# A Novel Hybrid Approach for Maximizing the Extracted Photovoltaic Power under Complex Partial Shading Conditions

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modelling of Solar PV under Uniform Irradiation and PSC

_{S}series resistance, R

_{P}parallel resistance, I

_{O}reverse saturation current, V

_{T}thermal voltage of PV module, T temperature of the p‒n junction, N

_{S}series number of cells, K Boltzmann constant =1.38073 × 10−23 J K, N

_{P}parallel number of cells, q electron charge = 1.6022 × 10−19 C, and α diode ideality factor.

## 3. Partial Shading Effect on Solar PV

## 4. Boost Converter

## 5. The Proposed MPPT Technique

## 6. Simulation Results and Discussion

#### 6.1. Performance under Uniform Solar Irradiation

^{2}) at 25

^{0}C. Single peak existed in the P-V characteristics, as shown in Figure 9. Figure 10 illustrates the simulation results for this case with performance comparison between the proposed algorithm and the conventional P&O and IC algorithms in power, voltage, and current. It was observed that the proposed algorithm converges exactly to the MPP of 472 W at 224.5 V and 2.1 A, within very short tracking time (less than 100 ms) and with very reduced oscillations and 100% efficiency. Part (d) shows the obtained gradient from the ESC scheme, which indicated the stability and idealistic execution under uniform conditions. The other two algorithms were able to extract the MPP with an average power of 470.6 W, with 99.7% efficiency, but with the presence of oscillations at the same voltage and current as the proposed algorithm. The quantitative analysis of Figure 10 is shown in Table 2.

#### 6.2. Performance under Partial Shading Conditions

#### 6.3. Performance of the Proposed Algorithm under Rapid Change in Irradiation Conditions

## 7. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

**Figure A1.**PV patterns used for simulation: (

**a**) first pattern, (

**b**) second pattern, and (

**c**) third pattern.

**Figure A3.**The simulation results of the proposed algorithm for the three patterns: (

**a**) the tracked output power; (

**b**) the output voltage of the boost converter; (

**c**) the output current of the boost converter, and (

**d**) the gradient behaviors.

**Figure A4.**PV array configurations used for simulation: (

**a**) first array of 4S2P and (

**b**) second array of 3S2P.

**Figure A5.**The PSC scenarios for both configurations: (

**a**) PSC scenarios for the first array of 4S2Pand (

**b**) PSC scenarios for the first array of 3S2P.

**Figure A6.**The simulation results of the proposed algorithm for the three PSC patterns of 4S2P array: (

**a**) the tracked output power; (

**b**) the output voltage of the boost converter; (

**c**) the output current of the boost converter, and (

**d**) the gradient behaviors.

**Figure A7.**The simulation results of the proposed algorithm for the three PSC patterns of 3S2P array: (

**a**) the tracked output power; (

**b**) the output voltage of the boost converter; (

**c**) the output current of the boost converter, and (

**d**) the gradient behaviors.

Pattern | Irradiation of the Parallel First and Second 4 Series Modules | Ideal Power at GMMP (A) | Tracked Power at GMMP (B) | Efficiency $\left(\frac{\mathbf{B}}{\mathbf{A}}\times 100\right)$ | Tracking Speed |
---|---|---|---|---|---|

First (partial shading) | [1000,1000,800,800] [1000,1000,500,500] | 435.5 W | 435.5 W | 100% | 0.0633 s |

Second (partial shading) | [1000,1000,600,400] [600,400,400,400] | 263.7 W | 263.7 W | 100% | 0.0638 s |

Third (partial shading) | [1000,800,600,400] [600,400,400,200] | 243.6 W | 243.6 W | 100% | 0.0581 s |

Pattern | Irradiation of the Parallel First and Second 3 Series Modules | Ideal Power at GMMP (A) | Tracked Power at GMMP (B) | Efficiency $\left(\frac{\mathbf{B}}{\mathbf{A}}\times 100\right)$ | Tracking Speed |
---|---|---|---|---|---|

First (partial shading) | [1000,1000,800] [800,600,600] | 346.8 W | 346.8 W | 100% | 0.0799 s |

Second (partial shading) | [1000,500,300] [1000,700,700] | 247.9 W | 247.9 W | 100% | 0.0876 s |

Third (partial shading) | [1000,500,300] [1000,500,300] | 164.8 W | 164.8 W | 100% | 0.0776 s |

