Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (113)

Search Parameters:
Keywords = Pb translocation factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2223 KiB  
Article
The Effect of Salinity on Heavy Metal Tolerance in Two Energy Willow Varieties
by Kinga Drzewiecka, Zuzanna Kaźmierczak, Magdalena Woźniak and Michał Rybak
Plants 2025, 14(12), 1747; https://doi.org/10.3390/plants14121747 - 7 Jun 2025
Viewed by 565
Abstract
This study evaluated the response of two willow varieties, Salix × smithiana Willd. and Salix viminalis L. var. Gigantea, to selected heavy metals and elevated soil salinity, simulating complex environmental conditions during phytoremediation. Plants propagated from stem cuttings were cultivated in pots under [...] Read more.
This study evaluated the response of two willow varieties, Salix × smithiana Willd. and Salix viminalis L. var. Gigantea, to selected heavy metals and elevated soil salinity, simulating complex environmental conditions during phytoremediation. Plants propagated from stem cuttings were cultivated in pots under field conditions in soil artificially contaminated with a mixture of Cd, Ni, Cu, Zn, and Pb salts at two concentration levels representing lower and higher guideline thresholds. Sodium chloride was added to induce salinity stress. S. × smithiana exhibited enhanced growth under combined metal and salinity stress, suggesting efficient tolerance mechanisms. This was reflected in elevated relative water content (RWC) and increased accumulation of Zn and Cd in shoots. In contrast, Gigantea showed growth inhibition and primarily sequestered metals in roots, indicating a stress-avoidance strategy and reduced metal translocation. While salinity alone negatively affected both varieties, its combination with metals mitigated growth reduction in S. × smithiana, possibly due to improved ion homeostasis or cross-tolerance. Zn and Cd displayed the highest bioconcentration and mobility. Based on bioconcentration factor (BCF) and translocation factor (TF), S. × smithiana appears suitable for phytoextraction, whereas S. viminalis var. Gigantea appears suitable for phytostabilization. These results support species-specific approaches to phytoremediation in multi-contaminant environments. Full article
(This article belongs to the Special Issue Plant Functioning Under Abiotic Stress)
Show Figures

Figure 1

18 pages, 830 KiB  
Review
Geochemical Speciation, Uptake, and Transportation Mechanisms of Arsenic, Cadmium, and Lead in Soil–Rice Systems: Additional Aspects and Challenges
by Chaw Su Lwin, Ha-il Jung, Myung-Sook Kim, Eun-Jin Lee and Tae-Gu Lee
Antioxidants 2025, 14(5), 607; https://doi.org/10.3390/antiox14050607 - 18 May 2025
Viewed by 658
Abstract
Potentially toxic elements (PTE), such as cadmium (Cd), lead (Pb), and arsenic (As), threaten rice (Oryza sativa L.) crop productivity and pose significant risks to human health when they are present in soil. This review summarizes the current understanding of soil and [...] Read more.
Potentially toxic elements (PTE), such as cadmium (Cd), lead (Pb), and arsenic (As), threaten rice (Oryza sativa L.) crop productivity and pose significant risks to human health when they are present in soil. This review summarizes the current understanding of soil and rice contamination with As, Cd, and Pb to provide an in-depth understanding of the dynamics of these contaminants and the mechanisms regulating their flow from soil to plants. It focuses on the following aspects: (1) these metals’ geochemical distribution and speciation in soil–rice systems; (2) factors influencing the transformation, bioavailability, and uptake of these metals in paddy soils; (3) metal uptake, transport, translocation, and accumulation mechanisms in rice grains; and (4) the roles of transporters involved in metal uptake, transport, and accumulation in rice plants. Moreover, this review contributes to a clearer understanding of the environmental risks associated with these toxic metals in soil–rice ecosystems. Furthermore, it highlights the challenges in simultaneously managing the risks of As, Cd, and Pb contamination in rice. The study findings may help inspire innovative methods, biotechnological applications, and sustainable management strategies to mitigate the accumulation of As, Cd, and Pb in rice grains while effectively addressing multi-metal contamination in paddy soils. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
Show Figures

