Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment
Abstract
:1. Introduction
2. Photodynamic Therapy (PDT) and Photosensitizers (PSs)
3. Photodynamic Therapy (PDT) Mechanisms
The Effect of Photodynamic Therapy on Tumors
4. Nanotechnology in Photodynamic Therapy
4.1. Silica Nanoparticles
4.2. MSNs in Photodynamic Therapy
4.3. Photosensitizers Loaded on MSNs
4.3.1. Porphyrin Photosensitizer
4.3.2. Phthalocyanines Photosensitizers
4.3.3. Chlorin e6 Photosensitizer
4.3.4. Indocyanine Green Photosensitizers
4.3.5. Other Photosensitizers
5. Conclusions and Future Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mfouo-Tynga, I.; Dias, L.D.; Inada, N.M.; Kurachi, C. Biophysical and Biological Features of Third Generation Photosensitizers Used in Anticancer Photodynamic Therapy: Review. Photodiagnosis Photodyn. Ther. 2021, 34, 102091. [Google Scholar] [CrossRef] [PubMed]
- Zahra, M.; Chota, A.; Abrahamse, H.; George, B.P. Efficacy of Green Synthesized Nanoparticles in Photodynamic Therapy: A Therapeutic Approach. Int. J. Mol. Sci. 2023, 24, 10931. [Google Scholar] [CrossRef] [PubMed]
- Dhilip Kumar, S.S.; Abrahamse, H. Biocompatible Nanocarriers for Enhanced Cancer Photodynamic Therapy Applications. Pharmaceutics 2021, 13, 1933. [Google Scholar] [CrossRef] [PubMed]
- Karges, J. Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angew. Chem. 2021, 61, e202112236. [Google Scholar] [CrossRef] [PubMed]
- Chota, A.; George, B.P.; Abrahamse, H. Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach. Int. J. Mol. Sci. 2023, 24, 4808. [Google Scholar] [CrossRef]
- Chen, J.; Fan, T.; Xie, Z.; Zeng, Q.; Xue, P.; Zheng, T.; Chen, Y.; Luo, X.; Zhang, H. Advances in nanomaterials for photodynamic therapy applications: Status and challenges. Biomaterials 2020, 237, 119827. [Google Scholar] [CrossRef]
- Ritacco, I.; Al Assy, M.; Abd El-Rahman, M.K.; Fahmy, S.A.; Russo, N.; Shoeib, T.; Sicilia, E. Hydrolysis in Acidic Environment and Degradation of Satraplatin: A Joint Experimental and Theoretical Investigation. Inorg. Chem. 2017, 56, 6013–6026. [Google Scholar] [CrossRef]
- Prieto-Montero, R.; Arbeloa, T.; Martínez-Martínez, V. Photosensitizer-Mesoporous Silica Nanoparticles Combination for Enhanced Photodynamic Therapy†. Photochem. Photobiol. 2023, 99, 882–900. [Google Scholar] [CrossRef]
- Ambreen, G.; Duse, L.; Tariq, I.; Ali, U.; Ali, S.; Pinnapireddy, S.R.; Bette, M.; Bakowsky, U.; Mandic, R. Sensitivity of Papilloma Virus-Associated Cell Lines to Photodynamic Therapy with Curcumin-Loaded Liposomes. Cancers 2020, 12, 3278. [Google Scholar] [CrossRef]
- Abdelsalam, A.M.; Somaida, A.; Ambreen, G.; Ayoub, A.M.; Tariq, I.; Engelhardt, K.H.; Garidel, P.; Fawaz, I.; Amin, M.U.; Wojcik, M.; et al. Surface tailored zein as a novel delivery system for hypericin: Application in photodynamic therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 129, 112420. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Sun, H.; Guo, D. Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coord. Chem. Rev. 2019, 395, 15–62. [Google Scholar] [CrossRef]
- Niculescu, A.; Grumezescu, A.M. Photodynamic Therapy—An Up-to-Date Review. Appl. Sci. 2021, 11, 3626. [Google Scholar] [CrossRef]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, L.; Zhang, Z.; Liu, Z. Advances in photosensitizer-related design for photodynamic therapy. Asian J. Pharm. Sci. 2021, 16, 668–686. [Google Scholar] [CrossRef] [PubMed]
- Alves, S.R.; Calori, I.R.; Tedesco, A.C. Photosensitizer-based metal-organic frameworks for highly effective photodynamic therapy. Mater. Sci. Eng. C 2021, 131, 112514. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.; Zhao, S.; Liu, W.; Lee, C.; Zhang, W.; Wang, P. Photosensitizers for Photodynamic Therapy. Adv. Healthc. Mater. 2019, 8, 1900132. [Google Scholar] [CrossRef]
