Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = Panax quinquefolium L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2271 KiB  
Article
Rice Bran and American Ginseng Residue as Media for Black Truffle Solid-State Fermentation
by Zih-Yang Lin, Zi-Jun Lin and Su-Der Chen
Sustainability 2025, 17(12), 5562; https://doi.org/10.3390/su17125562 - 17 Jun 2025
Viewed by 1033
Abstract
American ginseng (Panax quinquefolium L.) residue from the extraction industry can be dried and mixed with rice bran as media for black truffle solid-state fermentation to enhance reuse and bioactive functions. Different ratios of rice bran (R) and American ginseng residue (G) [...] Read more.
American ginseng (Panax quinquefolium L.) residue from the extraction industry can be dried and mixed with rice bran as media for black truffle solid-state fermentation to enhance reuse and bioactive functions. Different ratios of rice bran (R) and American ginseng residue (G) mixtures were used as solid-state media for 5 weeks of black truffle fermentation, and then their bio-component contents and whitening effects were analyzed. Finally, four drying methods—hot air drying (HA), microwave drying (MW), hot air-assisted radio frequency (HARF) drying, and radio frequency vacuum (RFV) drying—were assessed to optimize drying efficiency for fermented medium. The results showed that using a 3:1 ratio of rice bran and American ginseng residue as the medium increased the crude polysaccharide and flavonoid contents by approximately threefold and enhanced the ginsenoside Rg3 content about twelvefold. Additionally, the 100 µg/mL ethanol extract of the fermented product inhibited 70% of tyrosinase activity and reduced the melanin area on zebrafish embryos by 42.74%. In the drying study, RFV drying R2G1 required only 13 min without exceeding 70 °C, demonstrating superior drying efficiency, temperature control, and low energy consumption. Overall, this study demonstrates the potential of black truffle fermentation of solid-state media from rice bran and American ginseng residue mixtures for whitening applications and highlights RFV drying as an efficient method for by-products. Full article
(This article belongs to the Special Issue Agricultural Waste Management and Sustainable Practices)
Show Figures

Graphical abstract

16 pages, 6838 KiB  
Article
Comparing the Drying Characteristics, Phytochemicals, and Antioxidant Characterization of Panax quinquefolium L. Treated by Different Processing Techniques
by Meng Li, Shuang Liu, Zhenqiang Wang, Feng Liu, Hongjing Dong, Xuguang Qiao and Xiao Wang
Foods 2025, 14(5), 815; https://doi.org/10.3390/foods14050815 - 27 Feb 2025
Viewed by 788
Abstract
American ginseng (AG) has long been used as an ingredient in the food and pharmaceutical industries because of its nutritional and economic value. AG is rich in nutrients, and its quality is greatly affected by how it is processed. However, there is a [...] Read more.
American ginseng (AG) has long been used as an ingredient in the food and pharmaceutical industries because of its nutritional and economic value. AG is rich in nutrients, and its quality is greatly affected by how it is processed. However, there is a relative paucity of research on the comprehensive evaluation of different processing techniques of AG. This study evaluated the differences in quality formation and properties of low-temperature softened, blanched, steamed followed by hot air drying, and vacuum freeze-dried AG (LTS-HAD, BL-HAD, ST-HAD, and VFD, respectively). The results demonstrated that AGs treated with VFD had the fastest drying time (85 h) and succeeded in preserving the color and microstructure of fresh ginseng. The contents of ginsenoside Rg1 and Rb1 in LTS-HAD samples were 2.81 ± 0.01 mg/g and 10.68 ± 0.66 mg/g, respectively, which were significantly higher than those in VFD samples (p < 0.05). Moreover, ST-HAD samples had an attractive reddish-brown appearance and higher antioxidant activity. Simultaneously, the formation of the ginsenosides Rg6, (S) Rg3, (R) Rg3, Rk1, and Rg5 was discovered. BL-HAD samples had an intermediate quality among the above samples. A total of 58 volatile compounds were identified, including aldehydes (14), alcohols (13), ketones (10), esters (6), terpenes (6), acids (5), and heterocyclic compounds (4). PCA of ginsenosides and volatile components, as well as correlation analysis with color and antioxidant activity, resulted in the identification of different processed products and potential bioactive components. Full article
Show Figures

