Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (247)

Search Parameters:
Keywords = Paraquat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3575 KiB  
Article
Antioxidant Power of Brown Algae: Ascophyllum nodosum and Fucus vesiculosus Extracts Mitigate Oxidative Stress In Vitro and In Vivo
by Lea Karlsberger, Georg Sandner, Lenka Molčanová, Tomáš Rýpar, Stéphanie Ladirat and Julian Weghuber
Mar. Drugs 2025, 23(8), 322; https://doi.org/10.3390/md23080322 - 6 Aug 2025
Abstract
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo [...] Read more.
Brown algae such as Ascophyllum nodosum (AN) and Fucus vesiculosus (FV) are gaining considerable attention as functional feed additives due to their health-beneficial properties. This study evaluated the antioxidant potential of AN and FV extracts in intestinal epithelial cells and the in vivo model Caenorhabditis elegans (C. elegans). Aqueous AN and FV extracts were characterized for total phenolic content (TPC), antioxidant capacity (TEAC, FRAP), and phlorotannin composition using LC-HRMS/MS. Antioxidant effects were assessed in vitro, measuring AAPH-induced ROS production in Caco-2 and IPEC-J2 cells via H2DCF-DA, and in vivo, evaluating the effects of paraquat-induced oxidative stress and AN or FV treatment on worm motility, GST-4::GFP reporter expression, and gene expression in C. elegans. FV exhibited higher total phenolic content, antioxidant capacity (TEAC, FRAP), and a broader phlorotannin profile (degree of polymerization [DP] 2–9) than AN (DP 2–7), as determined by LC-HRMS/MS. Both extracts attenuated AAPH-induced oxidative stress in epithelial cells, with FV showing greater efficacy. In C. elegans, pre-treatment with AN and FV significantly mitigated a paraquat-induced motility decline by 22% and 11%, respectively, compared to PQ-stressed controls. Under unstressed conditions, both extracts enhanced nematode healthspan, with significant effects observed at 400 µg/g for AN and starting at 100 µg/g for FV. Gene expression analysis indicated that both extracts modulated antioxidant pathways in unstressed worms. Under oxidative stress, pre-treatment with AN and FV significantly reduced GST-4::GFP expression. In the nematode, AN was more protective under acute stress, whereas FV better supported physiological function in the absence of stressors. These findings demonstrate that AN and FV counteract oxidative stress in intestinal epithelial cells and in C. elegans, highlighting their potential as stress-reducing agents in animal feed. Full article
Show Figures

Figure 1

32 pages, 1848 KiB  
Review
Soil to Synapse: Molecular Insights into the Neurotoxicity of Common Gardening Chemicals in Alzheimer’s and Parkinson’s Disease
by Niti Sharma and Seong Soo A. An
Int. J. Mol. Sci. 2025, 26(13), 6468; https://doi.org/10.3390/ijms26136468 - 4 Jul 2025
Viewed by 584
Abstract
The common gardening herbicides and fertilizers are crucial for weed control and plant growth, yet they may have potentially harmful impacts on neurological health. This review explored the possible effects of these chemicals on neurodegenerative disorders, especially Alzheimer’s disease (AD) and Parkinson’s disease [...] Read more.
The common gardening herbicides and fertilizers are crucial for weed control and plant growth, yet they may have potentially harmful impacts on neurological health. This review explored the possible effects of these chemicals on neurodegenerative disorders, especially Alzheimer’s disease (AD) and Parkinson’s disease (PD). The mode of action of several frequently used gardening chemicals (paraquat, glyphosate, 2,4-dichlorophenoxyacetic acid: 2,4-D, and ammonium chloride) in AD and PD has been highlighted. The mechanisms involved are glutamate excitotoxicity, dopaminergic pathway disruption, oxidative stress, mitochondrial dysfunction, neuroinflammation, synaptic dysfunction, and gut–brain-axis dysregulation, crucial in the pathophysiology of AD and PD. Although the links between these substances and neurodegenerative conditions remained to be seen, growing evidence indicated their detrimental effects on brain health. This highlights the need for further research to understand their long-term consequences and develop effective interventions to mitigate the adverse effects of commonly used chemicals on human health and the environment. Full article
Show Figures

