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Abstract: The convenient design of a maximum power point tracking (MPPT) controller is key to
the success of photovoltaic (PV) system performance in order to maximize the extracted power,
which is affected significantly by weather fluctuations, particularly partial shading condition (PSC).
This paper proposes a novel hybrid MPPT approach based on a modified Perturb and Observe
(P&O) assisted by the Extremum Seeking Control (ESC) strategy, combining the benefits of these
simple algorithms and, meanwhile, eliminating their drawbacks. The proposed algorithm is able
to track the maximum possible power under any level of weather fluctuation, with comprehensive
enhancement on all aspects of high performance, boosting the PV array efficiency to 100%, reducing
the convergence time to less than 100 ms, completely eradicating the oscillations around the achieved
power, and maintaining the simplicity levels of both involved strategies. More importantly, this
algorithm is applicable for any PV array configuration, which enhances the robustness and novelty
of the algorithm. The performance is verified using MATLAB/Simulink. A boost converter is used for
controlling DC to DC (direct current to direct current) power. The proposed algorithm’s performance
is compared with the conventional P&O and incremental conductance (IC) algorithms under four
different cases of weather conditions. The shortcomings of these algorithms are illustrated and the
analysis confirms the effectiveness of the proposed algorithm accordingly.

Keywords: photovoltaic (PV); partial shading conditions (PSC); maximum power point tracking
(MPPT); global maximum power point (GMPP); Perturb and Observe (P&O); Extremum Seeking
Control (ESC); incremental conductance (IC)

1. Introduction

Increased demands of electrical power threaten traditional power sources, which are no longer
sufficient. Therefore, renewable energy sources have gained significant importance for electrical power
generation throughout the world. In addition to the permanence of renewable energy sources, they also
have very beneficial advantages, such that they do not cause any kind of environmental pollution,
are inexpensive and clean, require little maintenance, and emit no noise. Solar photovoltaic (PV)
array is the most popular renewable energy source due to solar illumination availability being normal
and continual. PV panel performance is highly sensitive to weather variations and environmental
parameters, such as the irradiation level and temperature. Therefore, efficient control schemes are
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desired in order to extract the maximum available power under full sun illumination and also under
the presence of any atmospheric fluctuations. Therefore, using a maximum power point tracking
(MPPT) controller is the proper approach to derive the PV array at the maximum power point (MPP).
Unique MPP occurs in the power - voltage (P-V) curve of the PV array under uniform weather condition,
while under partial shading condition (PSC) numerous power peaks exist, which are known as the
local maximum power points (LMPPs), except for the one with the highest power, which is called
the global maximum power point (GMPP), which expands the challenge for the MPPT system to
locate the right global power peak point [1]. The common target is to maximize the efficiency of the PV
system by keeping the PV module at its maximum power operation [2].

Many MPPT techniques have been proposed by researchers during the last decades, and these
techniques can be classified based on the implementation methods into two categories—conventional
MPPT algorithms and intelligence computing algorithms. The conventional algorithms, such as Perturb
and Observe (P&O) [3] and incremental conductance (IC) [4–6] are considered economical and easy to
implement but with non-steady efficiency [7]. On the other hand, the intelligence computing algorithms,
for example fuzzy logic control [8], artificial neural networks [9], particle swarm optimization [10],
genetic algorithms [11], hybrid BAT-Fuzzy [12], and Cuckoo Search (CS) [13] are complicated methods
and have long computational time and weak convergence speed but with high efficiency [14]. In the case
of uniform irradiation, the previous research works have confirmed that conventional MPPT methods
can track the MPP efficiently, while under PSC these techniques fail to guarantee effective and accurate
tracking of the GMPP [15]. Therefore, the challenges in implementing MPPT can be summarized by
the algorithm complexity, cost, tracking time, power loss due to oscillation occurrence, and failure
while operating under shading conditions [7]. During the past years, the researchers’ attention has
been concentrated on the accurate tracking of the global power peak under PSC. Each proposed
tracking algorithm attempted to overcome the aforementioned performance challenges [16], but the
achievements were different from one algorithm to the other.

