Lead Tolerance and Remediation Potential of Four Indocalamus Species in Lead-Contaminated Soil
Abstract
:1. Introduction
2. Research Content and Methods
2.1. Research Material
2.2. Research Design
2.3. Index Test and Method
2.3.1. Measurement of Biomass
2.3.2. Physiological Index Determination
2.3.3. Determination of Metal Content in Plants
2.4. Data Statistics and Analysis Methods
3. Results and Analysis
3.1. Growth and Physiological Characteristics of the Four Indocalamus Species
3.1.1. Organ Biomass Allocation of the Four Indocalamus Species
3.1.2. Physiological Characteristics of the Four Indocalamus Species
3.2. Pb Accumulation and Transport Characteristics of the Four Indocalamus Species
3.2.1. Pb Content in the Organs of Four Indocalamus Species
3.2.2. Pb Accumulation and Transport in the Four Indocalamus Species
3.3. Correlation Analysis of the Tolerances of the Four Indocalamus Species
3.3.1. Correlations between Growth and Pb Content of the Four Indocalamus Species
3.3.2. Correlations between Physiological Indices and Pb Contents in the Leaves of the Four Indocalamus Species
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.Y.; Yan, T.; Wang, K.; Huang, S.M.; Yuan, W.Z.; Qin, F.G.F. Soil heavy metal lead pollution and its stabilization remediation technology. Energy Rep. 2021, 6, 122–127. [Google Scholar] [CrossRef]
- Mao, C.P.; Song, Y.X.; Chen, L.X.; Ji, J.F.; Li, J.Z.; Yuan, X.Y.; Yang, Z.F.; Ayoko, G.A.; Frost, R.L.; Theiss, F. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 2019, 175, 339–348. [Google Scholar] [CrossRef]
- Al-Lami, A.M.A.; Khudhaier, S.R.; Aswad, A.K. Effects of heavy metals pollution on human health. Ann. Trop. Med. Public Health 2020, 23, 226601779. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.D.; Wu, Y.J.; Zhang, S.; Li, G.Y.; An, T.C. Pollution Profiles, Source Identification and Health Risk Assessment of Heavy Metals in Soil near a Non-Ferrous Metal Smelting Plant. Int. J. Environ. Res. Public Health 2023, 20, 1004. [Google Scholar] [CrossRef]
- Kaur, R.; Bhatti, S.S.; Singh, S.; Singh, J.; Singh, S. Phytoremediation of Heavy Metals Using Cotton Plant: A Field Analysis. Bull. Environ. Contam. Toxicol. 2018, 101, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Sabreena; Hassan, S.; Bhat, S.A.; Kumar, V.; Ganai, B.A.; Ameen, F. Phytoremediation of Heavy Metals: An Indispensable Contrivance in Green Remediation Technology. Plants 2022, 11, 1255. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Hatamian, M.; Nejad, A.R.; Kafi, M.; Souri, M.K.; Shahbazi, K. Interaction of lead and cadmium on growth and leaf morphophysiological characteristics of European hackberry (Celtis australis) seedlings. Chem. Biol. Technol. Agric. 2020, 7, 9. [Google Scholar] [CrossRef]
- Ullah, S.; Ali, R.; Mahmood, S.; Riaz, M.A.; Akhtar, K. Differential Growth and Metal Accumulation Response of Brachiaria mutica and Leptochloa fusca on Cadmium and Lead Contaminated Soil. Soil Sediment Contam. Int. J. 2020, 29, 844–859. [Google Scholar] [CrossRef]
- Shi, P.J.; Xu, Q.; Sandhu, H.S.; Gielis, J.; Ding, Y.L.; Li, H.R.; Dong, X.B. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant. Ecol. Evol. 2015, 5, 4578–4589. [Google Scholar] [CrossRef] [PubMed]
