Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = PbF2 single crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6633 KiB  
Article
Nioboixiolite-(□),(Nb0.8□0.2)4+O2, a New Mineral Species from the Bayan Obo World-Class REE-Fe-Nb Deposit, Inner Mongolia, China
by Yike Li, Changhui Ke, Denghong Wang, Zidong Peng, Yonggang Zhao, Ruiping Li, Zhenyu Chen, Guowu Li, Hong Yu, Li Zhang, Bin Guo and Yupu Gao
Minerals 2025, 15(1), 88; https://doi.org/10.3390/min15010088 - 17 Jan 2025
Cited by 3 | Viewed by 798
Abstract
Nioboixiolite-(□) is a new mineral found in a carbonatite sill from the Bayan Obo mine, Baotou City, Inner Mongolia, China. It occurs as anhedral to subhedral grains (100 to 500 μm in diameter) that are disseminated in carbonatite rock composed of dolomite, calcite, [...] Read more.
Nioboixiolite-(□) is a new mineral found in a carbonatite sill from the Bayan Obo mine, Baotou City, Inner Mongolia, China. It occurs as anhedral to subhedral grains (100 to 500 μm in diameter) that are disseminated in carbonatite rock composed of dolomite, calcite, magnetite, apatite, biotite, actionlike, zircon, and columbite-(Fe). Most of these grains are highly serrated, with numerous inclusions of columbite-(Fe). The mineral is gray to deep black in color; is opaque, with a semi-metallic luster; has a black streak; and is brittle, with an uneven conchoidal splintery. The Mohs hardness is 6–6½, and the calculated density is 6.05 g/cm3. The reflection color is gray with a blue tone, and there is no double reflection color. The measured reflectivity of nioboixiolite-(□) is about 10.6%~12.1%, close to that of ixiolite (11%–13%). Nioboixiolite-(□) is non-fluorescent under 254 nm (short-wave) and 366 nm (long-wave) ultraviolet light. The average chemical analysis results (wt.%) of twelve electron microprobe analyses are F 0.01, MnO 0.12, MgO 0.15, BaO 0.62, PbO 0.91, SrO 1.49, CaO 2.76, Al2O3 0.01, TREE2O3 1.58, Fe2O3 3.57, ThO2 0.11, SiO2 1.69, TiO2 3.68, Ta2O5 13.95, Nb2O5 47.04, and UO3 21.56, with a total of 99.25. The simplified formula is [Nb5+, Ta5+,Ti4+, Fe3+,□,]O2. X-ray diffraction data show that nioboixiolite-(□) is orthorhombic, belonging to the space group Pbcn (#60). The refined unit cell parameters are a = 4.7071(5) Å, b = 5.7097(7) Å, c = 5.1111(6) Å, V = 138.31(3), and β = 90(1) °Å3 with Z = 4. In the crystal structure of nioboixiolite-(□), all cations occupy a single M1 site. In these minerals, edge-sharing M1O6 octahedra form chains along the c direction. In this direction, the chains are connected with each other via common vertices of the octahedra. The strongest measured X-ray powder diffraction lines are [d in Å, (I/I0), (hkl)]: 3.662(20) (110), 2.975(100) (111), 2.501(20) (021), 1.770(20) (122), 1.458(20) (023). A type specimen was deposited in the Geological Museum of China with catalogue number M16118, No. 15, Yangrou Hutong, Xisi, Beijing 100031, People’s Republic of China. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