Two main categories were followed for the previous MPPT algorithms’ propositions under PSC;
the first one was based on creating particular modifications to the existing conventional tracking
algorithms, and the second category was established based on intelligence computing methods.
Among the conventional techniques, P&O is the most extensively used due to its simplicity, low cost,
and faster response compared to other conventional approaches [17]. Nevertheless, the high oscillation
occurrence around the MPP, which aids to considerable energy loss, and its inability to extract the
correct maximum power from the partially shaded PV array are considered as the two main drawbacks
of this algorithm. Therefore, many researchers have made some modifications to P&O to overcome
these drawbacks.

A newly formulated P&O method for MPPT was proposed in [18], and this algorithm aims to
minimize the steady-state oscillation occurrence around the extracted MPP during the tracking process.
In addition, this algorithm considers the irradiation level as an additional input beside the output
voltage of the module for controlling the duty cycle of the boost converter. Two sensors are employed
for this procedure; one is for measuring the output voltage, and another sensor is for measuring the
irradiation level instead of the current sensor in the conventional method. The simulation results
illustrate that the proposed method outperforms the conventional P&O method in tracking the MPP
in the case of the unique maximum power peak, but the work does not provide any guarantee that
the proposed newly formulated P&O method is able to track the GMPP with the presence of more
than one power peak. Another enhanced P&O algorithm with variable step size was proposed in [19],
which employs a fuzzy logic control to supply variable step-size convergence in order to boost the
efficiency of the PV system. The MPPT process in [20] was introduced in order to solve the problem of
the drift caused in the case of a rapid increase in radiation. The suggested solution was by integrating
the information of the change in current, voltage, and power in the decision procedure, and the
authors implied that in the case of high insolation, the simple P&O algorithm may experience the drift
issue due to the inaccurate decision-making ability of the algorithm. [19] and [20] are costly, complex,
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and need previous knowledge to be handled. An improved P&O algorithm was presented by [21],
in which the improvement can be summarized by considering the variation in the PV current as a
third test in its flowcharts, and this is the difference between this algorithm and the conventional
one. Moreover, the authors investigated eight cases of the operating point perturbation as follows;
four of them were the same as the original algorithm with fixed irradiation, and the others were
applied to provide an indication about the states of the fast changing of the irradiation level, either
increasing or decreasing, based on comparing the changes of voltage signs with the current and
accordingly changing the converter duty cycle. The results confirm that the proposed controller is
able to track MPPs effectively with a minimized ability of diverging from the correct tracking path
under uniform conditions. However, for effective performance under PSC, this algorithm has to be
modified majorly. In addition, another novel adapted variable step-size P&O MPPT strategy of a
PV system was introduced by [1]. The proposed adaption is based on a famous geometric theorem
idea, known as Pythagorean theorem, which assists in perfectly overcoming the weaknesses and
restrictions of the conventional P&O MPPT, such as the oscillations around the detected MPP with
a maintained high speed convergence. However, the performance is still not efficient under PSC.
Another intelligent modification on a variable step-size P&O procedure was proposed by [22] in
order to boost the performance ability to work under PSC. The modification is based on deliberate
comparison sequences, which are able to lead the process to track the GMPP efficiently, with enhanced
tracking speed. The study in [23] proposed an improved cuckoo search (ICS) MPPT method in order to
track the GMPP efficiently under PSC, and the improvement can be outlined by removing the random
step from the original CS algorithm and further introducing the ideation of low-power, high-power,
ordinary, and marked zones with adaptive step adjustment based on the diverse stages of the nest place.
This algorithm was able to precisely track the actual maximum power under PSC with higher efficiency
than the original CS algorithm. Another MPPT approach based on soft computing algorithms was
proposed by [24]: a hybrid MPPT controller, which combines fuzzy logic control and the P&O method
in order to track the MPP of the PV under PSC. The proposed approach provides a clear enhancement
of the steady and dynamic performance under PSC. On the other hand, the algorithms proposed
by [23,24] suffer from the same major drawbacks, such as the high cost, low convergence speed, and the
difficulty of implementing a stable, efficient controller. Besides, with the evolution of MPPT techniques,
several researchers have given their attention to the Extremum Seeking Control (ESC) technique,
which is performed to seek the maximum or the minimum of a non-linear map [25]. Sinusoidal ESC
was proposed in [25] which is efficiently able to track the MPP of PV systems. This technique employs
a sinusoidal perturbation to estimate the gradient of the P-V curve. Using this gradient function,
ESC leads the PV system to the MPP. The main advantages of the ESC method are simplicity, the high
convergence speed, and the independence of PV array characteristics, which can significantly benefit
the system performance [26].