Figure 1

13 pages, 1070 KiB  
Article
Increasing the Amounts of Bioactive Components in American Ginseng (Panax quinquefolium L.) Leaves Using Far-Infrared Irradiation
by Xuan Wang, Myungjin Kim, Ruoqi Han, Jiarui Liu, Xuemei Sun, Shuyang Sun, Chengwu Jin and Dongha Cho
Foods 2024, 13(4), 607; https://doi.org/10.3390/foods13040607 - 17 Feb 2024
Cited by 4 | Viewed by 1999
Abstract
Both the roots and leaves of American ginseng contain ginsenosides and polyphenols. The impact of thermal processing on enhancing the biological activities of the root by altering its component composition has been widely reported. However, the effects of far-infrared irradiation (FIR), an efficient [...] Read more.
Both the roots and leaves of American ginseng contain ginsenosides and polyphenols. The impact of thermal processing on enhancing the biological activities of the root by altering its component composition has been widely reported. However, the effects of far-infrared irradiation (FIR), an efficient heat treatment method, on the bioactive components of the leaves remain to be elucidated. In the present study, we investigated the effects of FIR heat treatment between 160 and 200 °C on the deglycosylation and dehydration rates of the bioactive components in American ginseng leaves. As the temperature was increased, the amounts of common ginsenosides decreased while those of rare ginsenosides increased. After FIR heat treatment of American ginseng leaves at an optimal 190 °C, the highest total polyphenolic content and kaempferol content were detected, the antioxidant activity was significantly enhanced, and the amounts of the rare ginsenosides F4, Rg6, Rh4, Rk3, Rk1, Rg3, and Rg5 were 41, 5, 37, 64, 222, 17, and 266 times higher than those in untreated leaves, respectively. Moreover, the radical scavenging rates for 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and the reducing power of the treated leaf extracts were 2.17, 1.86, and 1.77 times higher, respectively. Hence, FIR heat treatment at 190 °C is an efficient method for producing beneficial bioactive components from American ginseng leaves. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages)
Show Figures

Figure 1

19 pages, 5811 KiB  
Article
Carvacrol as a Stimulant of the Expression of Key Genes of the Ginsenoside Biosynthesis Pathway and Its Effect on the Production of Ginseng Saponins in Panax quinquefolium Hairy Root Cultures
by Ewa Kochan, Monika Sienkiewicz, Dagmara Szmajda-Krygier, Ewa Balcerczak and Grażyna Szymańska
Int. J. Mol. Sci. 2024, 25(2), 909; https://doi.org/10.3390/ijms25020909 - 11 Jan 2024
Cited by 2 | Viewed by 1860
Abstract
The accumulation of ginsenosides (triterpenic saponins) was determined in Panax quinquefolium hairy root cultures subjected to an elicitation process using carvacrol at 5, 10, 25, 50, 100, 250, and 500 μM concentrations during 24 and 72 h exposure. This study was the first [...] Read more.
The accumulation of ginsenosides (triterpenic saponins) was determined in Panax quinquefolium hairy root cultures subjected to an elicitation process using carvacrol at 5, 10, 25, 50, 100, 250, and 500 μM concentrations during 24 and 72 h exposure. This study was the first one in which carvacrol was applied as an elicitor. The content of eight ginsenosides, Rb1, Rb2, Rb3, Rc, Rd, Rg1, Rg2, and Re, was determined using HPLC analysis. Moreover, the quantitative RT-PCR method was applied to assess the relative expression level of farnesyl diphosphate synthase, squalene synthase, and dammarenediol synthase genes in the studied cultures. The addition of carvacrol (100 μM) was an effective approach to increase the production of ginsenosides. The highest content and productivity of all detected saponins were, respectively, 20.01 mg∙g−1 d.w. and 5.74 mg∙L−1∙day−1 after 72 h elicitation. The production profile of individual metabolites in P. quinquefolium cultures changed under the influence of carvacrol. The biosynthesis of most examined protopanaxadiol derivatives was reduced under carvacrol treatment. In contrast, the levels of ginsenosides belonging to the Rg group increased. The strongest effect of carvacrol was noticed for Re metabolites, achieving a 7.72-fold increase in comparison to the control. Saponin Rg2, not detected in untreated samples, was accumulated after carvacrol stimulation, reaching its maximum concentration after 72 h exposure to 10 μM elicitor. Full article
(This article belongs to the Special Issue Natural Products and Synthetic Compounds for Drug Development)
Show Figures