## References

- Loukriz, A.; Messalti, S.; Harrag, A.; Harrag, A. Design, simulation, and hardware implementation of novel optimum operating point tracker of PV system using adaptive step size. Int. J. Adv. Manuf. Technol.
**2019**, 101, 1671–1680. [Google Scholar] [CrossRef] - Stitou, M.; Fadili, A.E.; Chaoui, F.Z.; Giri, F. Output feedback control of sensorless photovoltaic systems, with maximum power point tracking. CONPRA Control Eng. Pract.
**2019**, 84, 1–12. [Google Scholar] [CrossRef] - Li, Q.; Zhao, S.; Wang, M.; Zou, Z.; Wang, B.; Chen, Q. An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency. APEN Appl. Energy
**2017**, 195, 523–537. [Google Scholar] [CrossRef] - Loukriz, A.; Haddadi, M.; Messalti, S. Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems. ISATRA ISA Trans.
**2016**, 62, 30–38. [Google Scholar] [CrossRef] [PubMed] - Radjai, T.; Rahmani, L.; Mekhilef, S.; Gaubert, J.P. Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE. SE Sol. Energy
**2014**, 110, 325–337. [Google Scholar] [CrossRef] - Safari, A.; Mekhilef, S. Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE Trans. Ind. Electron.
**2011**, 58, 1154–1161. [Google Scholar] [CrossRef] - Subudhi, B.; Pradhan, R. A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans. Sustain. Energy
**2013**, 4, 89–98. [Google Scholar] [CrossRef] - Kwan, T.H.; Wu, X. Maximum power point tracking using a variable antecedent fuzzy logic controller. SE Sol. Energy
**2016**, 137, 189–200. [Google Scholar] [CrossRef] - Bouselham, L.; Hajji, M.; Hajji, B.; Bouali, H. A New MPPT-based ANN for Photovoltaic System under Partial Shading Conditions. Energy Procedia
**2017**, 111, 924–933. [Google Scholar] [CrossRef] - de Oliveira, F.M.; Oliveira da Silva, S.A.; Durand, F.R.; Sampaio, L.P.; Bacon, V.D.; Campanhol, L.B. Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning. IET Power Electron.
**2016**, 9, 1180–1191. [Google Scholar] [CrossRef] - Larbes, C.; Aït Cheikh, S.M.; Obeidi, T.; Zerguerras, A. Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renew. Energy
**2009**, 34, 2093–2100. [Google Scholar] [CrossRef] - Ge, X.; Ahmed, F.W.; Rezvani, A.; Aljojo, N.; Samad, S.; Foong, L.K. Implementation of a novel hybrid BAT-Fuzzy controller based MPPT for grid-connected PV-battery system. CONPRA Control Eng. Pract.
**2020**, 98, 104380. [Google Scholar] [CrossRef] - Ahmed, J.; Salam, Z. A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability. APEN Appl. Energy
**2014**, 119, 118–130. [Google Scholar] [CrossRef] - A Novel Ten Check Maximum Power Point Tracking Algorithm for a Standalone Solar Photovoltaic System. Electronics
**2018**, 7, 327. [CrossRef] [Green Version] - Ram, J.P.; Babu, T.S.; Rajasekar, N. A comprehensive review on solar PV maximum power point tracking techniques. Renew. Sustain. Energy Rev.
**2017**, 67, 826–847. [Google Scholar] [CrossRef] - Ahmad, R.; Murtaza, A.F.; Sher, H.A. Power tracking techniques for efficient operation of photovoltaic array in solar applications—A review. Renew. Sustain. Energy Rev.
**2019**, 101, 82–102. [Google Scholar] [CrossRef] - Ishaque, K.; Salam, Z.; Lauss, G. The performance of perturb and observe and incremental conductance maximum power point tracking method under dynamic weather conditions. Appl. Energy
**2014**, 119, 228–236. [Google Scholar] [CrossRef] - Abdel-Salam, M.; El-Mohandes, M.T.; El-Ghazaly, M. An Efficient Tracking of MPP in PV Systems Using a Newly-Formulated P&O-MPPT Method Under Varying Irradiation Levels. J. Electr. Eng. Technol.
**2019**, 15, 501–513. [Google Scholar] - Aashoor, F.A.O.; Robinson, F.V.P. A variable step size perturb and observe algorithm for photovoltaic maximum power point tracking. In Proceedings of the 2012 47th International Universities Power Engineering Conference (UPEC), London, UK, 4–7 September 2012. [Google Scholar]
- Killi, M.; Samanta, S. Modified Perturb and Observe MPPT Algorithm for Drift Avoidance in Photovoltaic Systems. IEEE Trans. Ind. Electron.
