Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,837)

Search Parameters:
Keywords = PV systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3940 KiB  
Article
Recovery Strategies for Combined Optical Storage Systems Based on System Short-Circuit Ratio (SCR) Thresholds
by Qingji Yang, Baohong Li, Qin Jiang and Qiao Peng
Energies 2025, 18(15), 4112; https://doi.org/10.3390/en18154112 (registering DOI) - 3 Aug 2025
Abstract
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a [...] Read more.
The penetration rate of variable energy sources in the current power grid is increasing, with the aim being to expand the use of these energy sources and to replace the traditional black start power supply. This study investigates the black start of a photovoltaic storage joint system based on the system’s short-circuit ratio threshold. Firstly, the principles and control modes of the photovoltaic (PV) system, energy storage system (ESS), and high-voltage direct current (DC) transmission system are studied separately to build an overall model; secondly, computational determinations of the short-circuit ratio under different scenarios are introduced to analyze the strength of the system, and the virtual inertia and virtual damping of the PV system are configured based on this; finally, the change trend of the storage system’s state of charge (SOC) is computed and observed, and the limits of what the system can support in each stage are determined. An electromagnetic transient simulation model of a black start system is constructed in PSCAD/EMTDC, and according to the proposed recovery strategy, the system frequency is maintained in the range of 49.4~50.6 Hz during the entire black start process; the fluctuation in maximum frequency after the recovery of the DC transmission system is no more than 0.1%; and the fluctuation in photovoltaic power at each stage is less than 3%. In addition, all the key indexes meet the requirements for black start technology, which verifies the validity of the strategy and provides theoretical support and a practical reference for the black start of a grid with variable energy sources. Full article
(This article belongs to the Special Issue Analysis and Control of Power System Stability)
Show Figures

Figure 1

27 pages, 1948 KiB  
Article
Real-World Performance and Economic Evaluation of a Residential PV Battery Energy Storage System Under Variable Tariffs: A Polish Case Study
by Wojciech Goryl
Energies 2025, 18(15), 4090; https://doi.org/10.3390/en18154090 (registering DOI) - 1 Aug 2025
Abstract
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal [...] Read more.
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal variation was significant; self-sufficiency exceeded 90% in summer, while winter conditions increased grid dependency. The hybrid system reduced electricity costs by over EUR 1400 annually, with battery operation optimized for high-tariff periods. Comparative analysis of three configurations—grid-only, PV-only, and PV + BESS—demonstrated the economic advantage of the integrated solution, with the shortest payback period (9.0 years) achieved with financial support. However, grid voltage instability during high PV production led to inverter shutdowns, highlighting limitations in the infrastructure. This study emphasizes the importance of tariff strategies, environmental conditions, and voltage control when designing residential PV-BESS systems. Full article
(This article belongs to the Special Issue Design, Analysis and Operation of Renewable Energy Systems)
Show Figures

Figure 1

32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 (registering DOI) - 1 Aug 2025
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