Figure 1

15 pages, 2312 KiB  
Article
The G311E Mutant Gene of MATE Family Protein DTX6 Confers Diquat and Paraquat Resistance in Rice Without Yield or Nutritional Penalties
by Gaoan Chen, Jiaying Han, Ziyan Sun, Mingming Zhao, Zihan Zhang, Shuo An, Muyu Shi, Jinxiao Yang and Xiaochun Ge
Int. J. Mol. Sci. 2025, 26(13), 6204; https://doi.org/10.3390/ijms26136204 - 27 Jun 2025
Viewed by 317
Abstract
Weeds present a pervasive challenge in agricultural fields. The integration of herbicide-resistant crops with chemical weed management offers an effective solution for sustainable weed control while reducing labor inputs, particularly in large-scale intensive farming systems. Consequently, the development of herbicide-resistant cultivars has emerged [...] Read more.
Weeds present a pervasive challenge in agricultural fields. The integration of herbicide-resistant crops with chemical weed management offers an effective solution for sustainable weed control while reducing labor inputs, particularly in large-scale intensive farming systems. Consequently, the development of herbicide-resistant cultivars has emerged as an urgent priority. In this study, we found that the G311E mutant gene of Arabidopsis MATE (multidrug and toxic compound extrusion) family transporter DTX6, designated DTX6m, confers robust resistance to bipyridyl herbicides paraquat and diquat in rice. DTX6m-overexpression lines exhibited marked resistance to these two herbicides, tolerating diquat concentrations up to 5 g/L, which is five-fold higher than the recommended field application dosage. Agronomic assessments demonstrated that grain yields of DTX6m-overexpressing plants were statistically equivalent to those of wild-type plants. Moreover, the plants displayed beneficial phenotypic changes, such as accelerated flowering and a slight reduction in height. Seed morphometric analysis indicated that in comparison with the wild-type control, DTX6m-transgenic lines exhibited altered grain dimensions while maintaining consistent 1000-grain weight. Nutritional assays further demonstrated that DTX6m increased the levels of free amino acids in seeds, while normal protein and starch contents were retained. Collectively, these results establish that DTX6m effectively boosts rice resistance to paraquat and diquat, validating DTX6m as a candidate gene for engineering plant herbicide resistance and also implying a potential role for DTX6m in amino acid homeostasis in plants. Full article
(This article belongs to the Special Issue Advanced Plant Molecular Responses to Abiotic Stresses)
Show Figures

Figure 1

21 pages, 2164 KiB  
Review
What Is New for the Mechanisms of Plant Resistance to Paraquat After Decades of Research?
by Liyun Zhang, Chang Xu, Heping Han, Shawn Askew, Erik Ervin, Qin Yu and Kehua Wang
Agriculture 2025, 15(12), 1288; https://doi.org/10.3390/agriculture15121288 - 15 Jun 2025
Viewed by 698
Abstract
Paraquat is one of the most widely used nonselective herbicides globally. Although the emergence of weed resistance to paraquat has progressed relatively slowly since the first reported case in Japan in 1980, it has been steadily increasing. Resistance in weedy plants is predominantly [...] Read more.
Paraquat is one of the most widely used nonselective herbicides globally. Although the emergence of weed resistance to paraquat has progressed relatively slowly since the first reported case in Japan in 1980, it has been steadily increasing. Resistance in weedy plants is predominantly associated with non-target-site resistance (NTSR), particularly via reduced uptake and translocation to target sites (i.e., chloroplasts) and/or enhanced sequestration; increased antioxidant capacity is also a common mechanism by which plants cope with various stresses, including reactive oxygen species (ROS). However, direct evidence for paraquat transport mediated by membrane transporters in weeds has not been established. Over the past decade, research, especially in model plants such as Arabidopsis thaliana, has advanced our understanding of the mechanisms underlying plant resistance to paraquat. This brief review summarized recent studies on paraquat resistance, with a particular focus on uptake, translocation, and sequestration mechanisms. For instance, three L-amino acid transporter (LAT) proteins (LAT1/3/4) and one (PDR11) belonging to the PDR (pleiotropic drug resistance) subfamily within the ABC (ATP-binding cassette) transporter family were confirmed to exhibit paraquat transporter activity; furthermore, transporters such as DTX6 (detoxification efflux carrier) can export/sequestrate paraquat inside the cell to the vacuole and apoplast, which confers stronger paraquat resistance to nearly commercial doses. In addition, the evolving perspectives in paraquat resistance research integrating big data and artificial intelligence, development of paraquat-tolerant crops, and a proposal of ryegrass (Lolium. spp.) and/or goosegrass (Eleusine indica) as a model weed species for paraquat resistance studies were also briefly discussed. Further advances in elucidating the molecular mechanisms of paraquat resistance in plants, including weeds, are anticipated. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

