)
Show Figures

Figure 1

11 pages, 2750 KiB  
Article
Improved Perturb and Observation Method Based on Support Vector Regression
by Bicheng Tan, Xin Ke, Dachuan Tang and Sheng Yin
Energies 2019, 12(6), 1151; https://doi.org/10.3390/en12061151 - 25 Mar 2019
Cited by 19 | Viewed by 3144
Abstract
Solar energy is the most valuable renewable energy source due to its abundant storage and is pollution-free. The output power of photovoltaic (PV) arrays will vary with external conditions, such as irradiance and temperature fluctuations. Therefore, an increase in the energy conversion rate [...] Read more.
Solar energy is the most valuable renewable energy source due to its abundant storage and is pollution-free. The output power of photovoltaic (PV) arrays will vary with external conditions, such as irradiance and temperature fluctuations. Therefore, an increase in the energy conversion rate is inseparable from maximum power point tracking (MPPT). The existing MPPT technology cannot either balance the tracking speed and tracking accuracy, or the implementation cost is too high due to the complexity of the calculation. In this paper, a new maximum power point tracking (MPPT) method was proposed. It improves the traditional perturb and observation (P&O) method by introducing the support vector regression (SVR) algorithm. In this method, the current maximum power point voltage is predicted by the trained model and compared with the current operating voltage to predict a reasonable step size. The boost DC/ DC (Direct current-Direct current converter) convert system applying the improved method and the traditional P&O was simulated in MATLAB-Simulink, respectively. The results of the simulation show that compared with the traditional P&O method, the proposed new method both improves the convergence time and tracking accuracy. Full article
Show Figures

Figure 1

25 pages, 7837 KiB  
Article
A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Interpolation
by Victor Andrean, Pei Cheng Chang and Kuo Lung Lian
Energies 2018, 11(11), 2966; https://doi.org/10.3390/en11112966 - 1 Nov 2018
Cited by 21 | Viewed by 4776
Abstract
Maximum Power Point Tracking (MPPT) enables photovoltaic (PV) systems to extract as much solar energy as possible. Depending on which type of controller is used, PV systems can be classified as centralized MPPT (CMPPT) or decentralized MPPT (DMPPT). In substring-level systems, it is [...] Read more.
Maximum Power Point Tracking (MPPT) enables photovoltaic (PV) systems to extract as much solar energy as possible. Depending on which type of controller is used, PV systems can be classified as centralized MPPT (CMPPT) or decentralized MPPT (DMPPT). In substring-level systems, it is known that the energy yield of DMPPT can outweigh the power electronics cost. At the substring level, it is usually assumed that the PV curve exhibits a single peak, even under partial shading. Thus, the control algorithms for DMPPT are usually less complicated than those employed in CMPPT systems. This paper provides a comprehensive review of four simple DMPPT algorithms, which are perturb and observe (P&O), incremental conductance (INC), golden section search (GSS), and Newton’s quadratic interpolation (NQI). The comparison of these algorithms are done from the perspective of numerical analysis. Guidelines on how to set initial conditions and convergence criteria are thoroughly explained. This is of great interest to PV engineers when selecting algorithms for use in MPPT implementations. In addition, various problems that have never previously been identified before are highlighted and discussed. For instance, the problems of NQI trap is identified and methods on how to mitigate it are also discussed. All the algorithms are tested under various conditions including static, dynamic, and rapid changes of irradiance. Both simulation and experimental results indicate that P&O and INC are the best algorithms for DMPPT. Full article
(This article belongs to the Special Issue Sustainable Energy Systems)
Show Figures

Figure 1

15 pages, 1593 KiB  
Article
Maximum Power Point Tracking of Photovoltaic Panels by Using Improved Pattern Search Methods
by Andrés Tobón, Julián Peláez-Restrepo, Juan P. Villegas-Ceballos, Sergio Ignacio Serna-Garcés, Jorge Herrera and Asier Ibeas
Energies 2017, 10(9), 1316; https://doi.org/10.3390/en10091316 - 1 Sep 2017
Cited by 51 | Viewed by 6690
Abstract
This paper deals with the optimization of maximum power point tracking when a photovoltaic panel is modelled as two diodes. The adopted control is implemented using a sliding mode control (SMC) and the optimization is implemented using an improved Pattern Search Method. Thus, [...] Read more.
This paper deals with the optimization of maximum power point tracking when a photovoltaic panel is modelled as two diodes. The adopted control is implemented using a sliding mode control (SMC) and the optimization is implemented using an improved Pattern Search Method. Thus, the problem of maximum power point tracking is reduced to an optimization problem whose solution is implemented by Pattern Search Techniques, inheriting their convergence properties. Simulation examples show the effectiveness of the proposed technique in practice, being able to deal with different radiations. In addition, improved pattern search method (IPSM) is compared with other techniques such as perturb & observe and Particle Swarm optimization, after which IPSM presents lower energy losses in comparison with the other two algorithms, with the advantage of ensuring the location of the optimal power point in all cases. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