Figure 1

17 pages, 1281 KiB  
Article
Enhancing Phytoremediation of Heavy Metal-Contaminated Aridic Soil Using Olive Mill Wastewater, Sulfur, and Chelating Agents
by Nasser H. Almeaiweed, Saud S. Aloud, Khaled D. Alotaibi, Fahad Alotaibi and Basil Alshebel
Sustainability 2025, 17(8), 3745; https://doi.org/10.3390/su17083745 - 21 Apr 2025
Cited by 1 | Viewed by 548
Abstract
Soil contamination with heavy metals (HMs) poses a significant environmental threat. Phytoremediation, a sustainable and eco-friendly emerging bioremediation approach, utilizes plants to remove, immobilize, or stabilize soil contaminants. This study examines the interactive effects of sulfur (S), ethylenediaminetetraacetic acid (EDTA), and olive mill [...] Read more.
Soil contamination with heavy metals (HMs) poses a significant environmental threat. Phytoremediation, a sustainable and eco-friendly emerging bioremediation approach, utilizes plants to remove, immobilize, or stabilize soil contaminants. This study examines the interactive effects of sulfur (S), ethylenediaminetetraacetic acid (EDTA), and olive mill wastewater (OMW) on HM uptake and the growth of maize (Zea mays L.) and mustard (Brassica juncea). Mustard exhibited superior dry matter (DM) yield (2.4 g/pot with 5% OMW), nutrient uptake, and tolerance to metal toxicity. The translocation factor (TF) and bioaccumulation factor (BF) for maize and mustard plants vary significantly with different treatments. For maize, the S 2T/ha treatment achieved the highest TF and BF for cadmium (Cd), while 5% OMW led to maximum chromium (Cr) and manganese (Mn) uptake. In mustard, 5% OMW treatment resulted in the greatest bioconcentration factor (BCF) for cadmium (Cd), lead (Pb), and zinc (Zn), whereas sulfur application yielded the highest TF for Cd. The 5% OMW treatment overall enhanced HM uptake most significantly. Lower sulfur application rate (1 ton/hectare) increased the availability Cd and Pb, boosting plant growth and nutrient uptake. For instance, 1 ton/hectare of sulfur elevated Cd availability to 24.102 mg·kg−1 in maize and 58.705 mg·kg−1 in mustard. EDTA treatments further improved metal bioavailability, increasing Cd levels in maize (10.09 mg·kg−1) and mustard (7.78 mg·kg−1). Mustard’s superior tolerance and nutrient efficiency identify it as a promising candidate for phytoremediation of HM-contaminated soils in arid regions. Innovative treatments with sulfur, EDTA, and olive mill wastewater significantly enhance soil decontamination and plant growth. Full article
Show Figures

Figure 1

13 pages, 529 KiB  
Article
Use of Biochar and Industrial Hemp for Remediation of Heavy-Metal-Contaminated Soil: Root Uptake and Translocations for Cd, Pb, and Zn
by Sophie Sward, Kristofor R. Brye, David M. Miller and Dietrich V. Thurston
Soil Syst. 2025, 9(2), 29; https://doi.org/10.3390/soilsystems9020029 - 28 Mar 2025
Cited by 1 | Viewed by 915
Abstract
Phytoremediation has been reported as a more energy-efficient, and therefore cost-effective, method of environmental restoration compared to traditional remediation methods for heavy-metal-contaminated soils. Biochar has been shown to have variable effects on remediation potential in heavy-metal-contaminated soils. The objective of this study was [...] Read more.
Phytoremediation has been reported as a more energy-efficient, and therefore cost-effective, method of environmental restoration compared to traditional remediation methods for heavy-metal-contaminated soils. Biochar has been shown to have variable effects on remediation potential in heavy-metal-contaminated soils. The objective of this study was to evaluate the effects of soil contamination level (i.e., low, medium, and high), industrial hemp (Cannabis sativa L.) cultivar (i.e., ‘Carmagnola’ and ‘Jinma’), biochar rate (i.e., 0, 2, 5, and 10% by volume), and their interactions on root tissue Cd, Pb, and Zn concentrations and uptakes; whole-plant Cd, Pb, and Zn uptakes; and translocation factors after 90 days of hemp growth in contaminated soil from the Tar Creek Superfund Site near Picher, Oklahoma. Hemp removal of Cd, Pb, and Zn differed between soil contamination levels (p < 0.01), but was unaffected (p > 0.05) by the hemp cultivar or biochar rate, except for total Zn uptake. Total Zn uptake was affected (p = 0.02) by the biochar rate in the medium- and high-contaminated soils, where total plant Zn uptake in the high-contaminated soil was numerically the largest with 10% biochar (0.28 mg cm−2) and in the medium-contaminated soil was numerically the largest with 2% biochar (0.07 mg cm−2), but was unaffected (p > 0.05) by the biochar rate in the low-contaminated soil. The translocation factor for Zn uptake in the low and medium soils was >1, indicating industrial hemp as a potential Zn hyper-accumulator up to a threshold soil contamination level. Results demonstrate that biochar amendment has the potential to enhance hemp’s remediation capability of heavy-metal-contaminated soils. Full article
(This article belongs to the Special Issue Soil Bioremediation)
Show Figures

