Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = PSS dispersant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3828 KiB  
Article
Convenient Preparation of PEDOT-Based Conductive Fabrics via a Green Strategy for Morse Code Recognition
by Hongjian Yu, Yifan Cui and Miao Miao
Polymers 2025, 17(13), 1816; https://doi.org/10.3390/polym17131816 - 29 Jun 2025
Viewed by 283
Abstract
With the rapid development of Internet of Things (IoT) and bioscience technology, wearable smart devices are developing toward advanced trends such as flexibility, convenience and environmental-friendliness. Poly (p-styrenesulfonic acid) (PSS), as a common template and dispersant, is indispensable in the polymerization of conductive [...] Read more.
With the rapid development of Internet of Things (IoT) and bioscience technology, wearable smart devices are developing toward advanced trends such as flexibility, convenience and environmental-friendliness. Poly (p-styrenesulfonic acid) (PSS), as a common template and dispersant, is indispensable in the polymerization of conductive polymers. However, the doping amount of PSS has a significant effect on the electrical conductivity of the polymer. Herein, different molar quantities of PSS were used to assist the polymerization of 3,4-ethylenedioxythiophene (EDOT) monomer in a horseradish peroxidase/hydrogen peroxide (HRP/H2O2) low-temperature system to obtain conductive finishing solutions with more excellent electrical properties. Then, the polyester nonwoven fabric was immersed in the conductive finishing solution, and when the addition ratio of EDOT and PSS was 1:2, the conductive performance was optimal (3.27 KΩ cm−1). Finally, the conductive fabric was assembled into a pressure sensor and a temperature sensor, which can transmit Morse code in the form of single-parameter (pressure response or temperature response) or collaboration. Overall, this research has great potential for production of poly(3,4-ethylenedioxythiophene) (PEDOT)-based composites and their applications in smart wearable device. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

17 pages, 7967 KiB  
Article
TiO2-Nanobelt-Enhanced, Phosphorescent, Organic Light-Emitting Diodes
by Sushanta Lenka, Shivam Gupta, Bushra Rehman, Deepak Kumar Dubey, Hsuan-Min Wang, Ankit Sharma, Jayachandran Jayakumar, Ching-Wu Wang, Nyan-Hwa Tai, Saulius Grigalevicius and Jwo-Huei Jou
Nanomaterials 2025, 15(3), 199; https://doi.org/10.3390/nano15030199 - 27 Jan 2025
Cited by 1 | Viewed by 1379
Abstract
This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO2) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepared using a controlled dispersion of TiO2 belts into the [...] Read more.
This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO2) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepared using a controlled dispersion of TiO2 belts into the PEDOT/PSS solution, followed by their incorporation into the OLED hole-injection layer (HIL). Our results demonstrate a significant improvement in device efficiency, attributed to the optimized charge carrier mobility and reduced recombination losses, which were achieved by the presence of TiO2. The nanocomposite hybrid layer enhances light emission efficiency due to its role in modifying surface roughness, promoting better film uniformity, and improving hole injection. The incorporation of TiO2 nanobelts into PEDOT/PSS led to significant efficiency enhancements, yielding a 39% increase in PEmax, a 37% improvement in CEmax, and a remarkable 72% rise in EQEmax compared to the undoped counterpart. This research provides insight into the potential of TiO2 nanocomposites in advancing OLED technology for next-generation display and lighting applications. Full article
Show Figures