25 pages, 11174 KiB  
Article
Implementing a Novel Hybrid Maximum Power Point Tracking Technique in DSP via Simulink/MATLAB under Partially Shaded Conditions
by Shahrooz Hajighorbani, Mohd Amran Mohd Radzi, Mohd Zainal Abidin Ab Kadir, Suhaidi Shafie and Muhammad Ammirrul Atiqi Mohd Zainuri
Energies 2016, 9(2), 85; https://doi.org/10.3390/en9020085 - 28 Jan 2016
Cited by 11 | Viewed by 6390
Abstract
This paper presents a hybrid maximum power point tracking (MPPT) method to detect the global maximum power point (GMPP) under partially shaded conditions (PSCs), which have more complex characteristics with multiple peak power points. The hybrid method can track the GMPP when a [...] Read more.
This paper presents a hybrid maximum power point tracking (MPPT) method to detect the global maximum power point (GMPP) under partially shaded conditions (PSCs), which have more complex characteristics with multiple peak power points. The hybrid method can track the GMPP when a partial shadow occurs either before or after acquiring the MPP under uniform conditions. When PS occurs after obtaining the MPP during uniform conditions, the new operating point should be specified by the modified linear function, which reduces the searching zone of the GMPP and has a significant effect on reducing the reaching time of the GMPP. Simultaneously, the possible MPPs are scanned and stored when shifting the operating point to a new reference voltage. Finally, after determining the possible location of the GMPP, the GMPP is obtained using the modified P&O. Conversely, when PS occurs before obtaining the MPP, the referenced MPP should be specified. Thus, after recognizing the possible location of the GMPP, the modified P&O can be used to obtain the GMPP. The simulation and experimental implementations for the proposed algorithm are performed with different scenarios of shadowing under different irradiations, which clearly indicate that the proposed method is robust and has a fast tracking speed. Moreover, this work presents the load sizing method for PSCs to avoid controller failure when detecting the GMPP. Additionally, in this paper, the user-friendly method for programming the digital signal processing (DSP) via Simulink/MATLAB is presented in detail. Full article
Show Figures

Graphical abstract

31 pages, 921 KiB  
Article
Dual Search Maximum Power Point (DSMPP) Algorithm Based on Mathematical Analysis under Shaded Conditions
by Shahrooz Hajighorbani, Mohd Amran Mohd Radzi, Mohd Zainal Abidin Ab Kadir and Suhaidi Shafie
Energies 2015, 8(10), 12116-12146; https://doi.org/10.3390/en81012116 - 27 Oct 2015
Cited by 9 | Viewed by 6499
Abstract
Photovoltaic (PV) systems represent a clean, renewable source of energy that has non-linear current-voltage (I-V) and power-voltage (P-V) characteristics. To increase the efficiency, a PV system must operate at the maximum power point (MPP) to [...] Read more.
Photovoltaic (PV) systems represent a clean, renewable source of energy that has non-linear current-voltage (I-V) and power-voltage (P-V) characteristics. To increase the efficiency, a PV system must operate at the maximum power point (MPP) to produce the maximum available power. Under uniform conditions, there is only a single MPP in the P-V curve of a PV system; however, determining the MPP is more complicated under partially shaded conditions (PSCs) because multiple peak power points exist. In recent years, various studies have been performed to obtain the highest peak power point under PSCs, which is referred to as the global maximum power point (GMPP). In this paper, a novel method based on mathematical analysis that reduces the search zone and simultaneously identifies the possible MPPs in the specified zone is proposed; this proposed method is called the dual search maximum power point (DSMPP) algorithm. To evaluate the effectiveness of the proposed method, simulation and hardware implementations are carried out. The results show that the search time of GMPP is significantly reduced and the GMPP is detected in the minimum amount of time with high accuracy and minimum oscillation in the power produced. Full article
Show Figures

Figure 1

Back to TopTop