Based on the proposed MPPT algorithms from the literature papers, we can observe that one of
the performance aspects is improved at the expense of the other, and these aspects can be classified
as an algorithm’s complexity, tracking speed, the required computation time, stability, oscillations
around the maximum extracted power, array dependency, and steady-state accuracy under uniform
illumination or under any level of partial shading conditions. In this paper we propose a novel
approach for maximum power extraction from PV array under any shading condition, in which the
proposed algorithm combines the benefits of the ESC and P&O algorithms aiming to offer considerable
enhancement to all the aforementioned performance aspects. In other words, the proposed algorithm
should be able to track the global MPP accurately with high convergence speed during less than
100ms, with guaranteed stability over a wide range of weather fluctuations, having nil oscillations
around the actual extracted power and also without any extra cost and complexity compared to the
conventional algorithms.
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2. Modelling of Solar PV under Uniform Irradiation and PSC

The electrical characteristics of PV cells can be modeled precisely using a single diode of PV
cell [27], which is considered as the basic unit for converting the sunlight energy into electrical energy
by the PV effect, hence, acting as a DC current source. The schematic of an ideal PV cell is shown in
Figure 1. The magnitude of the output current I is affected by the level of the temperature and the
intensity of the experienced irradiation [28]. By applying Kirchhoff’s current law, the output equation
of the PV cell current is given by Equation (1).

I = NP

(
Ipv− IO ×

[
e(

V+IRS
α×VT×NS

)
− 1

])
−

(V + IRS
RP

)
(1)

VT =
NS × T ×K

q
(2)

where I output current, V output voltage, Ipv cell current produced by actual solar arrays, RS series
resistance, RP parallel resistance, IO reverse saturation current, VT thermal voltage of PV module,
T temperature of the p-n junction, NS series number of cells, K Boltzmann constant = 1.38073× 10−23 J K,
NP parallel number of cells, q electron charge = 1.6022 × 10−19 C, and α diode ideality factor.
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Figure 1. Explanatory scheme of the photovoltaic (PV) cell in the single diode model.

The PV model used in this study had thirty-six solar cells in a series of connections to form a
string, which acted as a module. The open circuit voltage (Voc) of each cell was 22.1V, and the short
circuit current (Isc) was 4.8 A. The solar array was formed by combination of such modules. Under
the full irradiation of 1000, the maximum power was 80 W at a voltage and current of 17.6 V and
4.55 A, respectively.

3. Partial Shading Effect on Solar PV

Under steady weather conditions, when the series of connected modules are experiencing equal
irradiation levels, the P-V curve presents only single power peak. While multiple peaks exist under
uneven levels of irradiation, which can occur due to building and tree shadows; items moving in
the sky, such as a bird falling and a plane in motion [29]; and anything that can hurdle the received
irradiation and cause shading conditions. Consequently, the shaded PV panels suffer from hotspots,
which cause considerable power dissipation [30]. Bypass diodes are applied to prevent hotspot
effects [31], and blocking diodes are connected in series to each PV string in order to protect the
entire PV array from the reverse flow of current [32]. In order to demonstrate the PSC effect, a PV
array connected in six series (6S) configuration was considered in this study and simulated for both
uniform and shading conditions. Several PV patterns are shown in Figure 2. However, during shading
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occurrence, the bypass diodes were activated by the generated reverse voltage across the shaded PV
module, which resulted in the appearance of multiple power peaks in the P-V curves, as shown
in Figure 3.
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4. Boost Converter

A power conversion unit is employed between the PV module and the load in a MPPT system
in order to improve the performance of the output of the PV system. In this study, a boost converter
was used to control the MPPT system operation to track the accurate GMPP, and the output of the
boost converter was adapted according to the duty cycle of the pulse width Modulation (PWM)
signal. For efficient controlling, the boost converter has to be designed carefully based on the system
specifications and objectives. Output voltage (Vo), input voltage (Vin), inductor (L), output capacitance
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(Cout), and the operational frequency were determined using Equations (3) to (5), as considered
in [33–35]. The converter design parameters are presented in Table 1.

D = 1−
Vin
VO

(3)

L =
D×Vin × (1−D)

2× IO × fS
(4)

Cout ≥
IO

(Vripple × fS)
(5)

where D is duty cycle, fS is switching frequency, IO is expected output current, and Vripple is the
maximum allowable voltage ripple.