Figure 1

17 pages, 2051 KiB  
Article
Biochar and Trehalose Co-Application: A Sustainable Strategy for Alleviating Lead Toxicity in Rice
by Yingfen Yang, Li Liu, Haibo Xiong, Tianju Wang, Jun Yang, Wenpeng Wang, Areej A. Al-Khalaf, Zhuhua Wang and Waqar Ahmed
Plants 2025, 14(6), 878; https://doi.org/10.3390/plants14060878 - 11 Mar 2025
Cited by 1 | Viewed by 972
Abstract
Lead (Pb) is a common contaminant that causes serious health and environmental problems. Thus, appropriate environmentally friendly and efficient techniques must be developed to remediate Pb in soils. Biochar (BC) has shown promise as an effective strategy to mitigate Pb toxicity. Trehalose (Tre) [...] Read more.
Lead (Pb) is a common contaminant that causes serious health and environmental problems. Thus, appropriate environmentally friendly and efficient techniques must be developed to remediate Pb in soils. Biochar (BC) has shown promise as an effective strategy to mitigate Pb toxicity. Trehalose (Tre) is a promising sugar that has been shown to effectively improve plant tolerance to abiotic stresses. Nonetheless, its role in alleviating Pb toxicity is unknown. The study investigated the impacts of BC and Tre co-application in alleviating Pb toxicity in rice crops. The study included the following treatments: control, Pb stress (250 mg kg−1), Pb stress (250 mg kg−1) + BC (2.5%), Pb stress (250 mg kg−1) + Tre (30 mM), and Pb stress (250 mg kg−1) + BC (2.5%) + Tre (30 mM). Results showed that Pb toxicity reduced rice yield by decreasing chlorophyll synthesis and relative water content (RWC), by increasing malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, Pb accumulation in roots and shoots, soil available Pb concentration, and by decreasing the availability of soil nutrients. BC and Tre application mitigated the adverse impacts of Pb; however, more promising results were obtained with the co-application of BC and Tre. The results indicated that co-application of BC and Tre increased the rice yield by increasing photosynthetic pigments (46–96.42%), leaf water contents (16.67%), proline and soluble protein synthesis (35.13% and 24.96%), and antioxidant activities (12.07–31.67%), by decreasing root (59.72%), shoot (76.47%), and soil (57.14%) Pb concentrations, and the Pb translocation factor (15.08%). These findings suggested that co-application of BC and Tre can be a practical approach for reducing Pb toxicity, availability, and uptake, which improves rice productivity in Pb-polluted soil. Full article
Show Figures