- Bian, F.Y.; Zhong, Z.K.; Zhang, X.P.; Yang, C.B.; Gai, X. Bamboo—An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere 2020, 246, 125750. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.Y.; Jiang, M.Y.; Liao, J.R.; Yang, Y.X.; Li, N.F.; Cheng, Q.B.; Li, X.; Song, H.X.; Luo, Z.H.; Liu, S.L. Biomass allocation strategies and Pb-enrichment characteristics of six dwarf bamboos under soil Pb stress. Ecotoxicol. Environ. Saf. 2021, 207, 111500. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.R.; Cai, X.Y.; Yang, Y.X.; Chen, Q.B.; Gao, S.P.; Liu, G.L.; Sun, L.X.; Luo, Z.H.; Lei, T.; Jiang, M.Y. Dynamic study of the lead (Pb) tolerance and accumulation characteristics of new dwarf bamboo in Pb-contaminated soil. Chemosphere 2021, 282, 131089. [Google Scholar] [CrossRef]
- Yang, Y.X.; Liao, J.R.; Chen, Y.H.; Tian, Y.; Chen, Q.B.; Gao, S.P.; Luo, Z.H.; Yu, X.F.; Lei, T.; Jiang, M.Y. Efficiency of heterogeneous chelating agents on the phytoremediation potential and growth of Sasa argenteostriata (Regel) E.G. Camus on Pb-contaminated soil. Ecotoxicol. Environ. Saf. 2022, 238, 113603. [Google Scholar] [CrossRef] [PubMed]
- Karczewska, A.; Orlow, K.; Kabala, C.; Szopka, K.; Galka, B. Effects of Chelating Compounds on Mobilization and Phytoextraction of Copper and Lead in Contaminated Soils. Commun. Soil Sci. Plant Anal. 2011, 42, 1379–1389. [Google Scholar] [CrossRef]
- Glinska, S.; Michlewska, S.; Gapinska, M.; Seliger, P.; Bartosiewicz, R. The effect of EDTA and EDDS on lead uptake and localization in hydroponically grown Pisum sativum L. Acta Physiol. Plant. 2014, 36, 399–408. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cui, S.; Li, J.; Kirkham, M.B. Protoplasmic factors, antoxidant responses, and chilling resistance in maize. Plant Physiol. Biochem. 1995, 33, 567–575. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Zhan, J.; Li, T.X.; Zhang, X.Z.; Yu, H.Y.; Zhao, L. Rhizosphere characteristics of phytostabilizer Athyrium wardii (Hook.) involved in Cd and Pb accumulation. Ecotoxicol. Environ. Saf. 2018, 148, 892–900. [Google Scholar] [CrossRef]
- Ghori, N.H.; Ghori, T.; Hayat, M.Q.; Imadi, S.R.; Gul, A.; Altay, V.; Ozturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, N.N.; Geng, Y.N.; Zhou, J.H.; Lei, J. Effects of the combined pollution of cadmium, lead and zinc on the phytoextraction efficiency of ryegrass (Lolium perenne L.). RSC Adv. 2019, 9, 20603–20611. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.P.; Deng, G.; Guo, H.Y.; Yang, M.; Yang, Q.H. Accumulation and sub cellular distribution of lead (Pb) in industrial hemp grown in Pb contaminated soil. Ind. Crops Prod. 2021, 161, 113220. [Google Scholar] [CrossRef]
- Ling, T.; Gao, Q.; Du, H.L.; Zhao, Q.C.; Ren, J. Growing, physiological responses and Cd uptake of Corn (Zea mays L.) under different Cd supply. Chem. Speciat. Bioavailab. 2018, 29, 216–221. [Google Scholar] [CrossRef]
- Sameena, P.P.; Puthur, J.T. Heavy Metal Phytoremediation by Bioenergy Plants and Associated Tolerance Mechanisms. Soil Sediment Contam. 2021, 30, 253–274. [Google Scholar]