12 pages, 5853 KiB  
Article
Crystallographic Orientation of Grains Formed in the Laser Melt-Pool of (CoCuFeZr)17Sm2 Anisotropic Permanent Magnets
by Felix Trauter, Ralf Loeffler, Gerhard Schneider and Dagmar Goll
Crystals 2024, 14(11), 955; https://doi.org/10.3390/cryst14110955 - 31 Oct 2024
Viewed by 1172
Abstract
Textured microstructures and anisotropic properties are key factors for the optimization of magnetic materials. Only for high texture grades can the remanence Jr and the maximum energy product (BH)max be maximized. In additive manufacturing such as laser powder bed fusion (PBF-LB), [...] Read more.
Textured microstructures and anisotropic properties are key factors for the optimization of magnetic materials. Only for high texture grades can the remanence Jr and the maximum energy product (BH)max be maximized. In additive manufacturing such as laser powder bed fusion (PBF-LB), methods to achieve texture have to be developed. In this work, anisotropic (CoCuFeZr)17Sm2 sintered magnets have been used as a substrate in experiments featuring single laser tracks to study the relationships between crystallographic orientation of the substrate grains and crystallographic orientation of grain growth in the melt-pool. The <0001> crystal direction (c-axis) of the substrate has been systematically varied with respect to the orientation of the laser scan track on the specimen surface. Crystallographic orientations of the melt-pool and the substrate have been analyzed using electron backscatter diffraction (EBSD). It is found that if the c-axis is oriented perpendicular to the temperature gradient in the melt-pool, grains grow with orientation similar to that of the substrate grain. If the c-axis and the temperature gradient are oriented in the same direction, the grains grow with high misorientation to the substrate. The highest anisotropy in the melt-pool is achieved when the substrate’s c-axis is oriented along the laser scan track. Under these conditions, 98.7% of the melt-pool area shows a misorientation <45° compared to the substrate orientation. The texture grade of the melt-pool area is comparable to that of the substrate magnet, at 91.8% and 92.2%, respectively. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

21 pages, 5686 KiB  
Article
Shape Anisotropy of Grains Formed by Laser Melting of (CoCuFeZr)17Sm2
by Felix Trauter, Ralf Loeffler, Gerhard Schneider and Dagmar Goll
Metals 2024, 14(9), 1025; https://doi.org/10.3390/met14091025 - 9 Sep 2024
Cited by 1 | Viewed by 1127
Abstract
For permanent magnetic materials, anisotropic microstructures are crucial for maximizing remanence Jr and maximum energy product (BH)max. This also applies to additive manufacturing processes such as laser powder bed fusion (PBF-LB). In PBF-LB processing, the solidification behavior is [...] Read more.
For permanent magnetic materials, anisotropic microstructures are crucial for maximizing remanence Jr and maximum energy product (BH)max. This also applies to additive manufacturing processes such as laser powder bed fusion (PBF-LB). In PBF-LB processing, the solidification behavior is determined by the crystal structure of the material, the substrate, and the melt-pool morphology, resulting from the laser power PL and scanning speed vs. To study the impact of these parameters on the textured growth of grains in the melt-pool, experiments were conducted using single laser tracks on (CoCuFeZr)17Sm2 sintered magnets. A method was developed to quantify this grain shape anisotropy from electron backscatter diffraction (EBSD) analysis. For all grains in the melt-pool, the grain shape aspect ratio (GSAR) is calculated to distinguish columnar (GSAR < 0.5) and equiaxed (GSAR > 0.5) grains. For columnar grains, the grain shape orientation (GSO) is determined. The GSO represents the preferred growth direction of each grain. This method can also be used to reconstruct the temperature gradients present during solidification in the melt-pool. A dependence of the melt-pool aspect ratio (depth/width) on energy input was observed, where increasing energy input (increasing PL, decreasing vs) led to higher aspect ratios. For aspect ratios around 0.3, an optimum for directional columnar growth (93% area fraction) with predominantly vertical growth direction (mean angular deviation of 23.1° from vertical) was observed. The resulting crystallographic orientation is beyond the scope of this publication and will be investigated in future work. Full article
(This article belongs to the Special Issue Laser Processing Technology and Principles of Metal Materials)
Show Figures