Figure 1

13 pages, 4128 KiB  
Article
Rapid Discrimination of Panax quinquefolium and Panax ginseng Using the Proofman-Duplex-LMTIA Technique
by Xiaodong Zhang, Zongding Li, Yaoxuan Zhang, Dandan Xu, Liang Zhang, Fugang Xiao and Deguo Wang
Molecules 2023, 28(19), 6872; https://doi.org/10.3390/molecules28196872 - 29 Sep 2023
Cited by 10 | Viewed by 1561
Abstract
This study aims to establish a rapid identification method based on the Proofman-LMTIA technique for distinguishing between Panax quinquefolium and Panax ginseng. By targeting specific 18S rDNA sequences, suitable primers and Proofman probes labeled FAM or JOE were designed for LMTIA. Initially, [...] Read more.
This study aims to establish a rapid identification method based on the Proofman-LMTIA technique for distinguishing between Panax quinquefolium and Panax ginseng. By targeting specific 18S rDNA sequences, suitable primers and Proofman probes labeled FAM or JOE were designed for LMTIA. Initially, single-species-primer Proofman-LMTIA assays were performed separately for each ginseng type to optimize reaction temperature, assess sensitivity and specificity, and determine the detection limit. Subsequently, both sets of primers and their corresponding probes were combined in the same reaction system to further optimize reaction conditions, evaluate sensitivity, and assess stability. Finally, the developed Proofman-duplex-LMTIA technique was employed to detect P. quinquefolium and P. ginseng slices available in the market. Single-plex Proofman-LMTIA assays revealed that the optimal reaction temperature for both P. quinquefolium and P. ginseng was 62 °C. The sensitivity was as low as 1 pg/μL, with a detection limit of 0.1%, and both showed excellent specificity. The optimal temperature for Proofman-duplex-LMTIA assays was 58 °C. This method could simultaneously identify P. quinquefolium and P. ginseng. Testing 6 samples of P. ginseng and 11 samples of P. quinquefolium from the market resulted in a 100% positive rate for all samples. This study successfully established a rapid, simple, sensitive, and specific Proofman-duplex-LMTIA identification method for P. quinquefolium and P. ginseng. It provides an effective means for quality control of P. quinquefolium, P. ginseng, and related products. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