Figure 1

20 pages, 331 KiB  
Article
Assessing the Influence of Marine Port Remediated Sediments on Highbush Blueberry Growth and Trace Elements Accumulation
by Stefania Nin, Daniele Bonetti, Maurizio Antonetti, Cristina Macci, Edgardo Giordani and Lorenzo Bini
Agronomy 2025, 15(2), 503; https://doi.org/10.3390/agronomy15020503 - 19 Feb 2025
Viewed by 721
Abstract
The aim of this study was to investigate how biomass production and element distribution (nutrients and heavy metals) among plant organs (roots, stems, and leaves) were influenced by substrate physical and chemical properties, using acidophilic plants of Vaccinium corymbosum cultivars Bluecrop and Duke. [...] Read more.
The aim of this study was to investigate how biomass production and element distribution (nutrients and heavy metals) among plant organs (roots, stems, and leaves) were influenced by substrate physical and chemical properties, using acidophilic plants of Vaccinium corymbosum cultivars Bluecrop and Duke. A greenhouse pot experiment was conducted with highbush blueberry plants grown in an uncontaminated acidic peat-based control substrate (TS0) and two alkaline substrates enriched with remediated sediment (TS50 and TS100), characterized by high pH, Ca, and heavy metal concentrations. Both plant cultivars that were cultivated in sediment–based substrates exhibited a substantial reduction in plant growth, biomass production, and leaf chlorophyll levels. Limited translocation of microelements from belowground organs to leaves was observed across all plant samples. Cu, Fe, and Pb were predominantly accumulated in the roots of plants grown in TS-based substrates, with both cultivars acting as excluders for these metals by restricting their transport from roots to shoots. Mn and Zn were primarily retained in the stems and roots of highbush blueberry plants, with lower leaf accumulation. Notably, only Mn exhibited high translocation and bioaccumulation factor values (on average, 3.43 and 6.68, respectively), highlighting the species’ strong capacity for Mn accumulation. Specifically, control plants showed significantly higher Mn concentrations than those grown in TS-enriched substrates, likely due to the acidic conditions that enhance the bioavailability of this metal and the low Ca concentration in TS0, which is known to disrupt Mn accumulation in shoots. However, this accumulation did not reach toxic levels for the plants and did not negatively impact the physiological processes of control plants, which remained particularly efficient in the Duke cv, known for its Mn resistance. This study highlights the ability of highbush blueberry plants to selectively accumulate heavy metals when grown in polluted substrates under suitable conditions, making them a valuable model for understanding metal accumulation mechanisms in the Ericaceae family. Full article
(This article belongs to the Section Soil and Plant Nutrition)
16 pages, 2349 KiB  
Article
Effects of Biochar and Sepiolite on Pb and Cd Dynamics in Contaminated Soil with Different Corn Varieties
by Peiyi Zeng, Muqing Yang, Shujuan He, Ying Kong, Xian Zhu, Zitao Ma and Min Wu
Toxics 2025, 13(2), 127; https://doi.org/10.3390/toxics13020127 - 9 Feb 2025
Viewed by 1394
Abstract
Biochar can stabilize heavy metals in soil and inhibit their accumulation in plants as a soil amendment. Sepiolite has also shown good effects in the remediation of soil heavy metal pollution. In this study, biochar, sepiolite, and biochar–sepiolite combined amendments were used to [...] Read more.
Biochar can stabilize heavy metals in soil and inhibit their accumulation in plants as a soil amendment. Sepiolite has also shown good effects in the remediation of soil heavy metal pollution. In this study, biochar, sepiolite, and biochar–sepiolite combined amendments were used to evaluate the accumulation of cadmium (Cd) and lead (Pb) in soil by 29 corn varieties. The concentrations of Cd and Pb in corn fruits were the lowest (Pb: 0.11 mg/kg, Cd: 0.06 mg/kg). There was a significant difference (p < 0.05) in Pb and Cd accumulation in the roots, stems, leaves, and fruits in the 29 corn varieties. The BCF and TF values of Pb and Cd in the 29 corn varieties were different, and Pb is more likely to accumulate in the roots, Cd is more likely to accumulate in the leaves, and neither heavy metal is easily translocated to the corn fruits. The combination of biochar and sepiolite creates an environment conducive to the retention of heavy metals in the root zone, effectively reducing the risk of heavy metal contamination in the edible parts of the plants. After considering various factors, such as environmental adaptability, we recommend using sepiolite and biochar combined as a soil amendment material and planting the WG1790 variety. Field experiments are needed to verify the effects. These results provide scientific evidence and new strategies for the selection of corn varieties and soil amendments. Full article
Show Figures

Figure 1

19 pages, 1848 KiB  
Article
Ecological and Health Risk Assessment of Metals in Organic and Conventional Peruvian Coffee from a Probabilistic Approach
by Grobert A. Guadalupe, Ligia García, Segundo G. Chavez and Eva Doménech
Agronomy 2024, 14(12), 2817; https://doi.org/10.3390/agronomy14122817 - 27 Nov 2024
Viewed by 1622
Abstract
This study aims to understand the risks posed by metals in Peruvian coffee plantations to human health and environmental integrity, ensuring the protection of local communities and the ecosystems reliant on this agricultural activity. To assess the contamination levels, arsenic (As), cadmium (Cd), [...] Read more.
This study aims to understand the risks posed by metals in Peruvian coffee plantations to human health and environmental integrity, ensuring the protection of local communities and the ecosystems reliant on this agricultural activity. To assess the contamination levels, arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) were surveyed in the soil, roots, and parchment coffee beans cultivated in Amazonas and San Martin regions, using both conventional and organic cultivation. Results showed that As was the metal with the highest concentration in soil (52.37 ± 21.16 mg/kg), roots (11.27 ± 2.3 mg/kg), and coffee beans (10.19 ± 1.69 mg/kg), followed by Cr in soil (22.36 ± 11.47 mg/kg) and roots (8.17 ± 3.85 mg/kg) and Pb in beans (0.7 ± 0.05 mg/kg). Cd was only detected in soil (1.70 ± 1.73 mg/kg). The bioaccumulation (BAF) findings suggest that roots and coffee beans have a low capacity to accumulate As, Cd, Ni, and Pb, but they have the potential capacity to accumulate Cr. The translocation factor (TF) indicated that all values were less than one, except for As from San Martin in conventional and organic cultivation. The geo-accumulation index (Igeo) showed that the soil was unpolluted for Cr, Ni, and Pb but was polluted to different extents for As and Cd. Similarly, the ecological risk (ER) pointed to a low risk for Cr, Ni, and Pb and values from low to considered risk for As and Cd depending on the region and cultivation system. Hazard index (adults: 1.68 × 10−3, children: 9.26 × 10−3) and cancer risk (adults: 1.84 × 10−7, children: 2.51 × 10−7) indicated a low risk for humans via ingestion, dermal contact, and inhalation. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