Figure 1

11 pages, 3896 KiB  
Article
Ca-Doping Cobalt-Free Double Perovskite Oxide as a Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cell
by Liangmei Xue, Songbo Li, Shengli An, Qiming Guo, Mengxin Li and Ning Li
Molecules 2024, 29(13), 2991; https://doi.org/10.3390/molecules29132991 - 23 Jun 2024
Cited by 4 | Viewed by 2014
Abstract
Mixed oxygen ion and electron-conducting materials are viable cathodes for solid oxide fuel cells due to their excellent oxygen transport kinetics and mixed electrical conductivity, which ensure highly efficient operation at low and medium temperatures. However, iron-based double perovskite oxides usually exhibit poor [...] Read more.
Mixed oxygen ion and electron-conducting materials are viable cathodes for solid oxide fuel cells due to their excellent oxygen transport kinetics and mixed electrical conductivity, which ensure highly efficient operation at low and medium temperatures. However, iron-based double perovskite oxides usually exhibit poor electrocatalytic activity due to low electron and oxygen ion conductivity. In this paper, Ca is doped in PrBaFe2O5+δ A-site to improve the electrochemical performance of PrBaFe2O5+δ. Results show that replacing Pr with Ca does not change the crystal structure, and the Ca doping effectively increases the adsorbed oxygen content and accelerates the migration and diffusion rate of O2− to the electrolyte|cathode interface. The polarization resistance of the symmetric cell PC0.15BF|CGO|PC0.15BF is 0.033 Ω·cm2 at 800 °C, which is about 56% lower than that of PBF, confirming the enhancement of the mixed conduction of oxygen ions and electrons. In addition, the anode-supported single cell has a peak power density of 512 mW·cm−2 at 800 °C. Full article
(This article belongs to the Collection Green Energy and Environmental Materials)
Show Figures

Figure 1

11 pages, 2463 KiB  
Article
Thermal Field Simulation and Optimization of PbF2 Single Crystal Growth by the Bridgman Method
by Lin Li, Peixiong Zhang, Zhen Li and Zhenqiang Chen
Crystals 2024, 14(5), 473; https://doi.org/10.3390/cryst14050473 - 17 May 2024
Cited by 1 | Viewed by 1635
Abstract
PbF2 single crystals are usually grown in the temperature gradient region by the Bridgman–Stockbarger method. Temperature distribution during the growth process is particularly important for the preparation of high-quality crystals. In this study, the temperature field during the growth of the PbF [...] Read more.
PbF2 single crystals are usually grown in the temperature gradient region by the Bridgman–Stockbarger method. Temperature distribution during the growth process is particularly important for the preparation of high-quality crystals. In this study, the temperature field during the growth of the PbF2 single crystals was simulated based on the finite element method. The temperature distribution and temperature gradient changes in the crucible were investigated at different growth stages, including the seeding, shouldering, and iso-diameters stages. The calculated results show that as the crucible position continues downward during the growth process, the axial temperature gradient increases and then decreases from the bottom to the top of the crucible, with almost flat isotherms near the solid–liquid interface where the axial temperature gradient is larger. At the shoulder below the crucible, the solid–liquid interface was improved by adjusting the tilt angle. Furthermore, based on a novel design of the heat-insulating baffle, the concave solid–liquid interface in the iso-diameter stage can be effectively adjusted to realize a lower radial temperature gradient. This study provides theoretical guidance for the optimization of the growth of high-quality PbF2 crystals by the Bridgman method. Full article
(This article belongs to the Special Issue Photoelectric Functional Crystals)
Show Figures