23 pages, 6844 KiB  
Article
A Hydrolyzed Soybean Protein Enhances Oxidative Stress Resistance in C. elegans and Modulates Gut–Immune Axis in BALB/c Mice
by Jun Liu, Yansheng Zhao, Fei Leng, Xiang Xiao, Weibo Jiang and Shuntang Guo
Antioxidants 2025, 14(6), 689; https://doi.org/10.3390/antiox14060689 - 5 Jun 2025
Viewed by 706
Abstract
Soy protein isolate (SPI) is a high-purity protein from defatted soybeans, providing emulsifying and gelling functions for plant-based foods and supplements. Hydrolysis can facilitate the production of bioactive small-molecule proteins or peptides with potential functional applications. In this study, 20% hydrolyzed soy protein [...] Read more.
Soy protein isolate (SPI) is a high-purity protein from defatted soybeans, providing emulsifying and gelling functions for plant-based foods and supplements. Hydrolysis can facilitate the production of bioactive small-molecule proteins or peptides with potential functional applications. In this study, 20% hydrolyzed soy protein (20% HSP) was prepared from SPI, and the effects of 20% HSP and SPI on alleviating oxidative stress in Caenorhabditis elegans (C. elegans) and regulating immune–gut microbiota in cyclophosphamide (CTX)-induced immunocompromised BALB/c mice were investigated. In C. elegans, both SPI and 20% HSP (300 μg/mL) enhanced locomotive activities, including body bending and head thrashing, and improved oxidative stress resistance under high glucose conditions. This improvement was mediated by increased antioxidant enzyme activities (SOD, CAT, and GSH-Px), while malondialdehyde (MDA) content was reduced by 60.15% and 82.28%, respectively. Both of them can also significantly extend the lifespan of normal C. elegans and paraquat-induced oxidative stress models by inhibiting lipofuscin accumulation. This effect was mediated through upregulation of daf-16 and suppression of daf-2 and akt-1 expression. In immunocompromised mice, 20% HSP alleviated CTX-induced immune dysfunction by increasing peripheral white blood cells and lymphocytes, attenuating thymic atrophy, and reducing hepatic oxidative stress via MDA inhibition. Gut microbiota analysis revealed that 20% HSP restored microbial balance by suppressing Escherichia-Shigella and enriching beneficial genera, like Psychrobacter. These findings highlight 20% HSP and SPI’s conserved anti-aging mechanisms via daf-16 activation in C. elegans and immune–gut modulation in mice, positioning them as plant-derived nutraceuticals targeting oxidative stress and immune dysregulation. Full article
(This article belongs to the Special Issue The Interaction Between Gut Microbiota and Host Oxidative Stress)
Show Figures