Figure 1

13 pages, 3087 KiB  
Article
Mixed Adsorption Mono- and Multilayers of ß-Lactoglobulin Fibrils and Sodium Polystyrene Sulfonate
by A. G. Bykov, G. Loglio, R. Miller, E. A. Tsyganov, Z. Wan and B. A. Noskov
Colloids Interfaces 2024, 8(6), 61; https://doi.org/10.3390/colloids8060061 - 11 Nov 2024
Cited by 1 | Viewed by 1519
Abstract
The formation of beta-lactoglobulin (BLG)/sodium polystyrene sulfonate (PSS) complexes decelerates the change in the surface properties of the mixed solutions with the surface age and increases the steady-state dilational surface elasticity in a narrow PSS concentration range. At the same time, the changes [...] Read more.
The formation of beta-lactoglobulin (BLG)/sodium polystyrene sulfonate (PSS) complexes decelerates the change in the surface properties of the mixed solutions with the surface age and increases the steady-state dilational surface elasticity in a narrow PSS concentration range. At the same time, the changes in the surface properties are accelerated in the dispersions of BLG fibrils with and without PSS due to the influence of small peptides coexisting with fibrils. A decrease in the peptide concentration as a result of the dispersion purification leads to slower changes in the surface properties at low PSS concentrations. The increase in the polyelectrolyte concentration results in an increase in the steady-state surface elasticity due to the fibril/PSS complex formation and in very slow changes in the surface properties if the polyelectrolyte exceeds a certain critical value. The latter effect is a consequence of the formation of large aggregates and of an increase in the electrostatic adsorption barrier. The consecutive adsorption of BLG fibrils and PSS leads to the formation of regular multilayers at the liquid–gas interface. The multilayer properties change noticeably with an increase in the number of layers from four to six in agreement with previous results on the multilayers of PSS with an oppositely charged synthetic polyelectrolyte, presumably due to the heterogeneity of the first PSS layer. The dynamic elasticity of the multilayers approaches 250 mN/m, indicating that they can effectively stabilize foams and emulsions. Full article
Show Figures

Figure 1

18 pages, 2269 KiB  
Article
Recovery of Selenium-Enriched Polysaccharides from Cardamine violifolia Residues: Comparison on Structure and Antioxidant Activity by Different Extraction Methods
by Yong Liang, Jiali Yu, Lulu Wu, Xin Cong, Haiyuan Liu, Xu Chen, Shuyi Li and Zhenzhou Zhu
Antioxidants 2024, 13(10), 1251; https://doi.org/10.3390/antiox13101251 - 17 Oct 2024
Cited by 2 | Viewed by 1160
Abstract
The residues from selenium-enriched Cardamine violifolia after the extraction of protein were still rich in polysaccharides. Thus, the recovery of selenium polysaccharides (SePSs) was compared using hot water extraction and ultrasonic-assisted extraction techniques. The yield, extraction rate, purity, specific energy consumption, and content [...] Read more.
The residues from selenium-enriched Cardamine violifolia after the extraction of protein were still rich in polysaccharides. Thus, the recovery of selenium polysaccharides (SePSs) was compared using hot water extraction and ultrasonic-assisted extraction techniques. The yield, extraction rate, purity, specific energy consumption, and content of total and organic selenium from different SePS extracts were determined. The results indicated that at conditions of 250 W (ultrasonic power), 30 °C, and a liquid-to-material ratio of 30:1 extracted for 60 min, the yield of SePSs was 3.97 ± 0.07%, the extraction rate was 22.76 ± 0.40%, and the purity was 65.56 ± 0.35%, while the total and organic selenium content was 749.16 ± 6.91 mg/kg and 628.37 ± 5.93 mg/kg, respectively. Compared to traditional hot water extraction, ultrasonic-assisted extraction significantly improves efficiency, reduces energy use, and boosts both total and organic selenium content in the extract. Measurements of particle size, molecular weight, and monosaccharide composition, along with infrared and ultraviolet spectroscopy, revealed that ultrasonic-assisted extraction breaks down long-chain structures, decreases particle size, and changes monosaccharide composition in SePSs, leading to lower molecular weight and reduced dispersity. The unique structure of SePSs, which integrates selenium with polysaccharide groups, results in markedly improved antioxidant activity and reducing power, even at low concentrations, due to the synergistic effects of selenium and polysaccharides. This study establishes a basis for using SePSs in functional foods. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