26 pages, 25701 KiB  
Article
Key Factors Controlling Cadmium and Lead Contents in Rice Grains of Plants Grown in Soil with Different Cadmium Levels from an Area with Typical Karst Geology
by Long Li, Lijun Ma, Lebin Tang, Fengyan Huang, Naichuan Xiao, Long Zhang and Bo Song
Agronomy 2024, 14(9), 2076; https://doi.org/10.3390/agronomy14092076 - 11 Sep 2024
Cited by 3 | Viewed by 1304
Abstract
Cadmium (Cd) is a naturally occurring element often associated with lead (Pb) in the Earth’s crust, particularly in karst regions, posing significant safety hazards for locally grown rice. Identifying the key factors controlling Cd and Pb content in local rice is essential under [...] Read more.
Cadmium (Cd) is a naturally occurring element often associated with lead (Pb) in the Earth’s crust, particularly in karst regions, posing significant safety hazards for locally grown rice. Identifying the key factors controlling Cd and Pb content in local rice is essential under the natural soil condition, as this will provide a crucial theoretical foundation for implementing security intervention measures within the local rice-growing industry. This study collected three types of paddy field soils with varying Cd concentrations from karst areas for pot experiments. The rice varieties tested included a low-Cd-accumulating variety, a high-Cd-accumulating variety, and a locally cultivated variety. Soil physicochemical properties and plant physiological indices were monitored throughout the rice growth stages. These data were used to construct a segmented regression model of Cd and Pb levels in rice grains based on the plant’s metabolic pathways and the structure of polynomial regression equations. Stepwise regression identified the key factors controlling Cd and Pb accumulation in rice grains. In conclusion, the key factors controlling Cd and Pb levels in rice grains should be classified into two categories: (i) factors influencing accumulation in roots and (ii) factors regulating transport from roots to grains. The aboveground translocation abilities for Cd, Pb, zinc (Zn), iron (Fe), manganese (Mn), calcium (Ca), and magnesium (Mg) in soil among the three rice varieties showed no significant interspecific differences under identical soil conditions. Soil Mg uptake by rice roots may represent a key mechanism for inhibiting soil Cd uptake by rice roots. In karst areas with high background soil Cd, increased soil organic matter (SOM) levels enhance Pb bioavailability. Additionally, the rice YXY may possess a potential for low Cd accumulation. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