Figure 1

15 pages, 61249 KiB  
Article
Antioxidant and Histopathological Effects of Paraquat and Fluroxypyr Herbicides on the Apple Snail Pomacea canaliculata (Lamarck, 1822)
by Alejandra D. Campoy-Diaz, Israel A. Vega and Maximiliano Giraud-Billoud
Stresses 2025, 5(2), 33; https://doi.org/10.3390/stresses5020033 - 16 May 2025
Viewed by 872
Abstract
Argentina is among the top consumers of herbicides, yet studies on their environmental and health impact remain scarce. This work aimed to evaluate the effects of herbicide exposure on Pomacea canaliculata as potential biomarkers of contamination. Specifically, we investigated whether paraquat (Pq) and [...] Read more.
Argentina is among the top consumers of herbicides, yet studies on their environmental and health impact remain scarce. This work aimed to evaluate the effects of herbicide exposure on Pomacea canaliculata as potential biomarkers of contamination. Specifically, we investigated whether paraquat (Pq) and fluroxypyr (Fx) alter enzymatic antioxidant defenses in tissues following acute exposure and induce histological modifications in the digestive gland (DG), particularly in symbiotic corpuscles, after chronic exposure. The nominal no-observed-effect concentration on lethality (NOECL) values were 3.62 µg/g dry mass (DM) for Pq and 10.42 µg/g DM for Fx. After acute exposure, superoxide dismutase activity decreased in the DG but increased in the kidney for both herbicides. Catalase activity decreased in the gills but increased in the kidneys of exposed snails, while glutathione-S-transferase activity increased in the DG and kidney after Pq exposure. Following chronic exposure (Pq: 1.45 µg/g DM; Fx: 6.94 µg/g DM), epithelial thickening and vacuolization were observed in Fx-exposed snails. Morphometric analysis of the DG showed that Pq reduced the epithelial occupancy of the symbiont’s vegetative form while increasing its cystic form. These findings indicate that both herbicides impact antioxidant defenses, DG function and host–symbiont interactions, reinforcing the suitability of P. canaliculata as bioindicator organisms. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

18 pages, 3645 KiB  
Article
Effects of Graphene Derivatives and Near-Infrared Laser Irradiation on E. coli Biofilms and Stress Response Gene Expression
by Yuliya Maksimova, Ekaterina Pyankova, Larisa Nesterova and Aleksandr Maksimov
Int. J. Mol. Sci. 2025, 26(10), 4728; https://doi.org/10.3390/ijms26104728 - 15 May 2025
Cited by 1 | Viewed by 502
Abstract
Photothermal therapy combines the effects of near-infrared laser (NIR laser) and strong light-absorbing materials to combat pathogens and unwanted biofilms. Graphene derivatives have a negative effect on microorganisms, and the combination of NIR laser irradiation and carbon nanomaterials (CNMs) can enhance their antibacterial [...] Read more.
Photothermal therapy combines the effects of near-infrared laser (NIR laser) and strong light-absorbing materials to combat pathogens and unwanted biofilms. Graphene derivatives have a negative effect on microorganisms, and the combination of NIR laser irradiation and carbon nanomaterials (CNMs) can enhance their antibacterial effect. This investigation is devoted to the determination of the expression level of bacterial stress response genes (soxS and rpoS) under graphene oxide (GO), reduced graphene oxide (rGO), and NIR laser irradiation (1270 nm). GO, rGO and NIR laser irradiation separately and irradiation in the presence of graphene derivatives cause an increase in the expression level of rpoS associated with the general stress response of bacteria. GO and rGO do not change the expression level of soxS associated with the cell response to oxidative stress, and decrease it in the presence of a strong oxidizing agent paraquat (PQ). The expression of soxS increases under laser irradiation, but decreases under NIR laser irradiation in combination with graphene derivatives. The effect of GO, rGO, and NIR laser irradiation on the formation and eradication of E. coli biofilms was studied. NIR laser with GO and rGO suppresses the metabolic rate and decreases the intracellular ATP content by 94 and 99.6%, respectively. CNMs are shown to reduce biofilm biomass and the content of extracellular polymeric substances (EPSs), both exopolysaccharides and protein in the biofilm matrix. Graphene derivatives in combination with NIR laser irradiation may be an effective means of combating emerging and mature biofilms of Gram-negative bacteria. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 2078 KiB  
Article
A Microfluidic Device Integrating a Glucose Sensor and Calibration Function for Cell-Based Assays
by Laner Chen, Kenta Shinha, Hiroko Nakamura, Kikuo Komori and Hiroshi Kimura
Biosensors 2025, 15(5), 307; https://doi.org/10.3390/bios15050307 - 11 May 2025
Viewed by 835
Abstract
Microphysiological systems (MPS) incorporating microfluidic technologies offer improved physiological relevance and real-time analysis for cell-based assays, but often lack non-invasive monitoring capabilities. Addressing this gap, we developed a microfluidic cell-based assay platform integrating an electrochemical biosensor for real-time, non-invasive monitoring of kinetic cell [...] Read more.
Microphysiological systems (MPS) incorporating microfluidic technologies offer improved physiological relevance and real-time analysis for cell-based assays, but often lack non-invasive monitoring capabilities. Addressing this gap, we developed a microfluidic cell-based assay platform integrating an electrochemical biosensor for real-time, non-invasive monitoring of kinetic cell status through glucose consumption. The platform addresses the critical limitations of traditional cell assays, which typically rely on invasive, discontinuous methods. By combining enzyme-modified platinum electrodes within a microfluidic device, our biosensor can quantify dynamic changes in glucose concentration resulting from cellular metabolism. We have integrated a calibration function that corrects sensor drift, ensuring accurate and prolonged short-term measurement stability. In the validation experiments, the system successfully monitored glucose levels continuously for 20 h, demonstrating robust sensor performance and reliable glucose concentration predictions. Furthermore, in the cell toxicity assays using HepG2 cells exposed to varying concentrations of paraquat, the platform detected changes in glucose consumption, effectively quantifying the cellular toxicity responses. This capability highlights the device’s potential for accurately assessing the dynamic physiological conditions of the cells. Overall, our integrated platform significantly enhances cell-based assays by enabling continuous, quantitative, and non-destructive analysis, positioning it as a valuable tool for future drug development and biomedical research. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