18 pages, 3384 KiB  
Article
Assessing Anatase TiO2 Nanofluids Performance: Experimental Heat Transfer Coefficients vs. Mouromtseff Number Ratios
by Uxía Calviño, Jose I. Prado, Javier P. Vallejo and Luis Lugo
Appl. Sci. 2024, 14(17), 7647; https://doi.org/10.3390/app14177647 - 29 Aug 2024
Cited by 1 | Viewed by 1454
Abstract
This research aims to evaluate the efficacy of Mouromtseff’s numbers in assessing the thermal transfer performance of titanium oxide (TiO2) nanosized dispersions in convective heat transfer through a pipe. New experimental coefficients of convective heat transfer, thermophysical and rheological characterisation are [...] Read more.
This research aims to evaluate the efficacy of Mouromtseff’s numbers in assessing the thermal transfer performance of titanium oxide (TiO2) nanosized dispersions in convective heat transfer through a pipe. New experimental coefficients of convective heat transfer, thermophysical and rheological characterisation are carried out for TiO2-based nanodispersions in an aqueous propylene glycol 30 vol% mixture at various nanoadditive mass loadings (from 0.25 to 2.0 wt%). Different Mouromtseff’s number formulations, including the Dittus–Boelter and Simons expressions, were obtained from experimental data of thermophysical properties, enabling concise analyses on the prospective improvement of heat transfer in cooling and heating systems. The morphology, particle size, and crystallinity of the anatase TiO2 nanopowder were confirmed, and the stability of the nanofluids with various surfactants was evaluated, with PSS at a 1:4 mass ratio being optimal. Slight increments in thermal conductivity (up to 1.5%) and density (up to 1.3%) with nanoparticle loading were observed, while isobaric heat capacity presents a decreasing trend (less than 13%). Dynamic viscosity increases with higher nanoadditive concentrations, 8.8% for the 2.0 wt% A-TiO2/PG:W 30:70 + PSS 1:4 nanofluid. The employed Dittus–Boelter and Simons expressions correctly predict a worsening of the convective heat transfer, but the percentages diverge slightly from experimental data. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 19173 KiB  
Article
Synthesis and Characterization of Nanocomposite Hydrogels Based on Poly(Sodium 4-Styrene Sulfonate) under Very-High Concentration Regimen of Clays (Bentonite and Kaolinite)
by Tulio A. Lerma, Enrique M. Combatt and Manuel Palencia
Gels 2024, 10(6), 405; https://doi.org/10.3390/gels10060405 - 18 Jun 2024
Cited by 1 | Viewed by 1427
Abstract
The aim of this work was to synthesize and study the functional properties of polymer-clay nanocomposite (PCNCs) based on poly(sodium 4-styrene sulfonate) (NaPSS) and two types of clay in the dispersed phase: bentonite and kaolinite, in order to advance in the development of [...] Read more.
The aim of this work was to synthesize and study the functional properties of polymer-clay nanocomposite (PCNCs) based on poly(sodium 4-styrene sulfonate) (NaPSS) and two types of clay in the dispersed phase: bentonite and kaolinite, in order to advance in the development of new geomimetic materials for agricultural and environmental applications. In this study, the effect of adding high concentrations of clay (10–20 wt. %) on the structural and functional properties of a polymer–clay nanocomposite was evaluated. The characterization by infrared spectroscopy made it possible to show that the PCNCs had a hybrid nature structure through the identification of typical vibration bands of the clay matrix and NaPSS. In addition, scanning electron microscopy allowed us to verify its hybrid composition and an amorphous particle-like morphology. The thermal characterization showed degradation temperatures higher than ~300 °C with Tg values higher than 100 °C and variables depending on the clay contents. In addition, the PCNCs showed a high water-retention capacity (>2900%) and cation exchange capacity (>112 meq/100 g). Finally, the results demonstrated the ability of geomimetic conditioners to mimic the structure and functional properties of soils, suggesting their potential application in improving soil quality for plant growth. Full article
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
High-Dynamic-Range Absorption Spectroscopy by Generating a Wide Path-Length Distribution with Scatterers
by Ayaka Mori, Kyohei Yamashita and Eiji Tokunaga
Photonics 2024, 11(6), 556; https://doi.org/10.3390/photonics11060556 - 13 Jun 2024
Cited by 1 | Viewed by 1693 | Correction
Abstract
In absorption spectroscopy, it is challenging to detect absorption peaks with significant differences in their intensity in a single measurement. We enable high-dynamic-range measurements by dispersing scatterers within a sample to create a broad distribution of path lengths (PLs). The sample is placed [...] Read more.
In absorption spectroscopy, it is challenging to detect absorption peaks with significant differences in their intensity in a single measurement. We enable high-dynamic-range measurements by dispersing scatterers within a sample to create a broad distribution of path lengths (PLs). The sample is placed within an integrating sphere (IS) to capture all scattered light of various PLs. To address the complexities of PLs inside the IS and the sample, we performed a ray-tracing simulation using the Monte Carlo (MC) method, which estimates the measured absorbance A and PL distribution from the sample’s absorption coefficient µa and scattering properties at each wavelength λ. This method was validated using dye solutions with two absorption peaks whose intensity ratio is 95:1, employing polystyrene microspheres (PSs) as scatterers. The results confirmed that both peak shapes were delineated in a single measurement without flattening the high absorption peak. Although the measured peak shapes A(λ) did not align with the actual peak shapes µa(λ), MC enabled the reproduction of µa(λ) from A(λ). Furthermore, the analysis of the PL distribution by MC shows that adding scatterers broadens the distribution and shifts it toward shorter PLs as absorption increases, effectively adjusting it to µa. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