- Oliveira, D.G.; Carvalho, M.E.A.; Souza, H.F.; Brignoni, A.S.; Lima, L.R.; Camargos, L.S.; Souza, L.A. Lonchocarpus cultratus, a Brazilian savanna tree, endures high soil Pb levels. Environ. Sci. Pollut. Res. 2021, 28, 50931–50940. [Google Scholar] [CrossRef] [PubMed]
- Gravand, F.; Rahnavard, A.; Pour, G.M. Investigation of Vetiver Grass Capability in Phytoremediation of Contaminated Soils with Heavy Metals (Pb, Cd, Mn, and Ni). Soil Sediment Contam. 2020, 30, 163–186. [Google Scholar] [CrossRef]
- Su, R.K.; Xie, T.Z.; Yao, H.S.; Chen, Y.H.; Wang, H.Q.; Dai, X.R.; Wang, Y.Y.; Shi, L.; Luo, Y.T. Lead Responses and Tolerance Mechanisms of Koelreuteria paniculata: A Newly Potential Plant for Sustainable Phytoremediation of Pb-Contaminated Soil. Int. J. Environ. Res. Public Health 2022, 19, 14968. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, A.; Pourakbar, L.; Moghaddam, S.S.; Popovic-Djordjevic, J. The effect of the exogenous application of EDTA and maleic acid on tolerance, phenolic compounds, and cadmium phytoremediation by okra (Abelmoschus esculentus L.) exposed to Cd stress. J. Environ. Chem. Eng. 2021, 9, 105456. [Google Scholar] [CrossRef]
- Wang, H.Q.; Lu, S.J.; Li, H.; Yao, Z.H. EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowieziana. J. Environ. Sci. 2007, 19, 1496–1499. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Wang, Y.M.; Tan, S.N.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.H.; Kumari, J.P. Heavy Metal Lead Influative Toxicity and Its Assessment in Phytoremediating Plants—A Review. Water Air Soil Pollut. 2015, 226, 324. [Google Scholar] [CrossRef]
- Giannakoula, A.; Therios, I.; Chatzissavvidis, C. Effect of Lead and Copper on Photosynthetic Apparatus in Citrus (Citrus aurantium L.) Plants. The Role of Antioxidants in Oxidative Damage as a Response to Heavy Metal Stress. Plants 2021, 10, 155. [Google Scholar] [CrossRef]
- Yilmaz, S.H.; Kaplan, M.; Temizgul, R.; Yilmaz, S. Antioxidant enzyme response of sorghum plant upon exposure to Aluminum, Chromium and Lead heavy metals. Turk. J. Biochem. 2017, 42, 503–512. [Google Scholar] [CrossRef]
- DalCorso, G.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. Int. J. Mol. Sci. 2019, 20, 3412. [Google Scholar] [CrossRef] [PubMed]
- Redovnikovic, I.R.; De Marco, A.; Proietti, C.; Hanousek, K.; Sedak, M.; Bilandzic, N.; Jakovljevic, T. Poplar response to cadmium and lead soil contamination. Ecotoxicol. Environ. Saf. 2017, 144, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, M.; Rajakaruna, N.; Rizwan, M.; Madawala, H.M.S.P.; Ok, Y.S.; Vithanage, M. Heavy metal-induced oxidative stress on seed germination and seedling development: A critical review. Environ. Geochem. Health 2019, 41, 1635. [Google Scholar] [CrossRef] [PubMed]
- Kaviani, E.; Niazi, A.; Heydarian, Z.; Moghadam, A.; Ghasemi-Fasaei, R.; Abdollahzadeh, T. Phytoremediation of Pb-Contaminated Soil by Salicornia iranica: Key Physiological and Molecular Mechanisms Involved in Pb Detoxification. Clean-Soil Air Water 2017, 45, 1500964. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Ashraf, M. Proline Alleviates Abiotic Stress Induced Oxidative Stress in Plants. J. Plant Growth Regul. 2022, 42, 4629–4651. [Google Scholar] [CrossRef]