21 pages, 5011 KiB  
Article
Neuroprotective Activity of Oligomeric Stilbenes from Alpha Grape Stems in In Vitro Models of Parkinson’s Disease
by Evgeny A. Pislyagin, Darya V. Tarbeeva, Ekaterina A. Yurchenko, Ekaterina S. Menchinskaya, Tatiana Y. Gorpenchenko, Natalya D. Pokhilo, Anatoly I. Kalinovskiy, Dmitry L. Aminin and Sergey A. Fedoreyev
Int. J. Mol. Sci. 2025, 26(6), 2411; https://doi.org/10.3390/ijms26062411 - 7 Mar 2025
Cited by 2 | Viewed by 947
Abstract
This study investigated the neuroprotective activity of oligomeric stilbenes (OSs) derived from Alpha grape stems in various in vitro models of Parkinson’s disease (PD). Using neurotoxin-induced cellular models, including 1-methyl-4-phenylpyridine (MPP+), paraquat (PQ), 6-hydroxydopamine (6-OHDA), and rotenone, we screened the cytoprotective effects of [...] Read more.
This study investigated the neuroprotective activity of oligomeric stilbenes (OSs) derived from Alpha grape stems in various in vitro models of Parkinson’s disease (PD). Using neurotoxin-induced cellular models, including 1-methyl-4-phenylpyridine (MPP+), paraquat (PQ), 6-hydroxydopamine (6-OHDA), and rotenone, we screened the cytoprotective effects of ampelopsin A (1), ε-viniferin (2), vitisin D (3), vitisin A (4), α-viniferin (5), trans-vitisin B (6), cis-vitisin B (7), and melanoxylin A (8). The results demonstrate that certain stilbenes significantly enhanced cell viability and reduced reactive oxygen species (ROS) levels in neurotoxin-treated Neuro-2a cells. Notably, vitisin A and trans-vitisin B exhibited promising neuroprotective properties by decreasing mitochondrial ROS and cardiolipin peroxidation. This study highlights the potential of these compounds in mitigating oxidative stress and inflammation associated with PD. Additionally, we provided new insights into the antioxidant mechanisms of these stilbenes, including their direct ROS-scavenging abilities. Our findings contribute to the understanding of oligomeric stilbenes as potential therapeutic agents for the prevention and treatment of neurodegenerative diseases, particularly those associated with oxidative damage. Further research is warranted to explore its clinical applications and underlying mechanisms of action. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 4800 KiB  
Article
Photodegradation of Emerging Pollutants Using a Quaternary Mixed Oxide Catalyst Derived from Its Corresponding Hydrotalcite
by L. V. Castro, B. Alcántar-Vázquez, M. E. Manríquez, E. Albiter and E. Ortiz-Islas
Catalysts 2025, 15(2), 173; https://doi.org/10.3390/catal15020173 - 13 Feb 2025
Cited by 2 | Viewed by 1264
Abstract
This study aimed to synthesize a multicationic hydrotalcite and transform it into mixed oxide nanostructures (ZnO/TiO2/CeO2/Al2O3, referred to as MixO) to serve as a heterogeneous photocatalyst for degrading various pollutants, including methylene blue (MB), methyl [...] Read more.
This study aimed to synthesize a multicationic hydrotalcite and transform it into mixed oxide nanostructures (ZnO/TiO2/CeO2/Al2O3, referred to as MixO) to serve as a heterogeneous photocatalyst for degrading various pollutants, including methylene blue (MB), methyl orange (MO), paracetamol (PA), and paraquat (PQ). The hydrotalcite was synthesized via an ultrasound-assisted method and calcined at 700 °C to obtain the corresponding mixed metal oxide. A comprehensive characterization of both the multicationic hydrotalcite (MC-LDH) and the mixed metal oxides (MixO) was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and pHPZC analysis. The MixO sample exhibited an optical bandgap of 3.19 eV. Photocatalytic performance was evaluated during 240 min of UV irradiation, demonstrating high degradation efficiencies attributable to the synergistic interactions among ZnO, TiO2, and CeO2. Degradation efficiencies reached 99.3% for MO and 95.2% for MB, while PA and PQ showed moderate degradation rates of 60% and 15%, respectively. The degradation kinetics of all pollutant compounds followed the Langmuir–Hinshelwood model. Additionally, the MixO catalyst maintained consistent performance over four consecutive degradation cycles, highlighting its reusability and stability. These findings underscore the potential of MixO mixed oxide nanostructures as practical and recyclable photocatalysts for environmental remediation, particularly in wastewater treatment applications. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Graphical abstract