- Algorri, J.F.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers 2021, 13, 4447. [Google Scholar] [CrossRef]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer—A Review of the Current Clinical Status. Front. Chem. 2021, 9, 686303. [Google Scholar] [CrossRef]
- Duse, L.; Pinnapireddy, S.R.; Strehlow, B.; Jedelská, J.; Bakowsky, U. Low level LED photodynamic therapy using curcumin loaded tetraether liposomes. Eur. J. Pharm. Biopharm. 2017, 126, 233–241. [Google Scholar] [CrossRef]
- Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674. [Google Scholar] [CrossRef]
- Wang, S.; Mu, C.; Zhang, F.; Tang, H.; Ning, W. Acupuncture or moxibustion adjuvant chemotherapy for advanced non-small cell lung cancer: Systematic review and network meta-analysis. Medicine 2023, 102, e35000. [Google Scholar] [CrossRef] [PubMed]
- Salih, S.; Alkatheeri, A.; Alomaim, W.; Elliyanti, A. Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges. Molecules 2022, 27, 5231. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Si, J.; Zheng, M.; Zhou, Q.; Ge, Z. X-ray-responsive prodrugs and polymeric nanocarriers for multimodal cancer therapy. Chem. Commun. 2023, 59, 8323–8331. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhou, A.E.; Khachemoune, A. Photodynamic Therapy in Treating a Subset of Basal Cell Carcinoma: Strengths, Shortcomings, Comparisons with Surgical Modalities, and Potential Role as Adjunctive Therapy. Am. J. Clin. Dermatol. 2023, 2. [Google Scholar] [CrossRef]
- Aghajanzadeh, M.; Zamani, M.; Kouchi, F.R.; Eixenberger, J.E.; Shirini, D.; Estrada, D.; Shirini, F. Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems. Pharmaceutics 2022, 14, 322. [Google Scholar] [CrossRef]
- Escudero, A.; Carrillo-Carrión, C.; Castillejos, M.; Romero-Ben, E.; Rosales-Barrios, C.; Khiar, N. Photodynamic therapy: Photosensitizers and nanostructures. Mater. Chem. Front. 2021, 5, 3788. [Google Scholar] [CrossRef]
- Ahmadi, F.; Sodagar-Taleghani, A.; Ebrahimnejad, P.; Pouya Hadipour Moghaddam, S.; Ebrahimnejad, F.; Asare-Addo, K.; Nokhodchi, A. A review on the latest developments of mesoporous silica nanoparticles as a promising platform for diagnosis and treatment of cancer. Int. J. Pharm. 2022, 625, 122099. [Google Scholar] [CrossRef]
- Makuch, S.; Dróżdż, M.; Makarec, A.; Ziólkowski, P.P.; Woźniak, M. An Update on Photodynamic Therapy of Psoriasis—Current Strategies and Nanotechnology as a Future Perspective. Int. J. Mol. Sci. 2022, 23, 9845. [Google Scholar] [CrossRef]
- Plenagl, N.; Duse, L.; Seitz, B.S.; Goergen, N.; Pinnapireddy, S.R.; Jedelská, J.; Brüßler, J.; Bakowsky, U. Photodynamic therapy—Hypericin tetraether liposome conjugates and their antitumor and antiangiogenic activity. Drug Deliv. 2019, 26, 23–33. [Google Scholar] [CrossRef]
- Montaseri, H.; Kruger, C.A.; Abrahamse, H. Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer. Pharmaceutics 2021, 13, 296. [Google Scholar] [CrossRef]
- Hu, J.; Lei, Q.; Zhang, X. Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Prog. Mater. Sci. 2020, 114, 100685. [Google Scholar] [CrossRef]
- Ayoub, A.M.; Amin, M.U.; Ambreen, G.; Dayyih, A.A.; Abdelsalam, A.M.; Somaida, A.; Engelhardt, K.H.; Wojcik, M.; Schäfer, J.; Bakowsky, U. Photodynamic and antiangiogenic activities of parietin liposomes in triple negative breast cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 134, 112543. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, S.A.; Azzazy, H.M.; Schaefer, J. Liposome Photosensitizer Formulations for Effective Cancer Photodynamic Therapy. Pharmaceutics 2021, 13, 1345. [Google Scholar] [CrossRef]