Table 1. Boost converter component values.

Component Parameter Value

Switching frequency, fs 10 kHz
Inductor, L 0.5 mH

Capacitor, Cout 100 µF
Load resistance, RL 110 Ω

5. The Proposed MPPT Technique

Among all the MPPT algorithms, P&O is considered the most popular and preferable due
to its significant features, such as simplicity and ease of implementation [7]. Moreover, the basic
benchmark to evaluate the effectiveness of any newly published modified MPPT method is set at
the level of P&O regarding the main performance aspects, such as simplicity, implementation, cost
effectiveness, and popularity [16]. Figure 4 clarifies the operation principle of the P&O algorithm,
which is based on periodically perturbing the terminal voltage of the PV module in order to decide
the correct direction toward the MPP. The operating voltage of the PV module is perturbed and the
new corresponding power is calculated and compared with that of the previous perturbation cycle,
and if the current power is found to be greater than that of the previous perturbation cycle, the control
system will keep the perturbation in the same direction, otherwise it will be reversed until reaching
the MPP. However, the P&O algorithm suffers from two main issues. First, the produced oscillations
around the achieved MPP can impact the tracking speed, and second, this algorithm in its original
form is not efficient in extracting the actual maximum power under PSC, in which it is not able to
recognize the global maximum among the local maximums. This work proposes a novel, simpler,
and efficient approach based on smart cooperation between the ESC strategy and P&O algorithm in an
organized procedure. The proposed algorithm can accommodate all the aforementioned limitations,
taking into account a balanced achievement between the desired high-performance features under any
atmospheric condition.
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MPPT using the ESC method is an optimal control strategy, which aims to track an extremum
value on P-V characteristics with reduced oscillations around the maximum point [25], and hence,
boosts the PV system efficiency [36]. For this work, the extremum seeking scheme was utilized to
provide robustness and accuracy to a modified P&O algorithm for tracking the actual MPP efficiently
under any weather fluctuation. The ESC that was used has been applied in much of the literature, but is
seen in particular in [37–39]. The ESC method consists basically of the power from P-V characteristics,
a gradient detector, and a small sinusoidal perturbation signal with a and ω as its amplitude and
frequency. The gradient estimator is the key factor of successful peak point seeking, and a combination
of a low-pass filter (LPF) and a high-pass filter (HPF) is usually used to accomplish the gradient
estimator [39].

The PV power acted as the input to the gradient detector, the DC component of power was
removed by the HPF, and in order to obtain the gradient function, the remaining component was
multiplied by the perturbation signal to decide if the current is less than or greater than the optimum
value based on if it is in phase or out of phase of the perturbation signal. Then, the low-pass filter
eliminated unnecessary components and the resulting signal represented the estimated gradient [38].
The frequencies of the low-pass filter,ωl, high-pass filter,ωh, and small sinusoidal perturbation,ω had
to be designed in such a manner that ωh ≤ ωl << ω in order to be able to respond quickly to the
control input perturbations as illustrated in [40]. We can conclude that the gradient function was used
for guiding the operating power point to converge to the maximum point at the optimized current
value, and this process worked efficiently to track MPP under uniform irradiations, while under PSC,
the performance was degraded with the presence of multiple MPPs. Therefore, we developed a robust
technique, which was able to track the GMPP under PSC with high efficiency and convergence speed
and avoid power loss and oscillations during the extracting process. It was composed of a modified
P&O algorithm cooperating with a simple ESC strategy, which provided the gradient and reference
current (Iref) that were employed in the algorithm procedure to perform accurate and fast global MPP
tracking, as shown in Figure 5. This combination promised to get better PV system utilization efficiency
under continuous variations in solar irradiation. The gradient detection procedure led the proposed
tracking process until reaching the global MPP in the presence of multiple maximums. The produced
gradient was introduced as an additional input for the proposed modified P&O algorithm and the
reference current initiated the algorithm, which made considerable enhancement in the tracking
speed. The PV voltage acted as the input voltage for the boost converter, as observed in the Figure 5.
The obtained duty cycle from the MPPT controller was limited initially from 0.08 until 0.9 to ensure the
effectiveness of the converter.



Sustainability 2020, 12, 5786 8 of 24
Sustainability 2020, 12, x FOR PEER REVIEW 8 of 24 

 

Figure 5. Block diagram of the proposed technique in the system. 