19 pages, 3720 KiB  
Article
Effects of Transplantation and Microhabitat on Rhizosphere Microbial Communities during the Growth of American Ginseng
by Fan Chang, Feng-An Jia, Min Guan, Qing-An Jia, Yan Sun and Zhi Li
Agronomy 2023, 13(7), 1876; https://doi.org/10.3390/agronomy13071876 - 16 Jul 2023
Cited by 3 | Viewed by 1862
Abstract
Transplanting has been widely used in American ginseng (Panax quinquefolium L.) cultivation in Northwest China to mitigate the negative effects of continuous cropping obstacles. Because of the accumulation of pathogenic microorganisms and the change in soil properties, transplanting American ginseng to newly [...] Read more.
Transplanting has been widely used in American ginseng (Panax quinquefolium L.) cultivation in Northwest China to mitigate the negative effects of continuous cropping obstacles. Because of the accumulation of pathogenic microorganisms and the change in soil properties, transplanting American ginseng to newly cultivated fields after two years of growth has become a major planting pattern. Despite transplanting improving the quality of American ginseng, the effects of soil properties and microbiota on growth during the transplanting process are poorly understood. In the present study, microbial communities, soil physico-chemical properties and morpho-physiological parameters were analyzed to investigate the effects of microbiota and soil characteristics on American ginseng growth in both soil and ginseng root microhabitats. Results indicated that the structure and species of bacterial and fungal communities changed significantly in different microhabitats before and after transplantation. Moreover, the assemblage process of the bacterial community was dominated by deterministic processes. The stochastic process ratio increased and niche breadth decreased significantly after transplanting. While the assembly of the fungal community was dominated by stochastic process, and there was no significant difference in NST, βNTI or niche breadth before and after transplanting. Bacterial co-occurrence networks demonstrated a higher connectivity but a lower aggregation in soil microhabitat, while the fungal community networks remained stable before and after transplantation. Gammaproteobacteria was the biomarker in the soil microhabitat, while Alphaproteobacteria, Betaproteobacteria and Gemmatimonadetes were biomarkers in the ginseng root microhabitat. Sordariomycetes was a biomarker with high relative abundance in the fungal community before and after transplanting. The bacterial functional and important ASVs were significantly correlated with pH, organic matter, total nitrogen, available phosphorus, total potassium root fresh weight, taproot diameter and stem height of American ginseng. Partial least squares path modeling showed that soil properties significantly affected the formation of different microbial specific ASVs. The important functional ASVs in ginseng root microhabitat had a positive effect on American ginseng growth, while the rare taxa had a negative effect. Our results provide a good starting point for future studies of microbial community succession in different microhabitats influenced by the transplantation pattern of American ginseng. Full article
(This article belongs to the Special Issue Metagenomic Analysis for Unveiling Agricultural Microbiome)
Show Figures

Figure 1

13 pages, 999 KiB  
Article
Accumulation Characteristics of Heavy Metals in American Ginseng (Panax quinquefolium L.) and Changes in Their Contents after Soaking the Plants
by Wenlong Geng, Weihuan Li, Chunyan Yu, Lizi Zhao, Shuhao Zhang, Yuhui He, Lele Chen, Kuishen Li, Xiaozhi Zhao and Xiaotong Guo
Appl. Sci. 2023, 13(9), 5676; https://doi.org/10.3390/app13095676 - 5 May 2023
Viewed by 2918
Abstract
Understanding the accumulation characteristics of heavy metals in the growth process of American ginseng can provide theoretical support for its safe production. In this study, the content of Cu, Mn, As, Pb, Cd, Cr, and Ni in American ginseng (annual, biennial, and triennial) [...] Read more.
Understanding the accumulation characteristics of heavy metals in the growth process of American ginseng can provide theoretical support for its safe production. In this study, the content of Cu, Mn, As, Pb, Cd, Cr, and Ni in American ginseng (annual, biennial, and triennial) and planting soil were determined using inductively coupled plasma mass spectrometry (LCP-MS). In addition, the change in the content of these heavy metals in American ginseng was evaluated after soaking the plant for various time periods. The results indicated that the content of some heavy metals in American ginseng was correlated with soil heavy metal contents. For example, Ni, Cd, and Mn content in American ginseng was significantly negatively correlated with Ni content in soil. American ginseng exhibited distinct heavy metal accumulation characteristics in different parts at different growth stages. For example, in annual American ginseng, Mn and As are mainly enriched in lateral roots and taproots, while in biennial and triennial American ginseng, they are mainly enriched in reed heads. When American ginseng plant was soaked for various time intervals, its heavy metal content changed to varying degrees. In general, after soaking American ginseng for 30 min, the content of most heavy metals decreased. Full article
(This article belongs to the Special Issue Toxicants and Contaminants in Food)
Show Figures