- Lin, L.; Song, X.; Dong, X.; Li, B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn. Ther. 2021, 36, 102597. [Google Scholar] [CrossRef] [PubMed]
- Mosaddad, S.A.; Namanloo, R.A.; Aghili, S.S.; Maskani, P.; Alam, M.; Abbasi, K.; Nouri, F.; Tahmasebi, E.; Yazdanian, M.; Tebyaniyan, H. Photodynamic therapy in oral cancer: A review of clinical studies. Med. Oncol. 2023, 40, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy—Current Limitations and Novel Approaches. Front. Chem. 2021, 9, 691697. [Google Scholar] [CrossRef]
- Ali, S.; Amin, M.U.; Ali, M.Y.; Tariq, I.; Pinnapireddy, S.R.; Duse, L.; Goergen, N.; Wölk, C.; Hause, G.; Jedelská, J.; et al. Wavelength dependent photo-cytotoxicity to ovarian carcinoma cells using temoporfin loaded tetraether liposomes as efficient drug delivery system. Eur. J. Pharm. Biopharm. 2020, 150, 50–65. [Google Scholar] [CrossRef]
- Agel, M.R.; Baghdan, E.; Pinnapireddy, S.R.; Lehmann, J.; Schäfer, J.; Bakowsky, U. Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids Surf. B Biointerfaces 2019, 178, 460–468. [Google Scholar] [CrossRef]
- Duse, L.; Agel, M.R.; Pinnapireddy, S.R.; Schäfer, J.; Selo, M.A.; Ehrhardt, C.; Bakowsky, U. Photodynamic Therapy of Ovarian Carcinoma Cells with Curcumin-Loaded Biodegradable Polymeric Nanoparticles. Pharmaceutics 2019, 11, 282. [Google Scholar] [CrossRef]
- Hamblin, M.R. Photodynamic Therapy for Cancer: What’s Past is Prologue. Photochem. Photobiol. 2019, 96, 506–516. [Google Scholar] [CrossRef]
- Dayyih, A.A.; Gutberlet, B.; Preis, E.; Engelhardt, K.H.; Amin, M.U.; Abdelsalam, A.M.; Bonsu, M.A.; Bakowsky, U. Thermoresponsive Liposomes for Photo-Triggered Release of Hypericin Cyclodextrin Inclusion Complex for Efficient Antimicrobial Photodynamic Therapy. ACS Appl. Mater. Interfaces 2022, 14, 31525–31540. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.; Hong, S.H.; Son, J.; Yoo, J.; Park, C.; Choi, Y.; Koo, H. Recent advances in nanoparticle carriers for photodynamic therapy. Quant. Imaging Med. Surg. 2018, 8, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Sedky, N.K.; Braoudaki, M.; Mahdy, N.K.; Amin, K.; Fawzy, I.M.; Efthimiadou, E.K.; Youness, R.A.; Fahmy, S.A. Box–Behnken design of thermo-responsive nano-liposomes loaded with a platinum(iv) anticancer complex: Evaluation of cytotoxicity and apoptotic pathways in triple negative breast cancer cells. Nanoscale Adv. 2023, 5, 5399–5413. [Google Scholar] [CrossRef] [PubMed]
- Yasir Ali, M.; Tariq, I.; Farhan Sohail, M.; Umair Amin, M.; Ali, S.; Reddy Pinnapireddy, S.; Ali, A.; Schäfer, J.; Bakowsky, U. Selective Anti-ErbB3 Aptamer Modified Sorafenib Microparticles: In Vitro and In Vivo Toxicity Assessment. Eur. J. Pharm. Biopharm. 2019, 145, 42–53. [Google Scholar] [CrossRef]
- Preis, E.; Baghdan, E.; Agel, M.R.; Anders, T.; Pourasghar, M.; Schneider, M.; Bakowsky, U. Spray dried curcumin loaded nanoparticles for antimicrobial photodynamic therapy. Eur. J. Pharm. Biopharm. 2019, 142, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Sedky, N.K.; Abdel-Kader, N.M.; Issa, M.Y.; Abdelhady, M.M.; Shamma, S.N.; Bakowsky, U.; Fahmy, S.A. Co-Delivery of Ylang Ylang Oil of Cananga odorata and Oxaliplatin Using Intelligent pH-Sensitive Lipid-Based Nanovesicles for the Effective Treatment of Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2023, 24, 8392. [Google Scholar] [CrossRef]
- Fahmy, S.A.; Sedky, N.K.; Ramzy, A.; Abdelhady, M.M.; Alabrahim, O.A.; Shamma, S.N.; Azzazy, H.M. Green extraction of essential oils from Pistacia lentiscus resins: Encapsulation into Niosomes showed improved preferential cytotoxic and apoptotic effects against breast and ovarian cancer cells. J. Drug Deliv. Sci. Technol. 2023, 87, 104820. [Google Scholar] [CrossRef]