25 pages, 780 KiB  
Review
Monoamine Oxidase Inhibitors in Toxic Models of Parkinsonism
by Olga Buneeva and Alexei Medvedev
Int. J. Mol. Sci. 2025, 26(3), 1248; https://doi.org/10.3390/ijms26031248 - 31 Jan 2025
Cited by 1 | Viewed by 1595
Abstract
Monoamine oxidase inhibitors are widely used for the symptomatic treatment of Parkinson’s disease (PD). They demonstrate antiparkinsonian activity in different toxin-based models induced by 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and pesticides (rotenone and paraquat). In some models, such as MPTP-induced PD, MAO inhibitors prevent the [...] Read more.
Monoamine oxidase inhibitors are widely used for the symptomatic treatment of Parkinson’s disease (PD). They demonstrate antiparkinsonian activity in different toxin-based models induced by 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and pesticides (rotenone and paraquat). In some models, such as MPTP-induced PD, MAO inhibitors prevent the formation of the neurotoxin MPP+ from the protoxin MPTP. Regardless of the toxin’s nature, potent MAO inhibitors prevent dopamine loss reduction, the formation of hydrogen peroxide, hydrogen peroxide signaling, and the accumulation of hydrogen peroxide-derived reactive oxygen species responsible for the development of oxidative stress. It becomes increasingly clear that some metabolites of MAO inhibitors (e.g., the rasagiline metabolite 1-R-aminoindan) possess their own bio-pharmacological activities unrelated to the parent compound. In addition, various MAO inhibitors exhibit multitarget action, in which MAO-independent effects prevail. This opens new prospects in the development of novel therapeutics based on simultaneous actions on several prospective targets for the therapy of PD. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2024)
Show Figures