13 pages, 4373 KiB  
Article
Electromagnetic Interference Shielding Properties of Highly Flexible Poly(styrene-co-butyl acrylate)/PEDOT:PSS Films Fabricated by Latex Technology
by Seung Chang Lee, Yong Bin Bang, Hyun Ho Park, Hyo Yeol Na and Seong Jae Lee
Polymers 2024, 16(11), 1565; https://doi.org/10.3390/polym16111565 - 31 May 2024
Viewed by 1296
Abstract
As the use of stretchable electronic devices increases, the importance of flexible electromagnetic interference (EMI) shielding films is emerging. In this study, a highly flexible shielding film was fabricated using poly(styrene-co-butyl acrylate) (p(St-co-BA)) latex as a matrix and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a conductive [...] Read more.
As the use of stretchable electronic devices increases, the importance of flexible electromagnetic interference (EMI) shielding films is emerging. In this study, a highly flexible shielding film was fabricated using poly(styrene-co-butyl acrylate) (p(St-co-BA)) latex as a matrix and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a conductive filler, and then the mechanical properties and EMI shielding performance of the film were examined. Styrene and butyl acrylate were copolymerized to lower the high glass transition temperature and increase the ductility of brittle polystyrene. The latex blending technique was used to produce a shielding film in which the aqueous filler dispersion was uniformly dispersed in the emulsion polymerized resin. To determine the phase change in the copolymer matrix with temperature, the storage modulus was measured, and a time–temperature superposition master curve was constructed. The drying temperature of water-based copolymer resin suitable for film fabrication was set based on this curve. The glass transition temperature and flexibility of the blends were determined by evaluating the thermomechanical analysis and tensile tests. The EMI shielding effectiveness (SE) of the films was analyzed at frequencies from 50 MHz to 1.5 GHz, covering the VHF and UHF ranges. As the filler content increased, the SE of the blend film increased, but the elongation increased until a certain content and then decreased. The optimal content of PEDOT:PSS that satisfied both the ductility and shielding performance of the film was found to be 10 wt%. In this case, the elongation at break reached 300%, and the SE of a 1.6 mm thick film was about 35 dB. The film developed in this study can be used as an EMI shielding material that requires high flexibility. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

18 pages, 11677 KiB  
Article
On the Interaction between PEDOT:PSS Dispersions and Aluminium Electrodes for Solid State Electrolytic Capacitors
by Néstor Calabia Gascón, Reynier I. Revilla, Benny Wouters, Herman Terryn and Annick Hubin
Inorganics 2024, 12(4), 104; https://doi.org/10.3390/inorganics12040104 - 5 Apr 2024
Cited by 3 | Viewed by 2041
Abstract
The use of conductive polymers in aluminium electrolytic capacitors prevents leakage and enlarges the temperature use range when compared with their liquid counterparts. PEDOT:PSS is an outstanding candidate due to its tunable properties, i.e., electronic conductivity (10−5 to 103 S/cm), and [...] Read more.
The use of conductive polymers in aluminium electrolytic capacitors prevents leakage and enlarges the temperature use range when compared with their liquid counterparts. PEDOT:PSS is an outstanding candidate due to its tunable properties, i.e., electronic conductivity (10−5 to 103 S/cm), and its high thermal stability. As a result of their synthesis, PEDOT:PSS dispersions are characterized by a low pH value, which can influence pH sensitive materials such as aluminium. However, no work to date has studied the interaction between PEDOT:PSS dispersions and aluminium oxide substrates. In this work, the interface and interaction between PEDOT:PSS and an aluminium electrode were studied for the first time via odd random phase electrochemical impedance spectroscopy and analysed post mortem by SEM and AFM characterization. PEDOT:PSS dispersions at different pH values (1.9, 4.9, 5.8) were applied in a layered manner onto a non-etched aluminium substrate with a grown oxide layer on top, which provided a model system for the analysis of the interface. The analysis showed that the acidic PEDOT:PSS dispersions attacked the aluminium substrate, forming pores on the surface, but had a positive impact on the capacitance of the aluminium oxide/PEDOT:PSS systems. On the other hand, neutral dispersions did not affect the aluminium electrode, but showed poor layer formation properties, and the electrochemical analysis displayed a dispersion of results ranging from capacitive to resistive behaviour. Full article
(This article belongs to the Special Issue Recent Advances in Energy Storage and Conversion)
Show Figures