11 pages, 281 KiB  
Article
The Potential of Helichsryum splendidum (Thunb.) Less. for the Restoration of Sites Polluted with Coal Fly Ash
by Alexis Munyengabe, Ledwaba Samuel Kamogelo, Titus Yeliku-ang Ngmenzuma and Maria Fezile Banda
Plants 2024, 13(18), 2551; https://doi.org/10.3390/plants13182551 - 11 Sep 2024
Viewed by 1261
Abstract
The disposal of coal fly ash (CFA) generated from coal-fired power stations has serious impact on the ecosystem, by converting large pieces of land to barren ash dams with the potential to contaminate groundwater, surface water, air and soil. The aim of this [...] Read more.
The disposal of coal fly ash (CFA) generated from coal-fired power stations has serious impact on the ecosystem, by converting large pieces of land to barren ash dams with the potential to contaminate groundwater, surface water, air and soil. The aim of this study was to clarify the potential of phytoremediation using Helichrysum splendidum (Thunb.) Less. in areas polluted by CFA through conduction of pot trial experiments for 14 weeks. Plants of the same age were cultivated in CFA to assess their growth, photosynthetic rate and tolerance towards metal toxicity. This study revealed that the CFA was moderately polluted with heavy metals, and a lower photosynthetic rate was recorded for the CFA plants in comparison to the controls (plants grown in soil). Although the CO2 assimilation rate was lower for the CFA plants, increased growth was recorded for all the plants tested. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the amount of trace elements in samples and parameters including translocation factor (TF) and bioconcentration factor (BCF) were used to evaluate the phytoremediation potential of H. splendidum (Thunb.) Less. The results revealed that higher concentrations of Cd, Co, Cr, Cu, Mn and Pb were accumulated in the roots, while As, Ni and Zn were found in the shoots. Elements including As, Cr and Zn reported TF values above 1, indicating the plants’ phytoextraction potential. The BCF values for As, Cu and Zn were 1.22, 1.19 and 1.03, indicating effectiveness in the phytostabilization processes. A removal rate efficiency ranging from 18.0 to 56.7% was recorded confirming that, H. splendidum (Thunb.) Less. can be employed for restoration of CFA dams. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants, 2nd Volume)
20 pages, 838 KiB  
Article
Phytoremediation Potential of Crotalaria pumila (Fabaceae) in Soils Polluted with Heavy Metals: Evidence from Field and Controlled Experiments
by Miguel Santoyo-Martínez, Patricia Mussali-Galante, Isela Hernández-Plata, Leticia Valencia-Cuevas, Alexis Rodríguez, María Luisa Castrejón-Godínez and Efraín Tovar-Sánchez
Plants 2024, 13(14), 1947; https://doi.org/10.3390/plants13141947 - 16 Jul 2024
Cited by 3 | Viewed by 1621
Abstract
Phytoremediation is a useful, low-cost, and environmentally friendly alternative for the rehabilitation of heavy-metal-contaminated (HM) soils. This technology takes advantage of the ability of certain plant species to accumulate HMs in their tissues. Crotalaria pumila is a herbaceous plant with a wide geographical [...] Read more.
Phytoremediation is a useful, low-cost, and environmentally friendly alternative for the rehabilitation of heavy-metal-contaminated (HM) soils. This technology takes advantage of the ability of certain plant species to accumulate HMs in their tissues. Crotalaria pumila is a herbaceous plant with a wide geographical distribution that grows naturally in environments polluted with HMs. In this work, the bioaccumulation capacity of roots and leaves in relation to five HMs (Cr, Cu, Fe, Pb, and Zn) was evaluated, as well as the morphological changes presented in C. pumila growing in control substrate (without HMs) and mine-tailing substrate (with HMs) under greenhouse conditions for 150 days. Four metals with the following concentration pattern were detected in both tissues and substrates: Fe > Pb > Cu > Zn. Fe, Pb, and Zn concentrations were significantly higher in the roots and leaves of individuals growing on mine-tailing substrate compared to the control substrate. In contrast, Cu concentration increased over time in the exposed individuals. The bioconcentration factor showed a similar pattern in root and leaf: Cu > Fe > Pb > Zn. Around 87.5% of the morphological characters evaluated in this species decreased significantly in individuals exposed to HMs. The bioconcentration factor shows that C. pumila is efficient at absorbing Cu, Fe, and Pb from the mine-tailing substrate, in the root and leaf tissue, and the translocation factor shows its efficiency in translocating Cu from the roots to the leaves. Therefore, C. pumila may be considered as a HM accumulator plant with potential for phytoremediation of polluted soils with Cu, Pb, and Fe, along with the ability to establish itself naturally in contaminated environments, without affecting its germination rates. Also, it exhibits wide geographical distribution, it has a short life cycle, exhibits rapid growth, and can retain the mine-tailing substrate, extracting HMs in a short time. Full article
(This article belongs to the Special Issue Potential Hazardous Elements Accumulation in Plants)
Show Figures