Figure 1

23 pages, 19751 KiB  
Article
ApWD40a, a Member of the WD40-Repeat Protein Family, Is Crucial for Fungal Development, Toxin Synthesis, and Pathogenicity in the Ginseng Alternaria Leaf Blight Fungus Alternaria panax
by Jinling Lan, Shengjie Mei, Yingxue Du, Meili Chi, Jiayi Yang, Shuliu Guo, Mingliang Chu, Ronglin He and Jie Gao
J. Fungi 2025, 11(1), 59; https://doi.org/10.3390/jof11010059 - 14 Jan 2025
Viewed by 1005
Abstract
Alternaria panax, the primary pathogen that causes ginseng Alternaria leaf blight disease, can lead to a 20–30% reduction in ginseng yield. WD40 repeat-containing proteins are evolutionarily conserved proteins with diverse functions between different organisms. In this study, we characterized the roles of [...] Read more.
Alternaria panax, the primary pathogen that causes ginseng Alternaria leaf blight disease, can lead to a 20–30% reduction in ginseng yield. WD40 repeat-containing proteins are evolutionarily conserved proteins with diverse functions between different organisms. In this study, we characterized the roles of a WD40 repeat-containing protein in A. panax. The deletion of ApWD40a impaired the mycelial growth, reduced the sporulation, and significantly decreased the efficiency in utilizing various carbon sources. The ΔApwd40a mutant showed increased sensitivity to osmotic stress and metal ion stress induced by sorbitol, NaCl, and KCl, but decreased the sensitivity to a cell wall stress factor (SDS) and oxidative stress factors (paraquat and H2O2). Pathogenicity assays performed on detached ginseng leaves and roots revealed that the disruption of ApWD40a significantly decreased the fungal virulence through attenuating melanin and mycotoxin production by A. panax. A comparative transcriptome analysis revealed that ApWD40a was involved in many metabolic and biosynthetic processes, including amino acid metabolism, carbon metabolism, sulfate metabolic pathways, and secondary metabolite pathways. In particular, a significantly upregulated gene that encoded a sulfate permease 2 protein in ΔApwd40a, named ApSulP2, was deleted in the wild-type strain of A. panax. The deletion of ApSulP2 resulted in reduced biomass under sulfate-free conditions, demonstrating that the sulfate transport was impaired. Taken together, our findings highlight that ApWD40a played crucial roles in different biological processes and the pathogenicity of A. panax through modulating the expressions of genes involved in various primary and secondary metabolic processes. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

16 pages, 2820 KiB  
Article
Interactions among Zinc, Iron, and Paraquat in the Physiological and Toxicological Responses of the Egyptian Cotton Leafworm Spodoptera littoralis
by Haq Abdul Shaik, David Siaussat and Archana Mishra
Toxics 2025, 13(1), 38; https://doi.org/10.3390/toxics13010038 - 5 Jan 2025
Viewed by 1179
Abstract
Agricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal–herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron [...] Read more.
Agricultural pollutants co-interact and affect the vital functions, stress tolerance, resistance, immunity, and survival of insect pests. These metal–herbicide interactions have inevitable but remarkable effects on insects, which remain poorly understood. Here, we examined the effects of the interactions among zinc (Zn), iron (Fe), and paraquat (PQ) at a sublethal dose on the physiological response of the Egyptian cotton leafworm Spodoptera littoralis. Co-exposure to Zn and Fe improved leafworm survival (100% at 10–20 mg, 85% at 40 mg) compared to separate exposures. Low Zn/Fe/PQ toxicity likely stemmed from metal complexes having efficient chelating activity, enhancing resilience. Low exposure to Zn, Fe, and Zn/Fe increased food intake and larval weight and affected frass production. Interestingly, the combined application of Zn/Fe/PQ increased larval and pupal weight in surviving individuals. Zn/Fe was found to be crucial in the ecdysis of larvae into pupae, resulting in reduced larval mortality and a prolonged pupal ecdysis duration (% days). Providing important information regarding physiological responses and pest management, this study demonstrated the realistic conditions caused by the interactions of biological trace elements, such as Zn and Fe, with PQ. A disc diffusion susceptibility test in hemolymph bacteria revealed differences among Zn, Zn/Fe, and Zn/Fe/PQ, suggesting that their interaction might play an immunomodulatory role in S. littoralis. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