Figure 1

16 pages, 2411 KiB  
Article
Broadband High-Precision Faraday Rotation Spectroscopy with Uniaxial Single Crystal CeF3 Modulator
by John H. Lacy, Gabriel E. Patenotte, Abby C. Kinney and Protik K. Majumder
Photonics 2024, 11(4), 304; https://doi.org/10.3390/photonics11040304 - 26 Mar 2024
Cited by 2 | Viewed by 1681
Abstract
We present a low-noise (<10 µrad/Hz) broadband Faraday Rotation Spectroscopy method which is feasible for near-ultraviolet through near-infrared wavelengths. We demonstrate this in the context of a high-precision spectroscopy experiment using a heated Pb vapor cell and two different [...] Read more.
We present a low-noise (<10 µrad/Hz) broadband Faraday Rotation Spectroscopy method which is feasible for near-ultraviolet through near-infrared wavelengths. We demonstrate this in the context of a high-precision spectroscopy experiment using a heated Pb vapor cell and two different lasers, one in the UV (368 nm) and a second in the IR (1279 nm). A key element of the experimental technique is the use of a uniaxial single crystal CeF3 Faraday modulator with excellent transmission and optical rotation properties across the aforementioned wavelength range. Polarimeter performance is assessed as a function of crystal orientation and alignment, AC modulation amplitude, laser power, and laser wavelength. Crystal-induced distortion of the (6p2)3P0(6p2)3P1 (1279 nm) and (6p2)3P1(6p7s)3P0 (368 nm) spectral lines due to misalignment-induced birefringence is discussed and modeled using the Jones calculus. Full article
(This article belongs to the Special Issue Sensitive Laser Spectroscopy)
Show Figures

Figure 1

11 pages, 4115 KiB  
Article
Growth and Characterization of All-Inorganic Halide Perovskite CsPbF3 Single Crystals
by Xinlong Yan, Kan Zhang, Chan Guo, Yi Lu, Kuiyao Du, Chen Peng, Xiaodie Hu, Yuzhen Jia, Bai Xu, Ruichen Wang, Weiheng Duan, Hetong Han, Zhaohui Song, Shiguo Liu and Fan Yang
Crystals 2023, 13(5), 765; https://doi.org/10.3390/cryst13050765 - 4 May 2023
Cited by 7 | Viewed by 3461
Abstract
Lead-based halide perovskite semiconductors have demonstrated considerable potential in optoelectronic applications. However, the lack of high-quality crystals suitable for research has led to rare reports on CsPbF3 single crystals. Good quality CsPbF3 single crystals were successfully grown using the Bridgman method. [...] Read more.
Lead-based halide perovskite semiconductors have demonstrated considerable potential in optoelectronic applications. However, the lack of high-quality crystals suitable for research has led to rare reports on CsPbF3 single crystals. Good quality CsPbF3 single crystals were successfully grown using the Bridgman method. The structure, luminescence, and electrical properties of crystals were investigated. At room temperature, the crystal structure was determined to be cubic perovskite, with a calculated bandgap of 3.68 eV. The measured emission spectrum showed one broad emission peak at approximately 400 nm. Three decay time constants were obtained from a sum of exponential functions fit to the fluorescence decay curve: 0.4 ns, 2.4 ns, and 15.0 ns for fast, middle, and slow decay times, respectively. The decay times excited by pulsed X-ray were measured to be 2.2 ns and 10.2 ns, indicating that CsPbF3 is an ultrafast scintillator. Furthermore, the electrical properties demonstrated that CsPbF3 exhibits high ion mobility, which is approximately 20 times that of electron mobility. Full article
(This article belongs to the Special Issue Photoelectric Functional Crystals)
Show Figures