- Shah, N.L.; Qadir, M.; Irshad, M.; Hussain, A.; Hamayun, M.; Murad, W.; Khan, A.; Al-Harrasi, A. Enhancement of Cadmium Phytoremediation Potential of Helianthus annuus L. with Application of EDTA and IAA. Metabolites 2022, 12, 1049. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.L.; Wu, X.; Gu, J.G.; Zhao, J.Z.; Huang, S.Z.; Yuan, H.Y.; Fu, J.J. Effects of organic acids on the photosynthetic and antioxidant properties and accumulations of heavy metals of Melilotus officinalis grown in Cu tailing. Environ. Sci. Pollut. Res. 2016, 23, 17901–17909. [Google Scholar] [CrossRef] [PubMed]
- Feki, K.; Tounsi, S.; Mrabet, M.; Mhadhbi, H.; Brini, F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. Environ. Sci. Pollut. Res. 2021, 28, 64967–64986. [Google Scholar] [CrossRef] [PubMed]
- Dinu, C.; Vasile, G.G.; Buleandra, M.; Popa, D.E.; Gheorghe, S.; Ungureanu, E.M. Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. J. Soils Sediments 2020, 20, 2141–2154. [Google Scholar] [CrossRef]
- Gul, I.; Manzoor, M.; Kallerhoff, J.; Arshad, M. Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. Chemosphere 2020, 258, 127405. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, T.; Gustot, Q.; Couder, E.; Houben, D.; Iserentant, A.; Lutts, S. Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil. Chemosphere 2011, 85, 1290–1298. [Google Scholar] [CrossRef]
- Sinegani, A.A.S.; Khalilikhah, F. Phytoextraction of lead by Helianthus annuus: Effect of mobilising agent application time. Plant Soil Environ. 2008, 54, 434–440. [Google Scholar] [CrossRef]
- Sinegani, A.A.S.; Khalilikhah, F. The effect of application time of mobilising agents on growth and phytoextraction of lead by Brassica napus from a calcareous mine soil. Environ. Chem. Lett. 2011, 9, 259–265. [Google Scholar] [CrossRef]
Treatments | Bamboo Species | |||
---|---|---|---|---|
LA | HU | CH | LC | |
Pb500 | 88.73% ± 1.21% a1 | 95.41% ± 4.46% a1 | 108.49% ± 5.28% a1 | 95.59% ± 0.85% a1 |
Pb1000 | 71.57% ± 1.31% ab2 | 90.16% ± 4.54% ab2 | 121.28% ± 5.13% a1 | 90.62% ± 1.39% bc2 |
Pb1000E | 67.23% ± 3.33% b2 | 86.15% ± 2.72% ab2 | 126.51% ± 8.96% a1 | 93.32% ± 1.58% ab2 |
Pb1500 | 57.93% ± 1.85% b3 | 82.33% ± 1.38% b2 | 109.72% ± 2.49% a1 | 85.75% ± 1.55% c2 |
Bamboo Species | Treatment | Plant Organs | Aerial Part | Underground Part | |||
---|---|---|---|---|---|---|---|
Root | Rhizome | Stem | Leaf | ||||
LA | Pb500 | 33.62% ± 0.24% c12 | 29.43% ± 0.82% b3 | 10.87% ± 0.58% c2 | 26.09% ± 20.5% a1 | 36.95% ± 2.25% a1 | 63.05% ± 1.07% c23 |
Pb1000 | 43.84% ± 0.27% b1 | 27.33% ± 1.53% b3 | 13.90% ± 0.46% b3 | 14.93% ± 0.44% b1 | 28.83% ± 0.82% b2 | 71.17% ± 1.76% b2 | |
Pb1000E | 27.67% ± 0.63% d3 | 38.64% ± 0.83% a1 | 21.79% ± 0.43% a2 | 11.91% ± 0.32% bc2 | 33.70% ± 0.59% a2 | 66.30% ± 1.11% c2 | |
Pb1500 | 71.15% ± 0.24% a1 | 13.74% ± 0.67% c4 | 5.83% ± 0.15% d4 | 9.28% ± 0.25% c2 | 15.11% ± 0.40% c4 | 84.89% ± 0.56% a1 | |
HU | Pb500 | 34.63% ± 0.45% b1 | 34.87% ± 1.78% a23 | 16.08% ± 0.50% d1 | 14.42% ± 0.43% b2 | 30.50% ± 0.92% c2 | 69.50% ± 1.87% a2 |
Pb1000 | 40.50% ± 0.70% a2 | 21.53% ± 0.43% c4 | 22.01% ± 0.94% c1 | 15.95% ± 0.11% a1 | 37.96% ± 0.88% ab1 | 62.04% ± 0.27% bc3 | |