Accordingly, the process was based on gradient considerations. Basically, at all the stationary 

points in the P‒V curve, the gradient was equal to zero, at a maximum point or a minimum point. 

For maximum points, the gradient was positive just before the maximum; it is zero at the maximum 

and it is negative just after the maximum; and for minimum points, the gradient is negative, zero, 

then positive. Figure 6 illustrates the gradient variations and the stationary points in the P‒V curve 

for partial shading scenarios which are (Ppv1, V1), (Ppv2, V2), (Ppv4, V4), (Ppv5, V5), and (Ppv7, V7). 

 

Figure 6. P-V characteristics of the PV array under PSC with gradient variations. 

The main idea of the proposed algorithm is illustrated by the flow chart in Figure 7: it was to 

update the optimal voltage value during the period of positive gradient for searching for the 

maximum peak (LMPP). When the gradient became zero at the LMPP, the optimal voltage value was 

updated and then remained as it is during the negative gradient period until it became positive again 

and the maximum power increased another time, except for the region when the last maximum point 

was still greater than the operating PV power, even that with positive gradient, as clarified by the red 

Figure 5. Block diagram of the proposed technique in the system.

Accordingly, the process was based on gradient considerations. Basically, at all the stationary
points in the P-V curve, the gradient was equal to zero, at a maximum point or a minimum point.
For maximum points, the gradient was positive just before the maximum; it is zero at the maximum
and it is negative just after the maximum; and for minimum points, the gradient is negative, zero,
then positive. Figure 6 illustrates the gradient variations and the stationary points in the P-V curve for
partial shading scenarios which are (Ppv1, V1), (Ppv2, V2), (Ppv4, V4), (Ppv5, V5), and (Ppv7, V7).
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Figure 6. P-V characteristics of the PV array under PSC with gradient variations.

The main idea of the proposed algorithm is illustrated by the flow chart in Figure 7: it was to
update the optimal voltage value during the period of positive gradient for searching for the maximum
peak (LMPP). When the gradient became zero at the LMPP, the optimal voltage value was updated
and then remained as it is during the negative gradient period until it became positive again and the
maximum power increased another time, except for the region when the last maximum point was still
greater than the operating PV power, even that with positive gradient, as clarified by the red regions in
Figure 6. The red regions indicate that the gradient was positive, meanwhile, the operating power was
less than the previous maximum point, hence, the optimal voltage value should not be updated as in
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the negative gradient regions (yellow regions). The global MPP tracking approach is elucidated in
Figure 8. This process aids the achievement of the global MPP for any applied PV array configuration
accurately with considerable time provisioning and power loss reduction in addition to many features
that are not available in other MPPT techniques under same conditions.
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6. Simulation Results and Discussion

To validate the performance of the proposed algorithm under PSC and under uniform weather
conditions, the four patterns (a)–(d) shown in Figure 2 in Section 2 were considered. These shading
cases were selected for the comprehensive formulation of the partial shading issues. The performance
of the proposed algorithm was compared with the conventional P&O and IC algorithms. Simulations
were performed in MATLAB Simulink and the results with respect to its power, voltage, and current
are presented in detail. Furthermore, detailed discussions relating to the power oscillation and
tracking speed are briefly analyzed. The quantitative analysis for simulation results is presented in
Table 2. Furthermore, three more comprehensive PV array configurations are considered and studied
in Appendix A in order to confirm the validity of the proposed algorithm to extract the actual MPP for
any utilized PV array configuration and under any complex PSC, with the same high effectiveness.

6.1. Performance under Uniform Solar Irradiation

In this case, all PV modules received equal full-sun irradiation, (1000 W/m2) at 250C. Single peak
existed in the P-V characteristics, as shown in Figure 9. Figure 10 illustrates the simulation results
for this case with performance comparison between the proposed algorithm and the conventional
P&O and IC algorithms in power, voltage, and current. It was observed that the proposed algorithm
converges exactly to the MPP of 472 W at 224.5 V and 2.1 A, within very short tracking time (less
than 100 ms) and with very reduced oscillations and 100% efficiency. Part (d) shows the obtained
gradient from the ESC scheme, which indicated the stability and idealistic execution under uniform
conditions. The other two algorithms were able to extract the MPP with an average power of 470.6 W,
with 99.7% efficiency, but with the presence of oscillations at the same voltage and current as the
proposed algorithm. The quantitative analysis of Figure 10 is shown in Table 2.