13 pages, 4441 KiB  
Article
Mitochondrial Redox Status Regulates Glycogen Metabolism via Glycogen Phosphorylase Activity
by Ikko Sakamoto, Shuichi Shibuya, Hidetoshi Nojiri, Kotaro Takeno, Hiroshi Nishimune, Keisuke Yaku, Takashi Nakagawa, Muneaki Ishijima and Takahiko Shimizu
Antioxidants 2024, 13(11), 1421; https://doi.org/10.3390/antiox13111421 - 20 Nov 2024
Viewed by 1372
Abstract
Mitochondria and glycogen are co-distributed in skeletal muscles to regulate the metabolic status. Mitochondria are also redox centers that regulate the muscle function during exercise. However, the pathophysiological relationship between the mitochondrial redox status and glycogen metabolism in the muscle remains unclear. In [...] Read more.
Mitochondria and glycogen are co-distributed in skeletal muscles to regulate the metabolic status. Mitochondria are also redox centers that regulate the muscle function during exercise. However, the pathophysiological relationship between the mitochondrial redox status and glycogen metabolism in the muscle remains unclear. In the present study, we examined the pathological effects of mitochondrial dysfunction induced by mitochondrial superoxide dismutase (SOD2) depletion on glycogen metabolism. We found that muscle glycogen was significantly accumulated in association with motor dysfunction in mice with a muscle-specific SOD2 deficiency. Muscle glycogen phosphorylase (GP-M) activity, which is a key enzyme for glycogen degradation at times when energy is needed (e.g., during exercise), was significantly decreased in the mutant muscle. Moreover, the GP-M activity on normal muscle sections decreased after treatment with paraquat, a superoxide generator. In contrast, treatment with antioxidants reversed the GP-M activity and motor disturbance of the mutant mice, indicating that GP-M activity was reversibly regulated by the redox balance. These results demonstrate that the maintenance of the mitochondrial redox balance regulates glycogen metabolism via GP-M activity. Full article
Show Figures

Figure 1

11 pages, 1721 KiB  
Article
Disruptions of rpiAB Genes Encoding Ribose-5-Phosphate Isomerases in E. coli Increases Sensitivity of Bacteria to Antibiotics
by Tatyana A. Seregina, Rustem S. Shakulov, Svetlana A. Sklyarova and Alexander S. Mironov
Cells 2024, 13(22), 1915; https://doi.org/10.3390/cells13221915 - 19 Nov 2024
Viewed by 1275
Abstract
In Escherichia coli cells, the main enzymes involved in pentose interconversion are ribose-5-phosphate isomerases RpiA and RpiB and ribulose-5-phosphate epimerase Rpe. The inactivation of rpiAB limits ribose-5-phosphate (R5P) synthesis via the oxidative branch of the pentose phosphate pathway (PPP) and unexpectedly results in [...] Read more.
In Escherichia coli cells, the main enzymes involved in pentose interconversion are ribose-5-phosphate isomerases RpiA and RpiB and ribulose-5-phosphate epimerase Rpe. The inactivation of rpiAB limits ribose-5-phosphate (R5P) synthesis via the oxidative branch of the pentose phosphate pathway (PPP) and unexpectedly results in antibiotic supersensitivity. This type of metabolism is accompanied by significant changes in the level of reducing equivalents of NADPH and glutathione, as well as a sharp drop in the ATP pool. However, this redox and energy imbalance does not lead to the activation of the soxRS oxidative stress defense system but the increased sensitivity to oxidants paraquat and H2O2. The deletion of rpiAB leads to a significant increase in the activity of transketalase (Tkt), a key enzyme of the nonoxidative branch of the PPP and increased sensitivity to ribose added in the growth medium. The phenotype of supersensitivity of rpiAB to antibiotics and ribose can be suppressed by activating the utilization of sedoheptulose-7-phosphate, which originates from R5P, to LPS synthesis or limitation of nucleoside catabolism by the inactivation of the DeoB enzyme, responsible for conversion of ribose-1-phospate to R5P. Our results indicate that the induction of unidirectional synthesis of R5P is the cause of supersensitivity to antibiotics in rpiAB mutant. Full article
Show Figures

Figure 1

Back to TopTop