Figure 1

15 pages, 5619 KiB  
Article
Molecular Effects of Li+-Coordinating Binders and Negatively Charged Binders on the Li+ Local Mobility near the Electrolyte/LiFePO4 Cathode Interface within Lithium-Ion Batteries
by Po-Yuan Wang, Tzu-Heng Chiu and Chi-cheng Chiu
Polymers 2024, 16(3), 319; https://doi.org/10.3390/polym16030319 - 24 Jan 2024
Cited by 1 | Viewed by 2196
Abstract
The development of lithium-ion batteries (LIBs) is important in the realm of energy storage. Understanding the intricate effects of binders on the Li+ transport at the cathode/electrolyte interface in LIBs remains a challenge. This study utilized molecular dynamics simulations to compare the [...] Read more.
The development of lithium-ion batteries (LIBs) is important in the realm of energy storage. Understanding the intricate effects of binders on the Li+ transport at the cathode/electrolyte interface in LIBs remains a challenge. This study utilized molecular dynamics simulations to compare the molecular effects of conventional polyvinylidene difluoride (PVDF), Li+-coordinating polyethylene oxide (PEO), and negatively charged polystyrene sulfonate (PSS) binders on local Li+ mobility at the electrolyte/LiFePO4 (LFP) cathode interface. By examining concentration profiles of Li+, three different polymer binders, and anions near Li+-rich LFP and Li+-depleted FePO4 (FP) surfaces, we found a superior performance of the negatively charged PSS on enhancing Li+ distribution near the Li+-depleted FP surface. The radial distribution function and coordination number analyses revealed the potent interactions of PEO and PSS with Li+ disrupting Li+ coordination with electrolyte solvents. Our simulations also revealed the effects of non-uniform binder dispersions on the Li+ local mobility near the cathode surface. The combined results provide a comparative insight into Li+ transport at the electrolyte/cathode interface influenced by distinct binder chemistries, offering a profound understanding of the binder designs for high-performance LIBs. Full article
(This article belongs to the Collection Electrochemical-Storage Technology with Polymer Science)
Show Figures

Figure 1

11 pages, 2369 KiB  
Article
Effect of Film Morphology on Electrical Conductivity of PEDOT:PSS
by Aditya Saha, Daisuke Ohori, Takahiko Sasaki, Keisuke Itoh, Ryuji Oshima and Seiji Samukawa
Nanomaterials 2024, 14(1), 95; https://doi.org/10.3390/nano14010095 - 29 Dec 2023
Cited by 5 | Viewed by 3234
Abstract
Commercially available formulations of the popular conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) are aqueous dispersions that require the addition of secondary dopants such as dimethyl sulphoxide (DMSO) or ethylene glycol (EG) for fabricated films to have the desired levels of conductivity. CleviosTM F [...] Read more.
Commercially available formulations of the popular conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) are aqueous dispersions that require the addition of secondary dopants such as dimethyl sulphoxide (DMSO) or ethylene glycol (EG) for fabricated films to have the desired levels of conductivity. CleviosTM F HC Solar, a formulation of PEDOT:PSS produced by Heraeus, GmbH, achieves over 500 S/cm without these secondary dopants. This work studies whether secondary dopants such as DMSO have any additional effect on this type of PEDOT:PSS. The temperature dependencies of the conductivity of F HC Solar spin-coated thin films measured using a four-probe method seem to exhibit different charge transport properties compared with secondary doped PH1000. Observations made using atomic force microscopy (AFM) show that different concentrations of DMSO affect the orientation of the PEDOT domains in the thin film. These morphological changes cause room temperature conductivity to reduce from 640 S/cm in pristine films to as low as 555 S/cm after adding 7 wt% of DMSO along the film. Such tuning may prove useful in future applications of PEDOT:PSS, such as nanoprobes, transistors and hybrid solar cells. Full article
(This article belongs to the Special Issue Nanodevices—Technologies and Applications in Semiconductor Industry)
Show Figures