Sustainability 2020, 12, 5786 11 of 24Sustainability 2020, 12, x FOR PEER REVIEW 11 of 24 

 

Figure 9. Scenario of the first pattern (uniform weather conditions). 

 

Figure 10. The simulation results of the proposed algorithm and the conventional P&O and IC 

algorithms for the first pattern: (a) the tracked output power; (b) the output voltage of the boost 

converter; (c) the output current of the boost converter; and (d) the gradient behavior for the proposed 

algorithm. 

6.2. Performance under Partial Shading Conditions  

In order to confirm the high performance of the proposed algorithm under PSC, three different 

patterns of partial shading are considered in this section. Figure 11 presents the maximum power 

peaks for the three scenarios of shading, indicating the GMPP for each case as 242.9 W for the first 

shading pattern, 148.7 W for the second pattern, and 230 W for the third pattern. The comparisons of 

simulation results under the first PSC pattern are illustrated in Figure 12. The achieved power and 

tracking time at the maximum voltage and current of 160.8 V and 1.603 A for the proposed algorithm 

were 242.9 W in 77 ms with efficiency of 100%, while for the conventional P&O and IC algorithms, 

the average of extracted powers were 224.8 W and 222.4 W, respectively, and both at the maximum 

voltage and current, around 154.9 V and 1.45 A, which is around the first LMPP. This indicates the 

failure of both algorithms to track GMPP. The obtained gradient is shown in part (d) which indicates 

the behavior under this case of PSC. The proposed algorithm validated the same effectiveness under 

Figure 9. Scenario of the first pattern (uniform weather conditions).

Sustainability 2020, 12, x FOR PEER REVIEW 11 of 24 

 

Figure 9. Scenario of the first pattern (uniform weather conditions). 

 

Figure 10. The simulation results of the proposed algorithm and the conventional P&O and IC 

algorithms for the first pattern: (a) the tracked output power; (b) the output voltage of the boost 

converter; (c) the output current of the boost converter; and (d) the gradient behavior for the proposed 

algorithm. 

6.2. Performance under Partial Shading Conditions  

In order to confirm the high performance of the proposed algorithm under PSC, three different 

patterns of partial shading are considered in this section. Figure 11 presents the maximum power 

peaks for the three scenarios of shading, indicating the GMPP for each case as 242.9 W for the first 

shading pattern, 148.7 W for the second pattern, and 230 W for the third pattern. The comparisons of 

simulation results under the first PSC pattern are illustrated in Figure 12. The achieved power and 

tracking time at the maximum voltage and current of 160.8 V and 1.603 A for the proposed algorithm 

were 242.9 W in 77 ms with efficiency of 100%, while for the conventional P&O and IC algorithms, 

the average of extracted powers were 224.8 W and 222.4 W, respectively, and both at the maximum 

voltage and current, around 154.9 V and 1.45 A, which is around the first LMPP. This indicates the 

failure of both algorithms to track GMPP. The obtained gradient is shown in part (d) which indicates 

the behavior under this case of PSC. The proposed algorithm validated the same effectiveness under 
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6.2. Performance under Partial Shading Conditions

In order to confirm the high performance of the proposed algorithm under PSC, three different
patterns of partial shading are considered in this section. Figure 11 presents the maximum power
peaks for the three scenarios of shading, indicating the GMPP for each case as 242.9 W for the first
shading pattern, 148.7 W for the second pattern, and 230 W for the third pattern. The comparisons of
simulation results under the first PSC pattern are illustrated in Figure 12. The achieved power and
tracking time at the maximum voltage and current of 160.8 V and 1.603 A for the proposed algorithm
were 242.9 W in 77 ms with efficiency of 100%, while for the conventional P&O and IC algorithms,
the average of extracted powers were 224.8 W and 222.4 W, respectively, and both at the maximum
voltage and current, around 154.9 V and 1.45 A, which is around the first LMPP. This indicates the
failure of both algorithms to track GMPP. The obtained gradient is shown in part (d) which indicates
the behavior under this case of PSC. The proposed algorithm validated the same effectiveness under
the second pattern of PSC with five power peaks in its characteristic, as shown in Figure 11, and the
GMPP of 148.7 W was tracked at the maximum voltage and current of 125.8 V and 1.18 A by the
proposed algorithm with 100% efficiency in just 83 ms, as shown in Figure 13. However, the average