Figure 1

22 pages, 7009 KiB  
Article
Crystal Structures of Xenon(VI) Salts: XeF5Ni(AsF6)3, XeF5AF6 (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), and XeF5A2F11 (A = Nb, Ta)
by Zoran Mazej and Evgeny Goreshnik
Molecules 2023, 28(8), 3370; https://doi.org/10.3390/molecules28083370 - 11 Apr 2023
Cited by 1 | Viewed by 2259
Abstract
Experiments on the preparation of the new mixed cations XeF5M(AF6)3 (M = Cu, Ni; A = Cr, Nb, Ta, Ru, Rh, Re, Os, Ir, Pt, Au, As), XeF5M(SbF6)3 (M = Sn, Pb), and [...] Read more.
Experiments on the preparation of the new mixed cations XeF5M(AF6)3 (M = Cu, Ni; A = Cr, Nb, Ta, Ru, Rh, Re, Os, Ir, Pt, Au, As), XeF5M(SbF6)3 (M = Sn, Pb), and XeF5M(BF4)x(SbF6)3-x (x = 1, 2, 3; M = Co, Mn, Ni, Zn) salts were successful only in the preparation of XeF5Ni(AsF6)3. In other cases, mixtures of different products, mostly XeF5AF6 and XeF5A2F11 salts, were obtained. The crystal structures of XeF5Ni(AsF6)3, XeF5TaF6, XeF5RhF6, XeF5IrF6, XeF5Nb2F11, XeF5Ta2F11, and [Ni(XeF2)2](IrF6)2 were determined for the first time on single crystals at 150 K by X-ray diffraction. The crystal structures of XeF5NbF6, XeF5PtF6, XeF5RuF6, XeF5AuF6, and (Xe2F11)2(NiF6) were redetermined by the same method at 150 K. The crystal structure of XeF5RhF6 represents a new structural type in the family of XeF5AF6 salts, which crystallize in four different structural types. The XeF5A2F11 salts (M = Nb, Ta) are not isotypic and both represent a new structure type. They consist of [XeF5]+ cations and dimeric [A2F11] anions. The crystal structure of [Ni(XeF2)2](IrF6)2 is a first example of a coordination compound in which XeF2 is coordinated to the Ni2+ cation. Full article
Show Figures

Figure 1

8 pages, 2576 KiB  
Article
Scintillation Properties of Lanthanide Doped Pb4Lu3F17 Nanoparticles
by Peng Qiao, Yiheng Ping, Hongping Ma and Lei Lei
Materials 2023, 16(3), 1147; https://doi.org/10.3390/ma16031147 - 29 Jan 2023
Cited by 2 | Viewed by 1931
Abstract
Inorganic scintillators are of great significance in the fields of medical CT, high-energy physics and industrial nondestructive testing. In this work, we confirm that the Pb4Lu3F17: Re (Re = Tb, Eu, Sm, Dy, Ho) crystals are promising [...] Read more.
Inorganic scintillators are of great significance in the fields of medical CT, high-energy physics and industrial nondestructive testing. In this work, we confirm that the Pb4Lu3F17: Re (Re = Tb, Eu, Sm, Dy, Ho) crystals are promising candidates for a new kind of scintillator. Detailed crystal structure information is obtained by the Rietveld refinement analysis. Upon X-ray irradiation, all these scintillators exhibited characteristic 4f-4f transitions. The Ce and Gd ions were verified to be useful for enhancing the scintillation intensity via introducing energy transfer processes. The integrated scintillation intensity of the Pb4Lu3F17: Tb/Ce is about 16.8% of the commercial CsI (Tl) single crystal. Our results manifested that Pb4Lu3F17: Re has potential application in X-ray detection and imaging. Full article
(This article belongs to the Special Issue Inorganic Luminescent Materials for Optoelectronic Applications)
Show Figures

Figure 1

12 pages, 2516 KiB  
Article
Properties and Crystal Structure of the Cereibacter sphaeroides Photosynthetic Reaction Center with Double Amino Acid Substitution I(L177)H + F(M197)H
by Tatiana Yu. Fufina, Georgii K. Selikhanov, Azat G. Gabdulkhakov and Lyudmila G. Vasilieva
Membranes 2023, 13(2), 157; https://doi.org/10.3390/membranes13020157 - 26 Jan 2023
Cited by 4 | Viewed by 2271
Abstract
The photosynthetic reaction center of the purple bacterium Cereibacter sphaeroides with two site-directed mutations Ile-L177–His and M197 Phe–His is of double interest. The substitution I(L177)H results in strong binding of a bacteriochlorophyll molecule with L-subunit. The second mutation F(M197)H introduces a new H-bond [...] Read more.
The photosynthetic reaction center of the purple bacterium Cereibacter sphaeroides with two site-directed mutations Ile-L177–His and M197 Phe–His is of double interest. The substitution I(L177)H results in strong binding of a bacteriochlorophyll molecule with L-subunit. The second mutation F(M197)H introduces a new H-bond between the C2-acetyl carbonyl group of the bacteriochlorophyll PB and His-M197, which is known to enhance the stability of the complex. Due to this H-bond, π -electron system of P finds itself connected to an extensive H-bonding network on the periplasmic surface of the complex. The crystal structure of the double mutant reaction center obtained with 2.6 Å resolution allows clarifying consequences of the Ile L177 – His substitution. The value of the P/P+ midpoint potential in the double mutant RC was found to be ~20 mV less than the sum of potentials measured in the two RCs with single mutations I(L177)H and F(M197)H. The protein environment of the BChls PA and BB were found to be similar to that in the RC with single substitution I(L177)H, whereas an altered pattern of the H-bonding networks was found in the vicinity of bacteriochlorophyll PB. The data obtained are consistent with our previous assumption on a correlation between the bulk of the H-bonding network connected with the π-electron system of the primary electron donor P and the value of its oxidation potential. Full article
Show Figures