**2015**, 62, 5549–5559. [Google Scholar] [CrossRef] - Belkaid, A.; Colak, I.; Kayisli, K. Implementation of a modified P&O-MPPT algorithm adapted for varying solar radiation conditions. Electr. Eng.-Berl.
**2017**, 99, 839–846. [Google Scholar] - Mahmod Mohammad, A.N.; Mohd Radzi, M.A.; Azis, N.; Shafie, S.; Atiqi Mohd Zainuri, M.A. An Enhanced Adaptive Perturb and Observe Technique for Efficient Maximum Power Point Tracking Under Partial Shading Conditions. Appl. Sci.
**2020**, 10, 3912. [Google Scholar] [CrossRef] - Shi, J.-Y.; Xue, F.; Qin, Z.-J.; Zhang, W.; Ling, L.-T.; Yang, T. Improved Global Maximum Power Point Tracking for Photovoltaic System via Cuckoo Search under Partial Shaded Conditions. J. Power Electron.
**2016**, 16, 287–296. [Google Scholar] [CrossRef] [Green Version] - Bataineh, K.; Eid, N. A hybrid maximum power point tracking method for photovoltaic systems for dynamic weather conditions. Resources
**2018**, 7, 68. [Google Scholar] [CrossRef] [Green Version] - Leyva, R.; Alonso, C.; Queinnec, I.; Cid-Pastor, A.; Lagrange, D.; Martinez-Salamero, L. MPPT of Photovoltaic Systems using Extremum—Seeking Control. IEEE Trans. Aerosp. Electron. Syst.
**2006**, 42, 249. [Google Scholar] [CrossRef] - Malek, H.; Dadras, S.; Chen, Y. Performance analysis of fractional order extremum seeking control. ISA Trans.
**2016**, 63, 281–287. [Google Scholar] [CrossRef] [PubMed] - Muhammadsharif, F.F.; Hashim, S.; Hameed, S.S.; Ghoshal, S.K.; Abdullah, I.K.; Macdonald, J.E.; Yahya, M.Y. Brents algorithm based new computational approach for accurate determination of single-diode model parameters to simulate solar cells and modules. Sol. Energy
**2019**, 193, 782–798. [Google Scholar] [CrossRef] - Pilakkat, D.; Kanthalakshmi, S. An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Sol. Energy
**2019**, 178, 37–47. [Google Scholar] - Pillai, D.S.; Rajasekar, N.; Ram, J.P.; Chinnaiyan, V.K. Design and testing of two phase array reconfiguration procedure for maximizing power in solar PV systems under partial shade conditions (PSC). ECM Energy Convers. Manag.
**2018**, 178, 92–110. [Google Scholar] [CrossRef] - Li, X.; Peng, J.; Li, N.; Wu, Y.; Fang, Y.; Li, T.; Wang, M.; Wang, C. Optimal design of photovoltaic shading systems for multi-story buildings. J. Clean. Prod.
**2019**, 220, 1024–1038. [Google Scholar] [CrossRef] - Wen, Z.; Chen, J.; Cheng, X.; Niu, H.; Luo, X. A new and simple split series strings approach for adding bypass diodes in shingled cells modules to reduce shading loss. Sol. Energy
**2019**, 184, 497–507. [Google Scholar] [CrossRef] - Kolsi, S.; Samet, H.; Amar, M.B. Design Analysis of DC-DC Converters Connected to a Photovoltaic Generator and Controlled by MPPT for Optimal Energy Transfer throughout a Clear Day. JPEE J. Power Energy Eng.
**2014**, 2, 27–34. [Google Scholar] [CrossRef] [Green Version] - Bennett, T.; Zilouchian, A.; Messenger, R. A proposed maximum power point tracking algorithm based on a new testing standard. SE Sol. Energy
**2013**, 89, 23–41. [Google Scholar] [CrossRef] - Ishaque, K.; Salam, Z. A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Sol. Energy
**2011**, 85, 2217–2227. [Google Scholar] [CrossRef] - Kollimalla, S.K.; Mishra, M.K. A Novel Adaptive P&O MPPT Algorithm Considering Sudden Changes in the Irradiance. IEEE Trans. Energy Convers. EC
**2014**, 29, 602–610. [Google Scholar] - Ghaffari, A.; Seshagiri, S.; Krstic, M. Power optimization for photovoltaic micro-converters using multivariable gradient-based extremum-seeking. In Proceedings of the 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 3383–3388. [Google Scholar]
- Ariyur, K.B.; Krstic, M. Real Time Optimization by Extremum Seeking Control; Wiley Interscience: Hoboken, NJ, USA, 2003. [Google Scholar]
- Kebir, A.; Woodward, L.; Akhrif, O. Extremum-Seeking Control with Adaptive Excitation: Application to a Photovoltaic System. IEEE Trans. Ind. Electron.
**2018**, 65, 2507–2517. [Google Scholar] [CrossRef] [Green Version] - Tan, Y.; Moase, W.H.; Manzie, C.; Nesic, D.; Mareels, I.M.Y. Extremum seeking from 1922 to 2010. In Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–31 July 2010; pp. 14–26. [Google Scholar]
- Ghaffari, A.; Seshagiri, S.; Krstic, M. Multivariable maximum power point tracking for photovoltaic micro-converters using extremum seeking. Control Eng. Pract.
**2015**, 35, 83–91. [Google Scholar] [CrossRef]