11 pages, 1630 KiB  
Article
Optical Design and Lens Fabrication for Automotive Thermal Imaging Using Chalcogenide Glass
by Young-Soo Choi and Ji-Kwan Kim
Micromachines 2025, 16(8), 901; https://doi.org/10.3390/mi16080901 (registering DOI) - 31 Jul 2025
Abstract
This paper is about the design and fabrication of infrared lenses, which are the core components of thermal imaging cameras to be mounted on vehicles. To produce an athermalized optical system, chalcogenide glass (As40Se60) with a lower thermo-optic coefficient [...] Read more.
This paper is about the design and fabrication of infrared lenses, which are the core components of thermal imaging cameras to be mounted on vehicles. To produce an athermalized optical system, chalcogenide glass (As40Se60) with a lower thermo-optic coefficient (dn/dT) than germanium was adopted as a lens material, and each lens was designed so that defocus occurs in opposite directions depending on temperature. The designed lens was fabricated using a compression molding method, and the molded lenses showed less than 1.5 μm of form error (PV) using a mold iteration process. Through evaluations of MTF and thermal images obtained from the lens module, it was judged that this optical design process is obtainable. Full article
25 pages, 17227 KiB  
Article
Distributed Online Voltage Control with Feedback Delays Under Coupled Constraints for Distribution Networks
by Jinxuan Liu, Yanjian Peng, Xiren Zhang, Zhihao Ning and Dingzhong Fan
Technologies 2025, 13(8), 327; https://doi.org/10.3390/technologies13080327 (registering DOI) - 31 Jul 2025
Abstract
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of [...] Read more.
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of relying on centralized computation, the proposed method allows each inverter to make local decisions using real-time voltage measurements and delayed communication with neighboring PV nodes. To account for practical asynchronous communication and feedback delay, a Distributed Online Primal–Dual Push–Sum (DOPP) algorithm that integrates a fixed-step delay model into the push–sum coordination framework is developed. Through extensive case studies on a modified IEEE 123-bus system, it has been demonstrated that the proposed method maintains robust performance under both static and dynamic scenarios, even in the presence of fixed feedback delays. Specifically, in static scenarios, the proposed strategy rapidly eliminates voltage violations within 50–100 iterations, effectively regulating all nodal voltages into the acceptable range of [0.95, 1.05] p.u. even under feedback delays with a delay step of 10. In dynamic scenarios, the proposed strategy ensures 100% voltage compliance across all nodes, demonstrating superior voltage regulation and reactive power coordination performance over conventional droop and incremental control approaches. Full article
23 pages, 849 KiB  
Article
Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia
by Aco Benović, Miroslav Miškić, Vladan Pantović, Slađana Vujičić, Dejan Vidojević, Mladen Opačić and Filip Jovanović
Sustainability 2025, 17(15), 6977; https://doi.org/10.3390/su17156977 (registering DOI) - 31 Jul 2025
Abstract
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, [...] Read more.
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, reduce emissions, and support community-level sustainability goals. Using a mixed-method approach combining spatial analysis, predictive modeling, and stakeholder interviews, this research study evaluates the performance and institutional readiness of local governments in terms of implementing intelligent solar infrastructure. Key AI applications included solar potential mapping, demand-side management, and predictive maintenance of photovoltaic (PV) systems. Quantitative results show an improvement >60% in forecasting accuracy, a 64% reduction in system downtime, and a 9.7% increase in energy cost savings. These technical gains were accompanied by positive trends in SDG-aligned indicators, such as improved electricity access and local job creation in the green economy. Despite challenges related to data infrastructure, regulatory gaps, and limited AI literacy, this study finds that institutional coordination and leadership commitment are decisive for successful implementation. The proposed AI–Solar Integration for Local Sustainability (AISILS) framework offers a replicable model for emerging economies. Policy recommendations include investing in foundational digital infrastructure, promoting low-code AI platforms, and aligning AI–solar projects with SDG targets to attract EU and national funding. This study contributes new empirical evidence on the digital–renewable energy nexus in Southeast Europe and underscores the strategic role of AI in accelerating inclusive, data-driven energy transitions at the municipal level. Full article
13 pages, 373 KiB  
Article
Impact Assessment of Rural Electrification Through Photovoltaic Kits on Household Expenditures and Income: The Case of Morocco
by Abdellah Oulakhmis, Rachid Hasnaoui and Youness Boudrik
Economies 2025, 13(8), 224; https://doi.org/10.3390/economies13080224 - 31 Jul 2025
Abstract
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using [...] Read more.
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using quasi-experimental econometric techniques, specifically propensity score matching (PSM) and estimation of the Average Treatment Effect on the Treated (ATT), the study measures changes in household income, expenditures, and economic activities resulting from PV electrification. The results indicate significant positive effects on household income, electricity spending, and productivity in agriculture and livestock. These findings highlight the critical role of decentralized renewable energy in advancing rural development and poverty reduction. Policy recommendations include expanding PV access with complementary support measures such as microfinance and technical training. Full article
Show Figures