Graphical abstract

14 pages, 4114 KiB  
Article
Magnetic and Electrical Characteristics of Nd3+-Doped Lead Molybdato-Tungstate Single Crystals
by Bogdan Sawicki, Elżbieta Tomaszewicz, Tadeusz Groń, Monika Oboz, Joachim Kusz and Marek Berkowski
Materials 2023, 16(2), 620; https://doi.org/10.3390/ma16020620 - 9 Jan 2023
Cited by 5 | Viewed by 1621
Abstract
Single crystals of Pb1−3xxNd2x(MoO4)1−3x(WO4)3x (PNMWO) with scheelite-type structure, where ▯ denotes cationic vacancies, have been successfully grown by the Czochralski method in air and under 1 [...] Read more.
Single crystals of Pb1−3xxNd2x(MoO4)1−3x(WO4)3x (PNMWO) with scheelite-type structure, where ▯ denotes cationic vacancies, have been successfully grown by the Czochralski method in air and under 1 MPa. This paper presents the results of structural, optical, magnetic and electrical, as well as the broadband dielectric spectroscopy measurements of PNMWO single crystals. Research has shown that replacing diamagnetic Pb2+ ions with paramagnetic Nd3+ ones, with a content not exceeding 0.01 and possessing a screened 4f-shell, revealed a significant effect of orbital diamagnetism and Van Vleck’s paramagnetism, n-type electrical conductivity with an activation energy of 0.7 eV in the intrinsic area, a strong increase of the power factor above room temperature for a crystal with x = 0.005, constant dielectric value (~30) and loss tangent (~0.01) up to room temperature. The Fermi energy (~0.04 eV) and the Fermi temperature (~500 K) determined from the diffusion component of thermopower showed shallow donor levels. Full article
(This article belongs to the Special Issue Advances in Synthesis and Characterization of Dielectric Ceramics)
Show Figures

Figure 1

14 pages, 11463 KiB  
Review
New Modification of Polar Nonlinear Optical Iodate Fluoride PbF(IO3), the Family MX(IO3), M = Bi, Ba, Pb, X = O, F, (OH) Related to Aurivillius Phases and Similar Iodates
by Elena Belokoneva, Olga Reutova, Anatoly Volkov, Olga Dimitrova and Sergey Stefanovich
Symmetry 2023, 15(1), 100; https://doi.org/10.3390/sym15010100 - 30 Dec 2022
Cited by 3 | Viewed by 2365
Abstract
A new modification of PbF(IO3) has been obtained as single crystals from hydrothermal synthesis, alongside the known centrosymmetric, Pb(IO3)2, as a second phase. Measured with the Kurtz-Perry SHG method, the new crystals are phase-matchable for YAG:Nd laser [...] Read more.
A new modification of PbF(IO3) has been obtained as single crystals from hydrothermal synthesis, alongside the known centrosymmetric, Pb(IO3)2, as a second phase. Measured with the Kurtz-Perry SHG method, the new crystals are phase-matchable for YAG:Nd laser radiation and demonstrate strong SHG output. According to an X-ray diffraction analysis conducted on a single crystal at low temperature, the new crystals appear monoclinic, of space group Pn, as opposed to the known orthorhombic modification of the PbF(IO3), of space group Iba2. The new crystals were also measured at room temperature, showing an orthorhombic disordered variant of the new phase (space group C2ma, standard Abm2). This variant presents an “average structure” with the mirror plane in the group. The low-temperature X-ray single-crystal experiment allowed us to find the correct structural model, where the mirror plane was found as a twin element in the real monoclinic Pn structure. A careful crystal chemical analysis led to a whole family of nonlinear optical crystals with a common formula, AX(IO3), A = Bi, Ba, Pb, X = O, F, (OH), currently counting six representatives, including the well-known BiO(IO3). All of them possess common central cationic layers similar to those known in Aurivillius-type phases, with anionic iodate layers attached above and below these layers instead of the perovskite-like, or halogens. The structure–property relationships are discussed with respect to the important role of the large cations: Pb2+, Bi3+ or Ba2+. A number of iodates with similar structures are also analyzed. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Figure 1