Figure 1

31 pages, 4154 KiB  
Review
Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment
by Doaa Sayed Nady, Afnan Hassan, Muhammad Umair Amin, Udo Bakowsky and Sherif Ashraf Fahmy
Pharmaceutics 2024, 16(1), 14; https://doi.org/10.3390/pharmaceutics16010014 - 20 Dec 2023
Cited by 14 | Viewed by 3106
Abstract
Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This [...] Read more.
Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This generates cytotoxic reactive oxygen species (ROS), which can trigger necrosis and/ or apoptosis, leading to cancer cell death in the intended tissues. Classical photosensitizers impose limitations that hinder their clinical applications, such as long-term skin photosensitivity, hydrophobic nature, nonspecific targeting, and toxic cumulative effects. Thus, nanotechnology emerged as an unorthodox solution for improving the hydrophilicity and targeting efficiency of PSs. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their high surface area, defined pore size and structure, ease of surface modification, stable aqueous dispersions, good biocompatibility, and optical transparency, which are vital for PDT. The advancement of integrated MSNs/PDT has led to an inspiring multimodal nanosystem for effectively treating malignancies. This review gives an overview of the main components and mechanisms of the PDT process, the effect of PDT on tumor cells, and the most recent studies that reported the benefits of incorporating PSs into silica nanoparticles and integration with PDT against different cancer cells. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

14 pages, 17990 KiB  
Article
Ag2O-Containing Biocidal Interpolyelectrolyte Complexes on Glass Surfaces—Adhesive Properties of the Coatings
by Vladislava A. Pigareva, Oleg S. Paltsev, Valeria I. Marina, Dmitrii A. Lukianov, Andrei V. Moiseenko, Nikita M. Shchelkunov, Andrey A. Fedyanin and Andrey V. Sybachin
Polymers 2023, 15(24), 4690; https://doi.org/10.3390/polym15244690 - 13 Dec 2023
Cited by 1 | Viewed by 1534
Abstract
Biocidal coatings are of great interest to the healthcare system. In this work, the biocidal activity of coatings based on a complex biocide containing polymer and inorganic active antibacterial components was studied. Silver oxide was distributed in a matrix of a positively charged [...] Read more.
Biocidal coatings are of great interest to the healthcare system. In this work, the biocidal activity of coatings based on a complex biocide containing polymer and inorganic active antibacterial components was studied. Silver oxide was distributed in a matrix of a positively charged interpolyelectrolyte complex (IPEC) of polydiallyldimethylammonium chloride (PDADMAC) and sodium polystyrene sulfonate (PSS) using ultrasonic dispersion, forming nanoparticles with an average size of 5–6 nm. The formed nanoparticles in the matrix are not subject to agglomeration and changes in morphology during storage. It was found that the inclusion of silver oxide in a positively charged IPEC allows a more than 4-fold increase in the effectiveness of the complex biocide against E. coli K12 in comparison with the biocidal effect of PDADMAC and IPEC. Polycation, IPEC, and the IPEC/Ag2O ternary complex form coatings on the glass surface due to electrostatic adsorption. Adhesive and cohesive forces in the resulting coatings were studied with micron-scale coatings using dynamometry. It was found that the stability of the coating is determined primarily by adhesive interactions. At the macro level, it is not possible to reliably identify the role of IPEC formation in adhesion. On the other hand, use of the optical tweezers method makes it possible to analyze macromolecules at the submicron scale and to evaluate the multiple increase in adhesive forces when forming a coating from IPEC compared to coatings from PDADMAC. Thus, the application of ternary IPEC/Ag2O complexes makes it possible to obtain coatings with increased antibacterial action and improved adhesive characteristics. Full article
Show Figures