Figure 1

22 pages, 6031 KiB  
Article
Enhancement of Power Quality in Photovoltaic Systems for Weak Grid Connections
by Pankaj Kumar Sharma, Pushpendra Singh, Sharat Chandra Choube and Lakhan Singh Titare
Energies 2025, 18(15), 4066; https://doi.org/10.3390/en18154066 (registering DOI) - 31 Jul 2025
Abstract
This paper proposes a novel control strategy for a dual-stage grid-connected solar photovoltaic (PV) system designed to ensure reliable and efficient operation under unstable grid conditions. The strategy incorporates a Phase-Locked Loop (PLL)-based positive sequence estimator for accurate detection of grid voltage disturbances, [...] Read more.
This paper proposes a novel control strategy for a dual-stage grid-connected solar photovoltaic (PV) system designed to ensure reliable and efficient operation under unstable grid conditions. The strategy incorporates a Phase-Locked Loop (PLL)-based positive sequence estimator for accurate detection of grid voltage disturbances, including sags, swells, and fluctuations in solar irradiance. A dynamic DC-link voltage regulation mechanism is employed to minimize converter power losses and enhance the performance of the Voltage Source Converter (VSC) under weak grid scenarios. The control scheme maintains continuous maximum power point tracking (MPPT) and unity power factor (UPF) operation, thereby improving overall grid power quality. The proposed method is validated through comprehensive simulations and real-time hardware implementation using the OPAL-RT OP4510 platform. The results demonstrate compliance with IEEE Standard 519, confirming the effectiveness and robustness of the proposed strategy. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

20 pages, 5900 KiB  
Article
Experimental Testing and Seasonal Performance Assessment of a Stationary and Sun-Tracked Photovoltaic–Thermal System
by Ewa Kozak-Jagieła, Piotr Cisek, Adam Pawłowski, Jan Taler and Paweł Albrechtowicz
Energies 2025, 18(15), 4064; https://doi.org/10.3390/en18154064 (registering DOI) - 31 Jul 2025
Viewed by 4
Abstract
This study presents a comparative analysis of the annual performances of stationary and dual-axis sun-tracked photovoltaic–thermal (PVT) systems. The experimental research was conducted at a demonstration site in Oświęcim, Poland, where both systems were evaluated in terms of electricity and heat production. The [...] Read more.
This study presents a comparative analysis of the annual performances of stationary and dual-axis sun-tracked photovoltaic–thermal (PVT) systems. The experimental research was conducted at a demonstration site in Oświęcim, Poland, where both systems were evaluated in terms of electricity and heat production. The test installation consisted of thirty stationary PVT modules and five dual-axis sun-tracking systems, each equipped with six PV modules. An innovative cooling system was developed for the PVT modules, consisting of a surface-mounted heat sink installed on the rear side of each panel. The system includes embedded tubes through which a cooling fluid circulates, enabling efficient heat recovery. The results indicated that the stationary PVT system outperformed a conventional fixed PV installation, whose expected output was estimated using PVGIS data. Specifically, the stationary PVT system generated 26.1 kWh/m2 more electricity annually, representing a 14.8% increase. The sun-tracked PVT modules yielded even higher gains, producing 42% more electricity than the stationary system, with particularly notable improvements during the autumn and winter seasons. After accounting for the electricity consumed by the tracking mechanisms, the sun-tracked PVT system still delivered a 34% higher net electricity output. Moreover, it enhanced the thermal energy output by 85%. The findings contribute to the ongoing development of high-performance PVT systems and provide valuable insights for their optimal deployment in various climatic conditions, supporting the broader integration of renewable energy technologies in building energy systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