- Youness, R.A.; Al-mahallawi, A.M.; Mahmoud, F.H.; Atta, H.; Braoudaki, M.; Fahmy, S.A. Oral Delivery of Psoralidin by Mucoadhesive Surface-Modified Bilosomes Showed Boosted Apoptotic and Necrotic Effects against Breast and Lung Cancer Cells. Polymers 2023, 15, 1464. [Google Scholar] [CrossRef]
- Fahmy, S.A.; Mahdy, N.K.; Al Mulla, H.; ElMeshad, A.N.; Issa, M.Y.; Azzazy, H.M. PLGA/PEG Nanoparticles Loaded with Cyclodextrin-Peganum harmala Alkaloid Complex and Ascorbic Acid with Promising Antimicrobial Activities. Pharmaceutics 2022, 14, 142. [Google Scholar] [CrossRef]
- Fahmy, S.A.; Mamdouh, W. Garlic oil–loaded PLGA nanoparticles with controllable size and shape and enhanced antibacterial activities. J. Appl. Polym. Sci. 2018, 135, 46133. [Google Scholar] [CrossRef]
- Amin, M.U.; Ali, S.; Tariq, I.; Ali, M.Y.; Pinnapreddy, S.R.; Preis, E.; Wölk, C.; Harvey, R.D.; Hause, G.; Brüßler, J.; et al. Ultrasound-Responsive Smart Drug Delivery System of Lipid Coated Mesoporous Silica Nanoparticles. Pharmaceutics 2021, 13, 1396. [Google Scholar] [CrossRef]
- Silvestre, A.L.; di Filippo, L.D.; Besegato, J.F.; de Annunzio, S.R.; Almeida Furquim de Camargo, B.; de Melo, P.B.; Rastelli, A.N.; Fontana, C.R.; Chorilli, M. Current applications of drug delivery nanosystems associated with antimicrobial photodynamic therapy for oral infections. Int. J. Pharm. 2020, 592, 120078. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-Elhamid, A.I.; Aly, A.A.; Bräse, S. Recent progress in the applications of silica-based nanoparticles. RSC Adv. 2022, 12, 13706–13726. [Google Scholar] [CrossRef]
- Umair Amin, M.; Ali, S.; Yasir Ali, M.; Tariq, I.; Nasrullah, U.; Reddy Pinnapreddy, S.; Wölk, C.; Bakowsky, U.; Brüßler, J. Enhanced Efficacy and Drug Delivery with Lipid Coated Mesoporous Silica Nanoparticles in Cancer Therapy. Eur. J. Pharm. Biopharm. 2021, 165, 31–40. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, Y.; Lu, J.; Lin, Y.; Feng, S.; Luo, X.; Di, D.; Wang, S.; Zhao, Q. Recent trends of mesoporous silica-based nanoplatforms for nanodynamic therapies. Coord. Chem. Rev. 2022, 15, 214687. [Google Scholar] [CrossRef]
- Kazemzadeh, P.; Sayadi, K.; Toolabi, A.; Sayadi, J.; Zeraati, M.; Chauhan, N.P.; Sargazi, G. Structure-Property Relationship for Different Mesoporous Silica Nanoparticles and its Drug Delivery Applications: A Review. Front. Chem. 2022, 10, 823785. [Google Scholar] [CrossRef] [PubMed]
- Koohi Moftakhari Esfahani, M.; Alavi, S.E.; Cabot, P.J.; Islam, N.; Izake, E.L. Application of Mesoporous Silica Nanoparticles in Cancer Therapy and Delivery of Repurposed Anthelmintics for Cancer Therapy. Pharmaceutics 2022, 14, 1579. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lu, J.; Li, J.; Gao, Y.; Mao, Y.; Zhao, Q.; Wang, S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J. Control. Release 2021, 339, 445–472. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, C.; Nakamura, J.; Nakamura, M. Development of Non-Porous Silica Nanoparticles towards Cancer Photo-Theranostics. Biomedicines 2021, 9, 73. [Google Scholar] [CrossRef]
- Fernandes, N.B.; Nayak, Y.; Garg, S.; Nayak, U.Y. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord. Chem. Rev. 2023, 478, 214977. [Google Scholar] [CrossRef]
- Fahmy, S.A.; Ramzy, A.; Mandour, A.A.; Nasr, S.M.; Abdelnaser, A.; Bakowsky, U.; Azzazy, H.M. PEGylated Chitosan Nanoparticles Encapsulating Ascorbic Acid and Oxaliplatin Exhibit Dramatic Apoptotic Effects against Breast Cancer Cells. Pharmaceutics 2022, 14, 407. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Li, H.; Liu, Z.; Yang, L.; Zhang, C.; He, J.; Ai, W.; Liu, Y. Enhanced Photodynamic Therapy by Improved Light Energy Capture Efficiency of Porphyrin Photosensitizers. Curr. Treat. Options Oncol. 2023, 24, 1274–1292. [Google Scholar] [CrossRef] [PubMed]