**Figure 2.**PV patterns used for simulation: (

**a**) first pattern, (

**b**) second pattern, (

**c**) third pattern, and (

**d**) fourth pattern.

**Figure 10.**The simulation results of the proposed algorithm and the conventional P&O and IC algorithms for the first pattern: (

**a**) the tracked output power; (

**b**) the output voltage of the boost converter; (

**c**) the output current of the boost converter; and (

**d**) the gradient behavior for the proposed algorithm.

**Figure 12.**The simulation results of the proposed algorithm and the conventional P&O and IC algorithms for the first shading pattern: (

**a**) the tracked output power; (

**b**) the output voltage of the boost converter; (

**c**) the output current of the boost converter; and (

**d**) the gradient behavior for the proposed algorithm.

**Figure 13.**The simulation results of the proposed algorithm and the conventional P&O and IC algorithms for the second shading pattern: (

**a**) the tracked output power; (

**b**) the output voltage of the boost converter; (

**c**) the output current of the boost converter; (

**d**) the gradient behavior for the proposed algorithm.

**Figure 14.**The simulation results of the proposed algorithm and the conventional P&O and IC algorithms for the third shading pattern: (

**a**) the tracked output power; (

**b**) the output voltage of the boost converter; (

**c**) the output current of the Boost converter; and (

**d**) the gradient behavior for the proposed algorithm.

**Figure 15.**Performance under the sequence of the combined uniform and three shading patterns with (

**a**) the output power, (

**b**) the output voltage, (

**c**) the output current, and (

**d**) the gradient behavior.

Component | Parameter Value |
---|---|

Switching frequency, fs | 10 kHz |

Inductor, L | 0.5 mH |

Capacitor, Cout | 100 μF |

Load resistance, RL | 110 Ω |

Pattern | Irradiation of the Six Series Modules | Ideal POWER at GMMP (A) | Tracked Power at GMMP (B) | Efficiency $\left(\frac{\mathbf{B}}{\mathbf{A}}\times 100\right)$ | Tracking Speed |
---|---|---|---|---|---|

One (uniform condition) | [1000,1000,1000,1000,1000,1000] | 472 W | 472 W | 100% | 0.0846 s |

Two (partial shading) | [1000,1000,1000,700,500,300] | 242.9 W | 242.9 W | 100% | 0.0778 s |

Three (partial shading) | [1000,800,600,400,200,200] | 148.7 W | 148.7 W | 100% | 0.083 s |

Four (partial shading) | [1000,1000,700,700,500,200] | 230.1 W | 230.1 W | 100% | 0.079 s |

**Table 3.**Performance analysis of the proposed algorithm under the sequence of the uniform and three shading patterns.

Pattern | Power at MPP | Measured Power | Efficiency |
---|---|---|---|

Pattern one (0–0.3 s) | 472 W | 472 W | 100% |

Pattern two (0.3–0.6 s) | 242.9 W | 242.9 W | 100% |

Pattern three (0.6 s–0.9 s) | 148.7 W | 148.7 W | 100% |

Pattern four (0.9 s–1.2 s) | 230.1 W | 230.1 W | 100% |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mahmod Mohammad, A.N.; Mohd Radzi, M.A.; Azis, N.; Shafie, S.; Atiqi Mohd Zainuri, M.A.
A Novel Hybrid Approach for Maximizing the Extracted Photovoltaic Power under Complex Partial Shading Conditions. *Sustainability* **2020**, *12*, 5786.
https://doi.org/10.3390/su12145786

**AMA Style**

Mahmod Mohammad AN, Mohd Radzi MA, Azis N, Shafie S, Atiqi Mohd Zainuri MA.
A Novel Hybrid Approach for Maximizing the Extracted Photovoltaic Power under Complex Partial Shading Conditions. *Sustainability*. 2020; 12(14):5786.
https://doi.org/10.3390/su12145786

**Chicago/Turabian Style**

Mahmod Mohammad, Altwallbah Neda, Mohd Amran Mohd Radzi, Norhafiz Azis, Suhaidi Shafie, and Muhammad Ammirrul Atiqi Mohd Zainuri.
2020. "A Novel Hybrid Approach for Maximizing the Extracted Photovoltaic Power under Complex Partial Shading Conditions" *Sustainability* 12, no. 14: 5786.
https://doi.org/10.3390/su12145786