17 pages, 7973 KiB  
Article
Microstructural Development of Ti-6Al-4V Alloy via Powder Metallurgy and Laser Powder Bed Fusion
by Alireza Dareh Baghi, Shahrooz Nafisi, Heike Ebendorff-Heidepriem and Reza Ghomashchi
Metals 2022, 12(9), 1462; https://doi.org/10.3390/met12091462 - 31 Aug 2022
Cited by 18 | Viewed by 3603
Abstract
A detailed study was carried out to gain a better understanding of the microstructural differences between Ti-6Al-4V parts fabricated via the conventional powder metallurgy (PM) and the laser powder bed fusion (L-PBF) 3D printing routes. The parts were compared in terms of the [...] Read more.
A detailed study was carried out to gain a better understanding of the microstructural differences between Ti-6Al-4V parts fabricated via the conventional powder metallurgy (PM) and the laser powder bed fusion (L-PBF) 3D printing routes. The parts were compared in terms of the constituent phases in the microstructure and their effects on the micro- and nano-hardness. In L-PBF parts, the microstructure has a single phase of martensitic α′ with hcp crystal structure and acicular laths morphology, transformed from prior parent phase β formed upon solidification of the melt pool. However, for the sintered parts via powder metallurgy, two phases of α and β are noticeable and the microstructure is composed of α grains and α + β Lamellae. The microhardness of L-PBF processed Ti-6Al-4V samples is remarkably higher than that of the PM samples but, surprisingly, the nano-hardness of the bulk martensitic phase α′ (6.3 GPa) is almost the same as α (i.e., 6.2 GPa) in PM samples. This confirms the rapid cooling of the β phase does not have any effect on the hardening of the bulk martensitic hcp α′. The high microhardness of L-PBF parts is due to the fine lath morphology of α′, with a large concentration of low angle boundaries of α′. Furthermore, it is revealed that for the α phase in PM samples, a higher level of vanadium concentration lowers the nano-hardness of the α phase. In addition, as expected, the compacting pressure and sintering temperature during the PM process led to variations in the porosity level as well as the microstructural morphology of the fabricated specimens, which will in turn have a significant effect on the mechanical properties. Full article
Show Figures