Figure 1

18 pages, 1094 KiB  
Article
Phytoremediation Characterization of Heavy Metals by Some Native Plants at Anthropogenic Polluted Sites in Jeddah, Saudi Arabia
by Sameera A. Alghamdi and Manal El-Zohri
Resources 2024, 13(7), 98; https://doi.org/10.3390/resources13070098 - 16 Jul 2024
Cited by 5 | Viewed by 2792
Abstract
Many anthropogenic activities have lately resulted in soil adulteration by heavy metals (HMs). The assessment of native plant species that grow in the polluted environments is of great importance for using these plants in phytoremediation techniques. This study was conducted in three industrial [...] Read more.
Many anthropogenic activities have lately resulted in soil adulteration by heavy metals (HMs). The assessment of native plant species that grow in the polluted environments is of great importance for using these plants in phytoremediation techniques. This study was conducted in three industrial regions in Jeddah city, Wadi Marik, Bahra, and Khumrah, to assess the HM contamination level in them. This study also evaluated the phytoremediation ability of nine plant species collected from the studied regions. Soil physicochemical properties of the studied sites were investigated. Nine HMs, aluminum (Al), nickel (Ni), zinc (Zn), cobalt (Co), iron (Fe), lead (Pb), manganese (Mn), chromium (Cr), and barium (Ba), have been evaluated in the collected soil, plant shoots, and root samples. Total thiol concentration in the plant shoots and roots was determined. The phytoremediation indexes, such as bioaccumulation factor (BCF) and translocation factor (TF), were estimated. The results show that the soil of all the explored sites was sandy and slightly alkaline. It was found that Ni, Pb, and Cr were above the international permissible limit in all soil samples. The Wadi Marik region recorded the highest HM concentration compared to the other sites. In the Bahra region, Fe, Zn, Co, and Mn in all collected soil samples were below internationally permissible levels. In Khumrah, the highest concentration of Zn was found in the soil sample collected around F. indica plants, while Fe, Co, and Mn in all collected soil samples were below the international permissible limit. Depending on the BCF calculations, most of the investigated species showed phytostabilization ability for most of the studied HMs. Of them, E. indica, T. nubica, and P. divisum recorded the highest BCF values that ranged from 16.1 to 3.4. The BCF values of the studied HMs reduced in the order of Cr > Zn > Mn > Co > Ba > Fe > Al > Pb. Phytoextration of Co and Cr could be achieved by P. oleracea and F. indica, which showed TF values that reached 6.7 and 6.1, respectively. These plants showed high potential for phytoremediation and can be suggested as protective belts close to the contaminated regions of Jeddah. Full article
(This article belongs to the Special Issue Mine Ecological Restoration)
Show Figures

Figure 1

13 pages, 1076 KiB  
Article
Lead Tolerance and Remediation Potential of Four Indocalamus Species in Lead-Contaminated Soil
by Jiarong Liao, Mingyan Jiang, Yangcheng Lu, Yixiong Yang, Yedan Gao, Qibing Chen, Zhenghua Luo and Xiaofang Yu
Plants 2024, 13(13), 1823; https://doi.org/10.3390/plants13131823 - 2 Jul 2024
Viewed by 1156
Abstract
Indocalamus plants are low-growing shrubby bamboos with growth advantages, such as high biomass and strong resistance, and they are rich in germplasm resources in southern China. This study conducted soil lead (Pb) stress experiments on Indocalamus latifolius (Keng) McClure (LA), Indocalamus hunanensis B.M. [...] Read more.
Indocalamus plants are low-growing shrubby bamboos with growth advantages, such as high biomass and strong resistance, and they are rich in germplasm resources in southern China. This study conducted soil lead (Pb) stress experiments on Indocalamus latifolius (Keng) McClure (LA), Indocalamus hunanensis B.M. Yang (HU), Indocalamus chishuiensis Y.L. Yang and Hsueh (CH) and Indocalamus lacunosus Wen (LC). Five Pb treatments (0, 500, 1000, 1500 mg·kg−1 Pb, and 1000 mg·kg−1 Pb + 1000 mg·kg−1 ethylenediamine tetraacetic acid (EDTA)) were established. EDTA was applied to explore the tolerance mechanism of different Indocalamus species after absorbing large amounts of heavy metals. The results were as follows: (1) under Pb treatment, the total relative biomass of LA, HU and LC was <100%, whereas the total relative biomass of CH was >100%; (2) after applying EDTA, the bioconcentration coefficient, translocation factor, and free proline content of the four Indocalamus species increased; and (3) the Pb mobility and distribution rates of the underground parts of the four Indocalamus species were consistently greater than those of the aboveground parts. The Pb mobility and distribution rates in the stems increased after applying EDTA, while those in the leaves decreased, as the plants tended to transfer Pb to their stems, which have lower physiological activity than their leaves. Full article
Show Figures