28 pages, 13030 KiB  
Article
Meta-Heuristic Optimization for Hybrid Renewable Energy System in Durgapur: Performance Comparison of GWO, TLBO, and MOPSO
by Sudip Chowdhury, Aashish Kumar Bohre and Akshay Kumar Saha
Sustainability 2025, 17(15), 6954; https://doi.org/10.3390/su17156954 (registering DOI) - 31 Jul 2025
Viewed by 41
Abstract
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three [...] Read more.
This paper aims to find an efficient optimization algorithm to bring down the cost function without compromising the stability of the system and respect the operational constraints of the Hybrid Renewable Energy System. To accomplish this, MATLAB simulations were carried out using three optimization techniques: Grey Wolf Optimization (GWO), Teaching–Learning-Based Optimization (TLBO), and Multi-Objective Particle Swarm Optimization (MOPSO). The study compared their outcomes to identify which method yielded the most effective performance. The research included a statistical analysis to evaluate how consistently and stably each optimization method performed. The analysis revealed optimal values for the output power of photovoltaic systems (PVs), wind turbines (WTs), diesel generator capacity (DGs), and battery storage (BS). A one-year period was used to confirm the optimized configuration through the analysis of capital investment and fuel consumption. Among the three methods, GWO achieved the best fitness value of 0.24593 with an LPSP of 0.12528, indicating high system reliability. MOPSO exhibited the fastest convergence behaviour. TLBO yielded the lowest Net Present Cost (NPC) of 213,440 and a Cost of Energy (COE) of 1.91446/kW, though with a comparatively higher fitness value of 0.26628. The analysis suggests that GWO is suitable for applications requiring high reliability, TLBO is preferable for cost-sensitive solutions, and MOPSO is advantageous for obtaining quick, approximate results. Full article
(This article belongs to the Special Issue Energy Technology, Power Systems and Sustainability)
Show Figures

Figure 1

16 pages, 3838 KiB  
Article
Model-Free Cooperative Control for Volt-Var Optimization in Power Distribution Systems
by Gaurav Yadav, Yuan Liao and Aaron M. Cramer
Energies 2025, 18(15), 4061; https://doi.org/10.3390/en18154061 (registering DOI) - 31 Jul 2025
Viewed by 38
Abstract
Power distribution systems are witnessing a growing deployment of distributed, inverter-based renewable resources such as solar generation. This poses certain challenges such as rapid voltage fluctuations due to the intermittent nature of renewables. Volt-Var control (VVC) methods have been proposed to utilize the [...] Read more.
Power distribution systems are witnessing a growing deployment of distributed, inverter-based renewable resources such as solar generation. This poses certain challenges such as rapid voltage fluctuations due to the intermittent nature of renewables. Volt-Var control (VVC) methods have been proposed to utilize the ability of inverters to supply or consume reactive power to mitigate fast voltage fluctuations. These methods usually require a detailed power network model including topology and impedance data. However, network models may be difficult to obtain. Thus, it is desirable to develop a model-free method that obviates the need for the network model. This paper proposes a novel model-free cooperative control method to perform voltage regulation and reduce inverter aging in power distribution systems. This method assumes the existence of time-series voltage and load data, from which the relationship between voltage and nodal power injection is derived using a feedforward artificial neural network (ANN). The node voltage sensitivity versus reactive power injection can then be calculated, based on which a cooperative control approach is proposed for mitigating voltage fluctuation. The results obtained for a modified IEEE 13-bus system using the proposed method have shown its effectiveness in mitigating fast voltage variation due to PV intermittency. Moreover, a comparative analysis between model-free and model-based methods is provided to demonstrate the feasibility of the proposed method. Full article
Show Figures