Figure 1

14 pages, 14650 KiB  
Article
Polydopamine-Modified Carboxymethyl Cellulose as Advanced Polysulfide Trapping Binder
by Daniel A. Gribble and Vilas G. Pol
Batteries 2023, 9(11), 525; https://doi.org/10.3390/batteries9110525 - 24 Oct 2023
Cited by 1 | Viewed by 2883
Abstract
The search for a high-energy-density alternative to lithium-ion batteries has led to great interest in the lithium sulfur battery (LSB). However, poor cycle lifetimes and coulombic efficiencies (CEs) due to detrimental lithium polysulfide (LiPS) shuttling has hindered its widespread adoption. To address this [...] Read more.
The search for a high-energy-density alternative to lithium-ion batteries has led to great interest in the lithium sulfur battery (LSB). However, poor cycle lifetimes and coulombic efficiencies (CEs) due to detrimental lithium polysulfide (LiPS) shuttling has hindered its widespread adoption. To address this challenge, a modified sodium carboxymethyl cellulose (CMC) polymer with integrated dopamine moieties and polydopamine nanoparticles was created through a facile one-pot dopamine (DOP) amidation reaction to strengthen noncovalent interactions with LiPSs and mitigate the shuttling effect. The resulting CMC-DOP binder improved electrode wettability, adhesion, and electrochemical performance. Compared to LSBs with a standard CMC binder, CMC-DOP 5:1 (with a 5:1 weight ratio of CMC to dopamine precursor) improves the specific capacity at cycle 100 by 38% to 552 mAh g−1 and CE from 96.8 to 98.9%. LSBs show good stability, even after 500 cycles. Post-mortem electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) studies confirmed the effectiveness of the CMC-DOP in confining LiPS in the cathode. This simple but effective nature-inspired strategy promises to enhance the viability of LSBs without using harmful chemicals or adding excess bulk. Full article
(This article belongs to the Collection Feature Papers in Batteries)
Show Figures

Graphical abstract

13 pages, 3518 KiB  
Article
Characterization of PEDOT:PSS Nanofilms Printed via Electrically Assisted Direct Ink Deposition with Ultrasonic Vibrations
by Yizhen Zhu, Rohan Ravishekar, Tengteng Tang, Banashree Gogoi, Carson Gockley, Sushmitha Venu, Terry L. Alford and Xiangjia Li
Molecules 2023, 28(20), 7109; https://doi.org/10.3390/molecules28207109 - 16 Oct 2023
Cited by 1 | Viewed by 2079
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has emerged as a promising conductive polymer for constructing efficient hole-transport layers (HTLs) in perovskite solar cells (PSCs). However, conventional fabrication methods, such as spin coating, spray coating, and slot-die coating, have resulted in PEDOT:PSS nanofilms with limited performance, characterized by [...] Read more.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has emerged as a promising conductive polymer for constructing efficient hole-transport layers (HTLs) in perovskite solar cells (PSCs). However, conventional fabrication methods, such as spin coating, spray coating, and slot-die coating, have resulted in PEDOT:PSS nanofilms with limited performance, characterized by a low density and non-uniform nanostructures. We introduce a novel 3D-printing approach called electrically assisted direct ink deposition with ultrasonic vibrations (EF-DID-UV) to overcome these challenges. This innovative printing method combines programmable acoustic field modulation with electrohydrodynamic spraying, providing a powerful tool for controlling the PEDOT:PSS nanofilm’s morphology precisely. The experimental findings indicate that when PEDOT:PSS nanofilms are crafted using horizontal ultrasonic vibrations, they demonstrate a uniform dispersion of PEDOT:PSS nanoparticles, setting them apart from instances involving vertical ultrasonic vibrations, both prior to and after the printing process. In particular, when horizontal ultrasonic vibrations are applied at a low amplitude (0.15 A) during printing, these nanofilms showcase exceptional wettability performance, with a contact angle of 16.24°, and impressive electrical conductivity of 2092 Ω/square. Given its ability to yield high-performance PEDOT:PSS nanofilms with precisely controlled nanostructures, this approach holds great promise for a wide range of nanotechnological applications, including the production of solar cells, wearable sensors, and actuators. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

Back to TopTop