- Bouffard, E.; Mauriello Jimenez, C.; El Cheikh, K.; Maynadier, M.; Basile, I.; Raehm, L.; Nguyen, C.; Gary-Bobo, M.; Garcia, M.; Durand, J.; et al. Efficient Photodynamic Therapy of Prostate Cancer Cells through an Improved Targeting of the Cation-Independent Mannose 6-Phosphate Receptor. Int. J. Mol. Sci. 2019, 20, 2809. [Google Scholar] [CrossRef] [PubMed]
- Aggad, D.; Jimenez, C.M.; Dib, S.; Croissant, J.G.; Lichon, L.; Laurencin, D.; Richeter, S.; Maynadier, M.; Alsaiari, S.K.; Boufatit, M.; et al. Gemcitabine Delivery and Photodynamic Therapy in Cancer Cells via Porphyrin-Ethylene-Based Periodic Mesoporous Organosilica Nanoparticles. Mesoporous Nanopart. 2018, 4, 46–51. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; He, X.; Li, W.; Zhang, Y. Multifunctional mesoporous silica nanoplatform based on silicon nanoparticles for targeted two-photon-excited fluorescence imaging-guided chemo/photodynamic synergetic therapy in vitro. Talanta 2020, 209, 120552. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Kumar Kankala, R.; Busa, P.; Lee, C. Hydrophobicity-Tuned Periodic Mesoporous Organo-Silica Nanoparticles for Photodynamic Therapy. Int. J. Mol. Sci. 2020, 21, 2586. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhong, Y.; Wang, X.; Yang, W.; Bai, F.; Zhang, B.; Alarid, L.; Bian, K.; Fan, H. pH-Dependent Assembly of Porphyrin-Silica Nanocomposites and Their Application in Targeted Photodynamic Therapy. Nano Lett. 2017, 17, 6916–6921. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lv, H.; Zhao, J.; Cheng, M.; Sun, S. Synthesis of porphyrin-conjugated silica-coated Au nanorods for synergistic photothermal therapy and photodynamic therapy of tumor. Nanotechnology 2019, 30, 265102. [Google Scholar] [CrossRef]
- Yang, S.; You, Q.; Yang, L.; Li, P.; Lu, Q.; Wang, S.; Tan, F.; Ji, Y.; Li, N. Rodlike MSN@Au Nanohybrid-Modified Supermolecular Photosensitizer for NIRF/MSOT/CT/MR Quadmodal Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces 2019, 11, 6777–6788. [Google Scholar] [CrossRef]
- Er, O.; Tunçel, A.; Ocakoğlu, K.; Ince, M.; Kolatan, E.H.; Yılmaz, O.; Aktaş, S.; Yurt, F. Radiolabeling, in vitro Cell Uptake and in vivo Photodynamic Therapy Potential of Targeted Mesoporous Silica Nanoparticles Contains Zinc Phthalocyanine. Mol. Pharm. 2020, 17, 2648–2659. [Google Scholar] [CrossRef]
- Lin, A.; Li, S.; Xu, C.; Li, X.; Zheng, B.; Gu, J.; Ke, M.; Huang, J. A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy. Biomater. Sci. 2018, 7, 211–219. [Google Scholar] [CrossRef]
- Er, Ö.; Colak, S.G.; Ocakoğlu, K.; Ince, M.; Bresolí-Obach, R.; Mora, M.; Sagristá, M.L.; Yurt, F.; Nonell, S. Selective Photokilling of Human Pancreatic Cancer Cells Using Cetuximab-Targeted Mesoporous Silica Nanoparticles for Delivery of Zinc Phthalocyanine. Molecules 2018, 23, 2749. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zeng, W.; Wang, M.; Li, R.; Yue, X.; Dai, Z. Ultrasmall pH-responsive silicon phthalocyanine micelle for selective photodynamic therapy against tumor. J. Innov. Opt. Health Sci. 2022, 6, 2250035. [Google Scholar] [CrossRef]
- Shen, T.; Hu, X.; Liu, Y.; Zhang, Y.; Chen, K.; Xie, S.; Ke, G.; Song, G.; Zhang, X. Specific Core-Satellite Nanocarriers for Enhanced Intracellular ROS Generation and Synergistic Photodynamic Therapy. ACS Appl. Mater. Interfaces 2020, 12, 5403–5412. [Google Scholar] [CrossRef] [PubMed]