Figure 1

13 pages, 5168 KiB  
Article
Study of a Fluorescent System Based on the Naphthalene Derivative Fluorescent Probe Bound to Al3+
by Qiuping Li, Lei Ma, Jianyan Li, Lijuan Wang, Liansheng Yu, Yuehui Zhao and Yuguang Lv
Micromachines 2023, 14(4), 868; https://doi.org/10.3390/mi14040868 - 17 Apr 2023
Cited by 4 | Viewed by 2528
Abstract
The naphthalene derivative fluorescent probe F6 was synthesized and a 1 × 10−3 mol/L solution of Al3+ and other metals to be tested was prepared for the subsequent experiments. The Al3+ fluorescence system of the naphthalene derivative fluorescent probe F6 [...] Read more.
The naphthalene derivative fluorescent probe F6 was synthesized and a 1 × 10−3 mol/L solution of Al3+ and other metals to be tested was prepared for the subsequent experiments. The Al3+ fluorescence system of the naphthalene derivative fluorescent probe F6 was successfully constructed as demonstrated by fluorescence emission spectroscopy. The optimal time, temperature and pH of the reaction were investigated. The selectivity and anti-interference ability of the probe F6 for Al3+ were investigated by fluorescence spectroscopy in a methanol solution. The experiments showed that the probe has high selectivity and anti-interference ability for Al3+. The binding ratio of F6 to Al3+ was 2:1, and the binding constant was calculated to be 1.598 × 105 M−1. The possible mechanism of the binding of the two was speculated. Different concentrations of Al3+ were added to Panax Quinquefolium and Paeoniae Radix Alba. The results showed that the recoveries of Al3+ were 99.75–100.56% and 98.67–99.67%, respectively. The detection limit was 8.73 × 10−8 mol/L. The experiments demonstrated that the formed fluorescence system can be successfully adapted for the determination of Al3+ content in two Chinese herbal medicines, which has good practical application. Full article
Show Figures

Figure 1

37 pages, 2788 KiB  
Review
Comparisons of Isolation Methods, Structural Features, and Bioactivities of the Polysaccharides from Three Common Panax Species: A Review of Recent Progress
by Hongyu Qi, Zepeng Zhang, Jiaqi Liu, Zhaoqiang Chen, Qingxia Huang, Jing Li, Jinjin Chen, Mingxing Wang, Daqing Zhao, Zeyu Wang and Xiangyan Li
Molecules 2021, 26(16), 4997; https://doi.org/10.3390/molecules26164997 - 18 Aug 2021
Cited by 29 | Viewed by 5188
Abstract
Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological [...] Read more.
Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine. Full article
(This article belongs to the Special Issue Polysaccharides: Structure-Function Relationships)
Show Figures

Figure 1

22 pages, 17009 KiB  
Article
Panax quinquefolium L. Ginsenosides from Hairy Root Cultures and Their Clones Exert Cytotoxic, Genotoxic and Pro-Apoptotic Activity towards Human Colon Adenocarcinoma Cell Line Caco-2
by Ewa Kochan, Adriana Nowak, Małgorzata Zakłos-Szyda, Daria Szczuka, Grażyna Szymańska and Ilona Motyl
Molecules 2020, 25(9), 2262; https://doi.org/10.3390/molecules25092262 - 11 May 2020
Cited by 16 | Viewed by 4492
Abstract
American ginseng, Panax quinquefolium (L.), is traditionally used in folk medicine. It exhibits a range of anti-inflammatory, hepatoprotective, anti-diabetic, anti-obesity, anti-hyperlipidemic and anti-carcinogenic effects. Its main components are ginsenosides, also known as panaxosides or triterpene saponins. In order to obtain high yields of [...] Read more.
American ginseng, Panax quinquefolium (L.), is traditionally used in folk medicine. It exhibits a range of anti-inflammatory, hepatoprotective, anti-diabetic, anti-obesity, anti-hyperlipidemic and anti-carcinogenic effects. Its main components are ginsenosides, also known as panaxosides or triterpene saponins. In order to obtain high yields of ginsenosides, different methods of controlled production are involved, i.e., with hairy root cultures. However, they are still employed under in vitro conditions. Our studies revealed that hairy root cultures subjected to an elicitation process can be considered as a potent source of ginsenosides. The present study examines the biological activity of ginseng hairy root cultures against the Caco-2 human adenocarcinoma cell line. Among our six different clones of P. quinquefolium hairy roots, extracts B and Be (treated with elicitor) were the strongest inhibitors of the cellular metabolic activity. While all extracts induced DNA damage, B and Be also generated reactive oxygen species (ROS) in a concentration-dependent manner, which was correlated with the depletion of the mitochondrial membrane potential and induction of apoptosis. These findings indicate that further research concerning P. quinquefolium hairy root cultures should focus on the activity of rare ginsenosides and other biologically active compound profiles (i.e., phenolic compounds). Full article
(This article belongs to the Special Issue Natural Product Pharmacology and Medicinal Chemistry II)
Show Figures