Sustainability 2020, 12, 5786 12 of 24

extracted powers by the conventional IC and P&O algorithms at the maximum voltage and current,
about 113 V and 1.055 A, were 119.1 W. Therefore, this shows the same failure in tracking the actual
MPP. The best efficiency of 100% was confirmed by the proposed algorithm as well as under any level
of partial shading conditions. The behavior of the obtained gradient under this strong level of shading
is shown Figure 13d. The third PSC pattern was tested to give more confirmation of the proposed
algorithm’s validity to work efficiently under any case of weather fluctuation. As shown in Figure 14,
the GMPP of 230 W was achieved accurately by the proposed algorithm at 156.8 V and 1.468 A with nil
oscillations within less than 100 ms, as approved in all studied patterns in this works, which means this
algorithm is more beneficial than all other MPPT techniques in literature. Meanwhile, the conventional
P&O and IC algorithms could track the correct MPP under PSC. It is clear in Figure 14 that the average
power of 139 W was extracted by these algorithms at 122 V and 1.141 A. Moreover, the stability of
the gradient extraction was clear in all cases, which can improve the stability and accuracy of the
proposed algorithm. Table 2 presents the detailed performance for the studied scenarios.
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Figure 12. The simulation results of the proposed algorithm and the conventional P&O and IC
algorithms for the first shading pattern: (a) the tracked output power; (b) the output voltage of the
boost converter; (c) the output current of the boost converter; and (d) the gradient behavior for the
proposed algorithm.
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Figure 13. The simulation results of the proposed algorithm and the conventional P&O and IC
algorithms for the second shading pattern: (a) the tracked output power; (b) the output voltage of
the boost converter; (c) the output current of the boost converter; (d) the gradient behavior for the
proposed algorithm.
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Figure 14. The simulation results of the proposed algorithm and the conventional P&O and IC
algorithms for the third shading pattern: (a) the tracked output power; (b) the output voltage of the
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proposed algorithm.

Table 2. Detailed quantitative analysis for performance of the proposed algorithm.

Pattern Irradiation of the Six Series
Modules

Ideal POWER
at GMMP (A)

Tracked Power
at GMMP (B)

Efficiency
( B

A×100)
Tracking

Speed

One (uniform
condition) [1000,1000,1000,1000,1000,1000] 472 W 472 W 100% 0.0846 s

Two (partial
shading) [1000,1000,1000,700,500,300] 242.9 W 242.9 W 100% 0.0778 s

Three (partial
shading) [1000,800,600,400,200,200] 148.7 W 148.7 W 100% 0.083 s

Four (partial
shading) [1000,1000,700,700,500,200] 230.1 W 230.1 W 100% 0.079 s

6.3. Performance of the Proposed Algorithm under Rapid Change in Irradiation Conditions

The performance of the suggested enhanced P&O technique was further evaluated for different
cases in order to confirm the effectiveness of the algorithm under variations of the weather conditions.
The algorithm was tested under four diverse levels of experienced irradiation. Figure 15 presents
the performance of the proposed algorithm under transitions between uniform shadowing and the
three patterns of shadowing. The sequences of weather condition changes were from the pattern of
uniform to the first shading pattern, then to the second and the third. This arrangement constitutes a
comprehensive sample of the worst cases of weather fluctuations. The robustness and realization of the
proposed algorithm is obviously illustrated in Figure 15, in terms of the tracked power, the maximum
voltage and current, and also the gradient variations under this change in irradiation conditions.
The first pattern was carried out for 0.3 s, then the shadowing event occurred in the second pattern for
another 0.3 s. Then the shading level was increased significantly under the third pattern. Then the sun
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illumination was enhanced to less shading intensity during the fourth pattern after 0.9 s. The maximum
available power was extracted from the PV array under each of the existing shadowing patterns,
conserving its performance aspects, such as convergence time to be less than 100 ms, tracking accuracy
and efficiency of 100%, and the output stability with absent oscillations. The quantitative analysis for
these simulation results is presented in Table 3.
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Table 3. Performance analysis of the proposed algorithm under the sequence of the uniform and three
shading patterns.