- Güleryüz, B.; Ünal, U.O.; Gülsoy, M. Near Infrared Light Activated Upconversion Nanoparticles (UCNP) based Photodynamic Therapy of Prostate Cancers: An in vitro Study. Photodiagnosis Photodyn. Ther. 2021, 36, 102616. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Chen, X.Q.; Wang, Y.; Guo, Q.; Ye, Q.; Guo, R.; Xiao, S.; Ye, Q.; Huang, Y.; Peng, Y. Benzyl ester dendrimer silicon phthalocyanine based polymeric nanoparticle for in vitro photodynamic therapy of glioma. J. Lumin. 2019, 207, 597–601. [Google Scholar] [CrossRef]
- Chen, X.Q.; Guo, Q.; Dong, S.; Chen, J.; Xie, S.; Ma, D.; Chen, L.; Yang, H.; Huang, Y.; Peng, Y. Distribution, Trafficking, and In Vitro Photodynamic Therapy Efficacy of Cholesterol Silicon(IV) Phthalocyanine and Its Nanoparticles in Breast Cancer Cells. ACS Appl. Bio Mater. 2019, 2, 5976–5984. [Google Scholar] [CrossRef] [PubMed]
- Hak, A.; Ali, M.S.; Sankaranarayanan, S.A.; Shinde, V.R.; Rengan, A.K. Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine. ACS Appl. Bio Mater. 2023, 6, 349–364. [Google Scholar] [CrossRef]
- Fahmy, S.A.; Nematallah, K.A.; Mahdy, N.K.; El-Askary, H.I.; Meselhy, M.R.; El-Said Azzazy, H.M. Enhanced Antioxidant, Antiviral, and Anticancer Activities of the Extract of Fermented Egyptian Rice Bran Complexed with Hydroxypropyl-β-cyclodextrin. ACS Omega 2022, 7, 19545–19554. [Google Scholar] [CrossRef]
- Wang, X.; Ding, X.; Yu, B.; Zhang, X.; Shen, Y.; Cong, H. Tumor microenvironment-responsive polymer with chlorin e6 to interface hollow mesoporous silica nanoparticles-loaded oxygen supply factor for boosted photodynamic therapy. Nanotechnology 2020, 31, 305709. [Google Scholar] [CrossRef]
- Rao, V.; Han, H.S.; Lee, H.; Nguyen, V.Q.; Jeon, S.; Jung, D.; Lee, J.; Yi, G.; Park, J.H. ROS-responsive mesoporous silica nanoparticles for MR imaging-guided photodynamically maneuvered chemotherapy. Nanoscale 2018, 10, 9616–9627. [Google Scholar] [CrossRef]
- Cai, X.; Luo, Y.; Song, Y.; Liu, D.; Yan, H.; Li, H.; Du, D.; Zhu, C.; Lin, Y. Integrating in situ formation of nanozymes with three-dimensional dendritic mesoporous silica nanospheres for hypoxia-overcoming photodynamic therapy. Nanoscale 2018, 10, 22937–22945. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; You, Q.; Pang, X.; Tan, X.; Wang, J.; Liu, L.; Guo, F.; Tan, F.; Li, N. A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials 2017, 122, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gao, P.; Huang, Y.; Lu, X.; Chang, Q.; Pan, W.; Li, N.; Tang, B. Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer. Chin. Chem. Lett. 2019, 30, 1293–1296. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, W.; Wang, Q.; Zhao, Y.; Zhang, Y.; Tian, Y.; Tang, Y.; Wang, S.; Liu, Y.; Ni, Q.; et al. Oxygen-Evolving Mesoporous Organosilica Coated Prussian Blue Nanoplatform for Highly Efficient Photodynamic Therapy of Tumors. Adv. Sci. 2018, 5, 1700847. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Park, H.; Jeong, S.Y.; Yi, B.G.; Park, K.; Key, J. Hyaluronic Acid-Conjugated Mesoporous Silica Nanoparticles Loaded with Dual Anticancer Agents for Chemophotodynamic Cancer Therapy. J. Nanomater. 2019, 2019, 3481397. [Google Scholar] [CrossRef]
- Liu, S.; Li, W.; Dong, S.; Gai, S.; Dong, Y.; Yang, D.; Dai, Y.; He, F.; Yang, P. Degradable Calcium Phosphate-Coated Upconversion Nanoparticles for Highly Efficient Chemo-Photodynamic Therapy. ACS Appl. Mater. Interfaces 2019, 11, 47659–47670. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Wang, Q.; Yang, G.; Xiao, X.; Li, L.; Yu, T. Albumin-MnO2 gated hollow mesoporous silica nanosystem for modulating tumor hypoxia and synergetic therapy of cervical carcinoma. Colloids Surf. B Biointerfaces 2019, 179, 250–259. [Google Scholar] [CrossRef]
- Du, W.; Liu, T.; Xue, F.; Chen, Y.; Chen, Q.; Luo, Y.; Cai, X.; Ma, M.; Chen, H. Confined nanoparticles growth within hollow mesoporous nanoreactors for highly efficient MRI-guided photodynamic therapy. Chem. Eng. J. 2020, 379, 122251. [Google Scholar] [CrossRef]