Figure 1

22 pages, 2738 KiB  
Article
Mitigation of Solar PV Impact in Four-Wire LV Radial Distribution Feeders Through Reactive Power Management Using STATCOMs
by Obaidur Rahman, Duane Robinson and Sean Elphick
Electronics 2025, 14(15), 3063; https://doi.org/10.3390/electronics14153063 (registering DOI) - 31 Jul 2025
Viewed by 51
Abstract
Australia has the highest per capita penetration of rooftop solar PV systems in the world. Integration of these systems has led to reverse power flow and associated voltage rise problems in residential low-voltage (LV) distribution networks. Furthermore, random, uncontrolled connection of single-phase solar [...] Read more.
Australia has the highest per capita penetration of rooftop solar PV systems in the world. Integration of these systems has led to reverse power flow and associated voltage rise problems in residential low-voltage (LV) distribution networks. Furthermore, random, uncontrolled connection of single-phase solar systems can exacerbate voltage unbalance in these networks. This paper investigates the application of a Static Synchronous Compensator (STATCOM) for the improvement of voltage regulation in four-wire LV distribution feeders through reactive power management as a means of mitigating voltage regulation and unbalance challenges. To demonstrate the performance of the STATCOM with varying loads and PV output, a Q-V droop curve is applied to specify the level of reactive power injection/absorption required to maintain appropriate voltage regulation. A practical four-wire feeder from New South Wales, Australia, has been used as a case study network to analyse improvements in system performance through the use of the STATCOM. The outcomes indicate that the STATCOM has a high degree of efficacy in mitigating voltage regulation and unbalance excursions. In addition, compared to other solutions identified in the existing literature, the STATCOM-based solution requires no sophisticated communication infrastructure. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

17 pages, 3273 KiB  
Article
Cluster Partitioning and Reactive Power–Voltage Control Strategy for Distribution Systems with High-Penetration Distributed PV Integration
by Bingxu Zhai, Kaiyu Liu, Yuanzhuo Li, Zhilin Jiang, Panhao Qin, Wang Zhang and Yuanshi Zhang
Processes 2025, 13(8), 2423; https://doi.org/10.3390/pr13082423 - 30 Jul 2025
Viewed by 200
Abstract
The large-scale integration of renewable energy into power systems poses significant challenges to reactive power and voltage stability. To enhance system stability, this work proposes a cluster partitioning and distributed control strategy for distribution networks with high-penetration distributed PV integration. Firstly, a comprehensive [...] Read more.
The large-scale integration of renewable energy into power systems poses significant challenges to reactive power and voltage stability. To enhance system stability, this work proposes a cluster partitioning and distributed control strategy for distribution networks with high-penetration distributed PV integration. Firstly, a comprehensive clustering index system, including electrical distance, voltage sensitivity, and regulation ability, is established. Considering the voltage and reactive power support capability of regional clusters, the distribution network is divided into clusters. Subsequently, based on the results of cluster division, a hierarchical partition optimization model is constructed with voltage and reactive power as the optimization objectives. Finally, a distributed optimization algorithm based on ADMM is proposed to solve the optimization model and maximize the utilization of distribution network control resources. The simulation results based on the IEEE 33-node distribution system verify the effectiveness of the proposed distributed optimization strategy. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

39 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 (registering DOI) - 30 Jul 2025
Viewed by 101
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

21 pages, 1456 KiB  
Article
Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming
by Ana C. Cavallo, Michael Parkes, Ricardo F. M. Teixeira and Serena Righi
Appl. Sci. 2025, 15(15), 8429; https://doi.org/10.3390/app15158429 - 29 Jul 2025
Viewed by 137
Abstract
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. [...] Read more.
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. This study assesses the environmental performance of a prospective IVF system located on a university campus in Portugal, focusing on the integration of photovoltaic (PV) energy as an alternative to the conventional electricity grid (GM). A Life Cycle Assessment (LCA) was conducted using the Environmental Footprint (EF) method and the LANCA model to account for land use and soil-related impacts. The PV-powered system demonstrated lower overall environmental impacts, with notable reductions across most impact categories, but important trade-offs with decreased soil quality. The LANCA results highlighted cultivation and packaging as key contributors to land occupation and transformation, while also revealing trade-offs associated with upstream material demands. By combining EF and LANCA, the study shows that IVF systems that are not soil-based can still impact soil quality indirectly. These findings contribute to a broader understanding of sustainability in urban farming and underscore the importance of multi-dimensional assessment approaches when evaluating emerging agricultural technologies. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

Back to TopTop