Pattern Power at MPP Measured Power Efficiency

Pattern one (0–0.3 s) 472 W 472 W 100%
Pattern two (0.3–0.6 s) 242.9 W 242.9 W 100%

Pattern three (0.6 s–0.9 s) 148.7 W 148.7 W 100%
Pattern four (0.9 s–1.2 s) 230.1 W 230.1 W 100%
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7. Conclusions

This paper proposes a novel hybrid MPPT algorithm based on a modified P&O assisted by the
ESC strategy for gradient searching, which is employed to lead the suggested tracking procedure.
The proposed algorithm is able to track the maximum achievable power under any level of weather
fluctuations. The algorithm’s performance was tested under four different patterns—the first was a
uniform weather condition and the other three were comprehensive shadowing patterns, and these
were all compared with the conventional P&O and IC algorithms. Simulation results guarantee the
performance superiority of energy extraction and prove the ability of the proposed scheme to enhance
the tracking efficiency of the conventional algorithms to 100%, reduce the convergence time to less
than 100 ms, eliminate the oscillations around the tracked power, and keep the simplicity level for
both involved strategies. Moreover, this algorithm is applicable for any PV array configuration as
approved in Appendix A. All of these features qualify this algorithm to be a novel, robust, simple, fast,
and accurate MPPT algorithm.
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Appendix A

In order to further approve the effectiveness of the proposed algorithm tracking mechanism for
any PV array configuration and under complex partial shading, we proposed an additional three
comprehensive configurations to test the algorithm tracking ability. The first configuration was for
complex partial shading study. This type of shading happens when a large number of PV modules are
connected in series under PSC. Therefore, the array with eight series (8S) of PV models was considered
for the first array configuration, as shown in Figure A1 for two cases of complex PSCs, and also for
uniform weather condition. The resulted two shading scenarios were complicated due to the multiple
closely associated peaks, which have a unique maximum as presented in Figure A2. The simulation
results of the proposed algorithm performance under the uniform and the two complex PSC patterns
are illustrated in Figure A3. The GMPP for the uniform of 630.6 W was extracted accurately at the
maximum voltage and current of 263.4 V and 2.394 A. While under the second pattern of complex PSC,
the maximum peak among all of the existed MPPs was 380.5 W. The proposed algorithm showed the
ability of accurate GMPP tracking at 204.6V and 1.86 A. The same effectiveness was confirmed under
the third pattern of more complex PSC, and the GMPP of 259.6 W was tracked at 169 V and 1.536 A
within less than 100 ms in all cases, which is the most important characteristic of this algorithm, as well
as its efficiency of 100% with ignored oscillations. All of these features confirm the proposed approach
validity and reality for efficient maximum power extraction under any weather condition fluctuation,
even the worst PSC cases.
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Another two PV array configurations are presented in Figure A4a,b—two parallel of four
series (4S2P) and two parallel of three series (3S2P), respectively. The PSC scenarios, three for each
configuration, are illustrated in Figure A5a,b, and the simulation results of the proposed algorithm under
all PSC cases for both configurations are expressed in Figures A6 and A7. All of the aforementioned
benefits and performance features were confirmed at the same superb level. The detailed performance
analysis for these two configurations is presented in Tables A1 and A2.
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Table A1. Detailed quantitative analysis for performance of the proposed algorithm.

Pattern
Irradiation of the

Parallel First and Second
4 Series Modules

Ideal Power at GMMP
(A)

Tracked Power at GMMP
(B)

Efficiency
( B

A×100) Tracking Speed

First (partial shading) [1000,1000,800,800]
[1000,1000,500,500] 435.5 W 435.5 W 100% 0.0633 s

Second (partial shading) [1000,1000,600,400]
[600,400,400,400] 263.7 W 263.7 W 100% 0.0638 s

Third (partial shading) [1000,800,600,400]
[600,400,400,200] 243.6 W 243.6 W 100% 0.0581 s

Table A2. Detailed quantitative analysis for performance of the proposed algorithm.

Pattern
Irradiation of the

Parallel First and Second
3 Series Modules

Ideal Power at GMMP
(A)

Tracked Power at GMMP
(B)

Efficiency
( B

A×100) Tracking Speed

First (partial shading) [1000,1000,800]
[800,600,600] 346.8 W 346.8 W 100% 0.0799 s

Second (partial shading) [1000,500,300]
[1000,700,700] 247.9 W 247.9 W 100% 0.0876 s

Third (partial shading) [1000,500,300]
[1000,500,300] 164.8 W 164.8 W 100% 0.0776 s
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