- Yang, J.; Teng, Y.; Fu, Y.; Zhang, C. Chlorins e6 loaded silica nanoparticles coated with gastric cancer cell membrane for tumor specific photodynamic therapy of gastric cancer. Int. J. Nanomed. 2019, 14, 5061–5071. [Google Scholar] [CrossRef]
- Rafique, R.; Gul, A.R.; Lee, I.G.; Baek, S.H.; Kailasa, S.K.; Iqbal, N.; Cho, E.J.; Lee, M.; Park, T.J. Photo-induced reactions for disassembling of coloaded photosensitizer and drug molecules from upconversion-mesoporous silica nanoparticles: An effective synergistic cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110545. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Jing, F.; Lin, B.; Cui, S.; Yu, R.; Shen, X.; Wang, T. pH-Responsive Magnetic Mesoporous Silica-Based Nanoplatform for Synergistic Photodynamic Therapy/Chemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 15001–15011. [Google Scholar] [CrossRef]
- Hu, J.; Shi, J.; Gao, Y.; Yang, W.; Liu, P.; Liu, Q.; He, F.; Wang, C.; Li, T.; Xie, R.; et al. 808 nm Near-Infrared Light-Excited UCNPs@mSiO2-Ce6-GPC3 Nanocomposites For Photodynamic Therapy In Liver Cancer. Int. J. Nanomed. 2019, 14, 10009–10021. [Google Scholar] [CrossRef] [PubMed]
- Gowsalya, K.; Yasothamani, V.; Vivek, R. Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: A review. Nanoscale Adv. 2021, 3, 3332–3352. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Shen, K.B.; Si, Y.; Shan, C.; Guo, H.; Chen, M.; Wu, L. Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy. J. Colloid Interface Sci. 2020, 583, 166–177. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, C.; Liu, Z.; Zhao, Q.; Xu, Q.; Li, C.; Chen, Y.; Zhang, Y.; Lu, B. Hyaluronic Acid-Functionalized Hollow Mesoporous Silica Nanoparticles as pH-Sensitive Nanocarriers for Cancer Chemo-Photodynamic Therapy. Langmuir ACS J. Surf. Colloids 2021, 37, 2619–2628. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Z.; Guo, Q.; Zhang, L.; Fan, F.; Qin, Y.; Wang, H.; Zhou, S.; Ou-Yang, W.; Sun, H.; et al. A Dual-Model Imaging Theragnostic System Based on Mesoporous Silica Nanoparticles for Enhanced Cancer Phototherapy. Adv. Healthc. Mater. 2019, 8, e1900840. [Google Scholar] [CrossRef]
- Shi, C.; You, C.; Pan, L. Facile formulation of near-infrared light-triggered hollow mesoporous silica nanoparticles based on mitochondria targeting for on-demand chemo/photothermal/photodynamic therapy. Nanotechnology 2019, 30, 325102. [Google Scholar] [CrossRef]
- Dong, P.; Hu, J.; Yu, S.; Zhou, Y.; Shi, T.; Zhao, Y.; Wang, X.; Liu, X. A Mitochondrial Oxidative Stress Amplifier to Overcome Hypoxia Resistance for Enhanced Photodynamic Therapy. Small Methods 2021, 5, e2100581. [Google Scholar] [CrossRef]
- Zhang, B.; Wei, L.; Chu, Z. Development of indocyanine green loaded Au@Silica core shell nanoparticles for plasmonic enhanced light triggered therapy. J. Photochem. Photobiol. A Chem. 2019, 375, 244–251. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, H.; Li, L.; Guo, Z.; Song, J.; Yang, X.; Wan, G.; Li, R.; Wang, Y. Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment. Bioact. Mater. 2021, 6, 3865–3878. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, S.; Zhang, X.; Hou, Y.; Meng, X.; Li, G.; Xu, F.; Teng, L.; Qi, Y.; Sun, F.; et al. Folate receptor-targeting semiconducting polymer dots hybrid mesoporous silica nanoparticles against rheumatoid arthritis through synergistic photothermal therapy, photodynamic therapy, and chemotherapy. Int. J. Pharm. 2021, 607, 120947. [Google Scholar] [CrossRef] [PubMed]