Graphical abstract

15 pages, 4742 KiB  
Article
Comparison of Ginsenoside Components of Various Tissues of New Zealand Forest-Grown Asian Ginseng (Panax Ginseng) and American Ginseng (Panax Quinquefolium L.)
by Wei Chen, Prabhu Balan and David G Popovich
Biomolecules 2020, 10(3), 372; https://doi.org/10.3390/biom10030372 - 28 Feb 2020
Cited by 58 | Viewed by 7549
Abstract
Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolium L.) are the two most important ginseng species for their medicinal properties. Ginseng is not only popular to consume, but is also increasingly popular to cultivate. In the North Island of [...] Read more.
Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolium L.) are the two most important ginseng species for their medicinal properties. Ginseng is not only popular to consume, but is also increasingly popular to cultivate. In the North Island of New Zealand, Asian ginseng and American ginseng have been grown in Taupo and Rotorua for more than 15 years. There are no publications comparing the chemical constituents between New Zealand-grown Asian ginseng (NZPG) and New Zealand-grown American ginseng (NZPQ). In this study, fourteen ginsenoside reference standards and LC–MS2 technology were employed to analyze the ginsenoside components of various parts (fine root, rhizome, main root, stem, and leaf) from NZPG and NZPQ. Fifty and 43 ginsenosides were identified from various parts of NZPG and NZPQ, respectively, and 29 ginsenosides were found in both ginseng species. Ginsenoside concentrations in different parts of ginsengs were varied. Compared to other tissues, the fine roots contained the most abundant ginsenosides, not only in NZPG (142.49 ± 1.14 mg/g) but also in NZPQ (115.69 ± 3.51 mg/g). For the individual ginsenosides of both NZPG and NZPQ, concentration of Rb1 was highest in the underground parts (fine root, rhizome, and main root), and ginsenoside Re was highest in the aboveground parts (stem and leaf). Full article
(This article belongs to the Special Issue Advances in Ginsenosides)
Show Figures