Pb1000E | 21.48% ± 0.06% c4 | 38.20% ± 0.65% a1 | 30.40% ± 0.75% a1 | 9.93% ± 0.18% c3 | 40.32% ± 0.59% a1 | 59.68% ± 0.59% c3 | |
Pb1500 | 34.08% ± 0.14% b3 | 30.88% ± 1.42% b3 | 24.54% ± 0.69% b1 | 10.50% ± 0.36% c2 | 35.04% ± 1.05% b1 | 64.96% ± 1.56% b3 | |
CH | Pb500 | 32.25% ± 0.65% a2 | 44.21% ± 2.80% a1 | 12.43% ± 0.33% c2 | 11.11% ± 0.64% b2 | 23.54% ± 0.34% c3 | 76.46% ± 3.42% a1 |
Pb1000 | 25.02% ± 0.51% b3 | 45.98% ± 0.52% a1 | 16.79% ± 0.35% b2 | 12.21% ± 0.59% b2 | 29.00% ± 0.43% b2 | 71.00% ± 0.18% ab2 | |
Pb1000E | 33.91% ± 0.37% a2 | 35.73% ± 1.30% b1 | 21.62% ± 0.24% a2 | 8.73% ± 0.37% c4 | 30.36% ± 0.53% ab3 | 69.64% ± 1.25% b12 | |
Pb1500 | 25.56% ± 0.11% b4 | 43.20% ± 0.50% a1 | 16.06% ± 0.53% b2 | 15.18% ± 0.74% a1 | 31.24% ± 0.77% a2 | 68.76% ± 0.48% b2 | |
LC | Pb500 | 18.31% ± 0.99% c3 | 41.04% ± 1.64% a12 | 10.87% ± 0.94% b2 | 29.78% ± 1.12% a1 | 40.65% ± 0.75% a1 | 59.35% ± 1.28% c3 |
Pb1000 | 44.58% ± 1.11% a1 | 35.80% ± 1.15% b2 | 6.67% ± 0.19% c4 | 12.96% ± 0.32% b2 | 19.63% ± 0.48% c3 | 80.37% ± 2.26% a1 | |
Pb1000E | 37.05% ± 0.39% b1 | 35.28% ± 1.71% b1 | 14.75% ± 0.50% a3 | 12.92% ± 0.39% b1 | 27.67% ± 0.66% b4 | 72.33% ± 1.72% b1 | |
Pb1500 | 43.95% ± 1.14% a2 | 37.77% ± 1.22% ab2 | 10.28% ± 0.62% b3 | 8.00% ± 0.36% c3 | 18.28% ± 0.30% c3 | 81.7% 2 ± 1.28% a1 |
Organs | Bamboo Species | |||
---|---|---|---|---|
LA | HU | CH | LC | |
Root | −0.875 ** | −0.757 ** | 0.713 ** | 0.764 ** |
Rhizome | −0.405 | −0.330 | 0.698 ** | −0.613 * |
Stem | −0.548 * | −0.153 | 0.267 | −0.208 |
Leaf | −0.470 | −0.667 ** | 0.366 | −0.291 |
Physiological Indexes | Bamboo Species | |||
---|---|---|---|---|
LA | HU | CH | LC | |
Chlorophyll content | −0.795 ** | −0.925 ** | −0.830 ** | −0.028 |
Superoxide dismutase activity | −0.588 * | −0.723 ** | 0.551 * | 0.653 ** |
Peroxidase activity | −0.315 | −0.527 * | −0.751 ** | 0.185 |
Catalase activity | −0.941 ** | −0.615 * | 0.499 | 0.798 ** |
Free proline content | −0.519 * | −0.826 ** | 0.275 | 0.245 |
Malondialdehyde contents | 0.802 ** | 0.928 ** | 0.893 ** | 0.837 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Jiang, M.; Lu, Y.; Yang, Y.; Gao, Y.; Chen, Q.; Luo, Z.; Yu, X. Lead Tolerance and Remediation Potential of Four Indocalamus Species in Lead-Contaminated Soil. Plants 2024, 13, 1823. https://doi.org/10.3390/plants13131823
Liao J, Jiang M, Lu Y, Yang Y, Gao Y, Chen Q, Luo Z, Yu X. Lead Tolerance and Remediation Potential of Four Indocalamus Species in Lead-Contaminated Soil. Plants. 2024; 13(13):1823. https://doi.org/10.3390/plants13131823
Chicago/Turabian StyleLiao, Jiarong, Mingyan Jiang, Yangcheng Lu, Yixiong Yang, Yedan Gao, Qibing Chen, Zhenghua Luo, and Xiaofang Yu. 2024. "Lead Tolerance and Remediation Potential of Four Indocalamus Species in Lead-Contaminated Soil" Plants 13, no. 13: 1823. https://doi.org/10.3390/plants13131823
APA StyleLiao, J., Jiang, M., Lu, Y., Yang, Y., Gao, Y., Chen, Q., Luo, Z., & Yu, X. (2024). Lead Tolerance and Remediation Potential of Four Indocalamus Species in Lead-Contaminated Soil. Plants, 13(13), 1823. https://doi.org/10.3390/plants13131823