Figure 1

17 pages, 5032 KiB  
Article
Element Cycling at Thermally Active Coal-Waste Dumps: A Case Study of Calamagrostis epigejos and Solidago canadensis
by Anna K. Abramowicz and Oimahmad Rahmonov
Resources 2024, 13(6), 73; https://doi.org/10.3390/resources13060073 - 30 May 2024
Cited by 2 | Viewed by 1294
Abstract
Coal-waste dumps in the Upper Silesian Coal Basin are usually colonized by tall grass Calamagrostis epigejos and Solidago canadensis, which influence the direction of vegetation formation and the soil chemistry. The aim of this study is to analyze and determine the content [...] Read more.
Coal-waste dumps in the Upper Silesian Coal Basin are usually colonized by tall grass Calamagrostis epigejos and Solidago canadensis, which influence the direction of vegetation formation and the soil chemistry. The aim of this study is to analyze and determine the content of major elements (Fe, Ca, P, Mg, Al, Na, K, S) and trace elements (Mo, Cu, Pb, Zn, Ni, Co, Mn, Sr, Cd, Cr) in aboveground and underground parts of the plants and the soil at the thermally active coal-waste dump. Analysis of the heavy metal concentrations reveals that they are higher in plant materials than in soil materials within the root zone of the plants. Environmental indicator analysis (geoaccumulation index, enrichment factor, translocation factor) shows that the studied species exhibit varying degrees of pollution, with cadmium and zinc showing the highest accumulation rates. The content of elements in the analyzed species, both in washed and unwashed specimens, does not show significant differences, which is confirmed by the enrichment factor. Statistical analysis shows a positive correlation between the amount of microelements in plants (roots, aerial part) and soil samples in both thermally active and inactive zones. These findings broaden the scientific inquiry and hold practical significance for the reclamation of post-industrial areas. Full article
(This article belongs to the Special Issue Mineral Resource Management 2023: Assessment, Mining and Processing)
Show Figures

Figure 1

16 pages, 23191 KiB  
Article
Assessing Phytoremediation Potential: Dominant Plants in Soils Impacted by Polymetal(loid)lic Mining
by Boxin Wang, Juan Hou, Xueyong Wu, Xuekui Niu and Fengping Zhou
Processes 2024, 12(4), 833; https://doi.org/10.3390/pr12040833 - 19 Apr 2024
Cited by 2 | Viewed by 1758
Abstract
Phytoremediation, an ecological approach aimed at addressing polymetal(loid)lic-contaminated mining soils, has encountered adaptability challenges. Dominant plant species, well-suited to the local conditions, have emerged as promising candidates for this purpose. This study focused on assessing the phytoremediation potential of ten plant species that [...] Read more.
Phytoremediation, an ecological approach aimed at addressing polymetal(loid)lic-contaminated mining soils, has encountered adaptability challenges. Dominant plant species, well-suited to the local conditions, have emerged as promising candidates for this purpose. This study focused on assessing the phytoremediation potential of ten plant species that thrived in heavy metal(loid)-contaminated mining soils. This investigation covered nine heavy metal(loid)s (As, Cu, Cd, Cr, Hg, Ni, Pb, Sn, and Zn) in both plants and rhizosphere soils. The results revealed a significant impact of mining activities, with heavy metal(loid) concentrations surpassing the Yunnan Province’s background levels by 1.06 to 362 times, highlighting a significant concern for remediation. The average levels of the heavy metal(loid)s followed the order of As (3.98 × 103 mg kg−1) > Cu (2.83 × 103 mg kg−1) > Zn (815 mg kg−1) > Sn (176 mg kg−1) > Pb (169 mg kg−1) > Cr (68.1 mg kg−1) > Ni (36.2 mg kg−1) > Cd (0.120 mg kg−1) > Hg (0.0390 mg kg−1). The bioconcentration factors (BCFs), bioaccumulation factors (BAFs), and translocation factors (TFs) varied among the native plants, indicating diverse adaptation strategies. Low BCFs and BAFs (ranging from 0.0183 to 0.418 and 0.0114 to 0.556, respectively) suggested a low bioavailability of heavy metal(loid)s. Among the species, both J. effusus and P. capitata showed remarkable abilities for As accumulation, while A. adenophora demonstrated a notable accumulation ability for various heavy metal(loid)s, especially Cd, with relatively high BCFs (1.88) and BAFs (3.11), and the TF at 1.66 further underscored the crucial role of translocation in preventing root toxicity. These findings emphasized the potential of these plant species in mine ecological restoration and phytoremediation, guiding targeted environmental rehabilitation strategies. Full article
(This article belongs to the Special Issue Advances in Remediation of Contaminated Sites: 2nd Edition)
Show Figures

Figure 1

Back to TopTop