Figure 1

27 pages, 2304 KiB  
Review
American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties
by Daria Szczuka, Adriana Nowak, Małgorzata Zakłos-Szyda, Ewa Kochan, Grażyna Szymańska, Ilona Motyl and Janusz Blasiak
Nutrients 2019, 11(5), 1041; https://doi.org/10.3390/nu11051041 - 9 May 2019
Cited by 104 | Viewed by 23194
Abstract
Panax quinquefolium L. (American Ginseng, AG) is an herb characteristic for regions of North America and Asia. Due to its beneficial properties it has been extensively investigated for decades. Nowadays, it is one of the most commonly applied medical herbs worldwide. Active compounds [...] Read more.
Panax quinquefolium L. (American Ginseng, AG) is an herb characteristic for regions of North America and Asia. Due to its beneficial properties it has been extensively investigated for decades. Nowadays, it is one of the most commonly applied medical herbs worldwide. Active compounds of AG are ginsenosides, saponins of the glycosides group that are abundant in roots, leaves, stem, and fruits of the plant. Ginsenosides are suggested to be primarily responsible for health-beneficial effects of AG. AG acts on the nervous system; it was reported to improve the cognitive function in a mouse model of Alzheimer’s disease, display anxiolytic activity, and neuroprotective effects against neuronal damage resulting from ischemic stroke in animals, demonstrate anxiolytic activity, and induce neuroprotective effects against neuronal damage in ischemic stroke in animals. Administration of AG leads to inhibition of hypertrophy in heart failure by regulation of reactive oxygen species (ROS) in mice as well as depletion of cardiac contractile function in rats. It also has an anti-diabetic and anti-obesity potential as it increases insulin sensitivity and inhibits formation of adipose tissue. AG displays anti-cancer effect by induction of apoptosis of cancer cells and reducing local inflammation. It exerts antimicrobial effects against several pathogenic strains of bacteria. Therefore, AG presents a high potential to induce beneficial health effects in humans and should be further explored to formulate precise nutritional recommendations, as well as to assess its value in prevention and therapy of some disorders, including cancer. Full article
Show Figures

Figure 1

16 pages, 2353 KiB  
Article
Abscisic Acid Regulates the 3-Hydroxy-3-methylglutaryl CoA Reductase Gene Promoter and Ginsenoside Production in Panax quinquefolium Hairy Root Cultures
by Ewa Kochan, Ewa Balcerczak, Piotr Szymczyk, Monika Sienkiewicz, Hanna Zielińska-Bliźniewska and Grażyna Szymańska
Int. J. Mol. Sci. 2019, 20(6), 1310; https://doi.org/10.3390/ijms20061310 - 15 Mar 2019
Cited by 28 | Viewed by 3736
Abstract
Panax quinquefolium hairy root cultures synthesize triterpenoid saponins named ginsenosides, that have multidirectional pharmacological activity. The first rate-limiting enzyme in the process of their biosynthesis is 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). In this study, a 741 bp fragment of the P. quinquefolium HMGR gene [...] Read more.
Panax quinquefolium hairy root cultures synthesize triterpenoid saponins named ginsenosides, that have multidirectional pharmacological activity. The first rate-limiting enzyme in the process of their biosynthesis is 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). In this study, a 741 bp fragment of the P. quinquefolium HMGR gene (PqHMGR), consisting of a proximal promoter, 5′UTR (5′ untranslated region) and 5′CDS (coding DNA sequence) was isolated. In silico analysis of an isolated fragment indicated a lack of tandem repeats, miRNA binding sites, and CpG/CpNpG elements. However, the proximal promoter contained potential cis-elements involved in the response to light, salicylic, and abscisic acid (ABA) that was represented by the motif ABRE (TACGTG). The functional significance of ABA on P. quinquefolium HMGR gene expression was evaluated, carrying out quantitative RT-PCR experiments at different ABA concentrations (0.1, 0.25, 0.5, and 1 mg·L−1). Additionally, the effect of abscisic acid and its time exposure on biomass and ginsenoside level in Panax quinquefolium hairy root was examined. The saponin content was determined using HPLC. The 28 day elicitation period with 1 mg·L−1 ABA was the most efficient for Rg2 and Re (17.38 and 1.83 times increase, respectively) accumulation; however, the protopanaxadiol derivative content decreased in these conditions. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