Figure 1

19 pages, 3566 KiB  
Article
Roméite-Group Minerals Review: New Crystal Chemical and Raman Data of Fluorcalcioroméite and Hydroxycalcioroméite
by Gerson A. C. Lopes, Daniel Atencio, Javier Ellena and Marcelo B. Andrade
Minerals 2021, 11(12), 1409; https://doi.org/10.3390/min11121409 - 13 Dec 2021
Cited by 3 | Viewed by 4597
Abstract
The roméite-group is part of the pyrochlore-supergroup and comprises cubic oxides of A2B2X6Y formula in which Sb5+ predominates in the B-site. The A and Y main occupants determine different minerals in the group and are important [...] Read more.
The roméite-group is part of the pyrochlore-supergroup and comprises cubic oxides of A2B2X6Y formula in which Sb5+ predominates in the B-site. The A and Y main occupants determine different minerals in the group and are important for the discovery of new mineral species. Two different roméite-group mineral samples were analysed by electron microprobe analysis (EMPA), Raman spectroscopy and single-crystal X-ray diffraction (XRD). The first sample is from Prabornaz Mine (locality of the original roméite), Saint Marcel, Valle d’Aosta, Italy, whereas the other one occurs in Kalugeri Hill, Babuna Valley, Jakupica Mountains, Nezilovo, Veles, Macedonia. Sample 1 was identified as fluorcalcioroméite, and sample 2 as hydroxycalcioroméite. Both samples belong to the cubic crystal system, space group Fd3¯m, Z = 8, where a = 10.2881(13) Å, V = 1088.9(4) Å3 for sample 1, and a = 10.2970(13) Å, V = 1091.8(4) Å3 for sample 2. The crystal structure refinements converged to (1) R1 = 0.016, wR2 = 0.042; and (2) R1 = 0.023, wR2 = 0.049. Bond-valence calculations validated the crystal structure refinements determining the correct valences at each crystallographic site. Discrepancies observed in the Sb5+ bond-valence calculations were solved with the use of the proper bond valence parameters. The resulting structural formulas are (Ca1.29Na0.550.11Pb0.05)Σ=2.00(Sb1.71Ti0.29)Σ=2.00[O5.73(OH)0.27]Σ=6.00[F0.77O0.21(OH)0.02]Σ=1.00 for sample 1, and (Ca1.30Ce0.510.19)Σ=2.00(Sb1.08Ti0.92)Σ=2.00O6.00[(OH)0.61O0.21F0.18]Σ=1.00 for sample 2. The Raman spectra of the samples exhibited the characteristic bands of roméite-group minerals, the most evident corresponding to the Sb-O stretching at around 510 cm−1. Full article
(This article belongs to the Special Issue Pyrochlore Supergroup and Their Crystal Structures)
Show Figures

Figure 1

12 pages, 5203 KiB  
Article
Ferroelectric Properties and Spectroscopic Characterization of Pb(Mg1/3Nb2/3)O3-32PbTiO3:Er3+/Sc3+ Crystal
by Jin Zhang, Zengzhe Xi, Xinzhe Wang, Hao Feng, Wei Long and Aiguo He
Crystals 2021, 11(10), 1155; https://doi.org/10.3390/cryst11101155 - 23 Sep 2021
Cited by 3 | Viewed by 2714
Abstract
An Er3+/Sc3+ co-doped 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 ferroelectric single crystal was grown by high-temperature flux method. The remnant polarization Pr is 27.97 µC/cm2 and the coercive field Ec is 8.26 kV/cm for [100] oriented crystal. [...] Read more.
An Er3+/Sc3+ co-doped 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 ferroelectric single crystal was grown by high-temperature flux method. The remnant polarization Pr is 27.97 µC/cm2 and the coercive field Ec is 8.26 kV/cm for [100] oriented crystal. Green (524 and 551 nm) and red (654 nm) emission bands are generated at the 980 nm excitation, which corresponds to the 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, respectively. Judd–Ofelt theory has been applied to predict the spectroscopic characteristics of the as-grown crystals. The obtained J–O intensity parameters Ωt (t = 2, 4 and 6) are Ω2 = 0.76 × 10−20 cm2, Ω4 = 1.0 × 10−20 cm2, Ω6 = 0.55 × 10−20 cm2. Spectroscopic characteristics, including optical transition probabilities, branching ratio, and radiative lifetime of Er3+ in the crystal, are determined. The calculated radiative lifetimes of 4I13/2 and 4I11/2 energy levels are 2.82 ms and 2.61 ms, respectively. These investigations provide possibilities for the crystal Pb(Mg1/3Nb2/3)O3-0.32PbTiO3:Er3+/Sc3+ to be a new type of multifunctional crystal integrating electricity-luminescence. Full article
Show Figures

Figure 1

Back to TopTop