12 pages, 1755 KiB  
Article
Quality Analysis of American Ginseng Cultivated in Heilongjiang Using UPLC-ESI-MRM-MS with Chemometric Methods
by Yong-Gang Xia, Yan Song, Jun Liang, Xin-Dong Guo, Bing-You Yang and Hai-Xue Kuang
Molecules 2018, 23(9), 2396; https://doi.org/10.3390/molecules23092396 - 19 Sep 2018
Cited by 24 | Viewed by 5005
Abstract
American ginseng (Panax quinquefolium) has long been cultivated in China for the function food and medicine. Here, ultra-high performance liquid chromatography was coupled with electrospray ionization and triple quadrupole mass spectrometry (UPLC-ESI-TQ-MS) for simultaneous detection of 22 ginsenosides in [...] Read more.
American ginseng (Panax quinquefolium) has long been cultivated in China for the function food and medicine. Here, ultra-high performance liquid chromatography was coupled with electrospray ionization and triple quadrupole mass spectrometry (UPLC-ESI-TQ-MS) for simultaneous detection of 22 ginsenosides in American ginseng cultivated in Mudanjiang district of Heilongjiang. The extraction conditions also were optimized by a Box Behnken design experiment. The optimized result was 31.8 mL/g as ratio of liquid to raw materials, 20.3 min of extraction time, and 235.0 W of extraction powers. The quantitative MS parameters for these 22 compounds were rapidly optimized by single factor experiments employing UPLC-ESI-multiple reaction monitoring or multiple ion monitoring (MRM/MIM) scans. Furthermore, the established UPLC-ESI-MRM-MS method showed good linear relationships (R2 > 0.99), repeatability (RSD < 3.86%), precision (RSD < 2.74%), and recovery (94–104%). This method determined 22 bioactive ginsenosides in different parts of the plant (main roots, hairy roots, rhizomes, leaves, and stems) and growth years (one year to four years) of P. quinquefolium. The highest total content of the 22 analytes was in the hairy roots (1.3 × 105 µg/g) followed by rhizomes (7.1 × 104 µg/g), main roots (6.5 × 104 µg/g), leaves (4.2 × 104 µg/g), and stems (2.4 × 104 µg/g). Finally, chemometric methods, hierarchical clustering analysis (HCA) and partial least squares discrimination analysis (PLS-DA), were successfully used to classify and differentiate American ginseng attributed to different growth years. The proposed UPLC-ESI-MRM-MS coupled with HCA and PLS-DA methods was elucidated to be a simple and reliable method for quality evaluation of American ginseng. Full article
Show Figures

Figure 1

15 pages, 2467 KiB  
Article
Yeast Extract Stimulates Ginsenoside Production in Hairy Root Cultures of American Ginseng Cultivated in Shake Flasks and Nutrient Sprinkle Bioreactors
by Ewa Kochan, Piotr Szymczyk, Łukasz Kuźma, Anna Lipert and Grażyna Szymańska
Molecules 2017, 22(6), 880; https://doi.org/10.3390/molecules22060880 - 26 May 2017
Cited by 51 | Viewed by 8777
Abstract
One of the most effective strategies to enhance metabolite biosynthesis and accumulation in biotechnological systems is the use of elicitation processes. This study assesses the influence of different concentrations of yeast extract (YE) on ginsenoside biosynthesis in Panax quinquefolium (American ginseng) hairy roots [...] Read more.
One of the most effective strategies to enhance metabolite biosynthesis and accumulation in biotechnological systems is the use of elicitation processes. This study assesses the influence of different concentrations of yeast extract (YE) on ginsenoside biosynthesis in Panax quinquefolium (American ginseng) hairy roots cultivated in shake flasks and in a nutrient sprinkle bioreactor after 3 and 7 days of elicitation. The saponin content was determined using HPLC. The maximum yield (20 mg g−1 d.w.) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was achieved after application of YE at 50 mg L−1 concentration and 3 day exposure time. The ginsenoside level was 1.57 times higher than that attained in control medium. The same conditions of elicitation (3 day time of exposure and 50 mg L−1 of YE) also favourably influenced the biosynthesis of studied saponins in bioreactor cultures. The total ginsenoside content was 32.25 mg g−1 d.w. and was higher than that achieved in control medium and in shake flasks cultures. Obtained results indicated that yeast extract can be used to increase ginsenoside production in hairy root cultures of P. quinquefolium. Full article
(This article belongs to the Special Issue Current Trends in Ginseng Research)
Show Figures

Figure 1

Back to TopTop