- Clemente, N.; Miletto, I.; Gianotti, E.; Invernizzi, M.; Marchese, L.; Dianzani, U.; Renó, F. Verteporfin-loaded mesoporous silica nanoparticles inhibit mouse melanoma proliferation in vitro and in vivo. J. Photochem. Photobiol. B Biol. 2019, 197, 111533. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, S.A.; Ramzy, A.; Sawy, A.M.; Nabil, M.; Gad, M.Z.; El-Shazly, M.; Aboul-Soud, M.A.; Azzazy, H.M. Ozonated Olive Oil: Enhanced Cutaneous Delivery via Niosomal Nanovesicles for Melanoma Treatment. Antioxidants 2022, 11, 1318. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chang, C.; Liu, Z.; Zhou, Y.; Xu, Q.; Li, C.; Huang, Z.; Xu, H.; Xu, P.; Lu, B. Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids Surf. B Biointerfaces 2020, 194, 111166. [Google Scholar] [CrossRef] [PubMed]
- Kuang, G.; Zhang, Q.; He, S.; Liu, Y. Curcumin-loaded PEGylated mesoporous silica nanoparticles for effective photodynamic therapy. RSC Adv. 2020, 10, 24624–24630. [Google Scholar] [CrossRef]
- Karges, J.; Díaz-García, D.; Prashar, S.; Gómez-Ruiz, S.; Gasser, G. Ru(II) Polypyridine Complex-Functionalized Mesoporous Silica Nanoparticles as Photosensitizers for Cancer Targeted Photodynamic Therapy. ACS Appl. Bio Mater. 2021, 4, 4394–4405. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, F.; Xu, N.; Yao, Q.; Wang, R.; Xie, X.; Zhang, F.; He, Y.; Shao, D.; Dong, W.; et al. Red-light-triggered self-destructive mesoporous silica nanoparticles for cascade-amplifying chemo-photodynamic therapy favoring antitumor immune responses. Biomaterials 2022, 281, 121368. [Google Scholar] [CrossRef]
- Yin, Z.; Ji, Q.; Wu, D.; Li, Z.; Fan, M.; Zhang, H.; Zhao, X.; Wu, A.; Cheng, L.; Zeng, L. H2O2-Responsive Gold Nanoclusters @ Mesoporous Silica @ Manganese Dioxide Nanozyme for “Off/On” Modulation and Enhancement of Magnetic Resonance Imaging and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2021, 13, 14928–14937. [Google Scholar] [CrossRef]
- Guo, D.; Bao, Y.; Zhang, Y.; Yang, H.; Chen, L. Reduction-responsive Au decorated mesoporous silica-based nanoplatform for photodynamic-chemotherapy. Microporous Mesoporous Mater. 2020, 292, 109729. [Google Scholar] [CrossRef]
- Tessaro, A.L.; Fraix, A.; Pedrozo da Silva, A.C.; Gazzano, E.; Riganti, C.; Sortino, S. “Three-Bullets” Loaded Mesoporous Silica Nanoparticles for Combined Photo/Chemotherapy †. Nanomaterials 2019, 9, 823. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; He, J.; Liu, R.; Liu, Z.; Cheng, J. Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydr. Polym. 2020, 231, 115706. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Song, N.; Chen, L.; Xie, Z. Reduction responsive BODIPY decorated mesoporous silica nanoscale platforms for photodynamic therapy. Microporous Mesoporous Mater. 2021, 311, 110689. [Google Scholar] [CrossRef]
- Prieto-Montero, R.; Prieto-Castañeda, A.; Katsumiti, A.; Cajaraville, M.P.; Agarrabeitia, A.R.; Ortiz, M.J.; Martínez-Martínez, V. Functionalization of Photosensitized Silica Nanoparticles for Advanced Photodynamic Therapy of Cancer. Int. J. Mol. Sci. 2021, 22, 6618. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Shao, S.; Yu, C.; Teng, B.; Wang, M.; Cheng, Z.; Wong, K.; Ma, P.; Lin, J. Large-Pore Mesoporous-Silica-Coated Upconversion Nanoparticles as Multifunctional Immunoadjuvants with Ultrahigh Photosensitizer and Antigen Loading Efficiency for Improved Cancer Photodynamic Immunotherapy. Adv. Mater. 2018, 30, e1802479. [Google Scholar] [CrossRef] [PubMed]
- Elistratova, J.G.; Mukhametshina, A.R.; Kholin, K.V.; Nizameev, I.R.; Mikhailov, M.A.; Sokolov, M.N.; Khairullin, R.; Miftakhova, R.; Shammas, G.; Kadirov, M.K.; et al. Interfacial uploading of luminescent hexamolybdenum cluster units onto amino-decorated silica nanoparticles as new design of nanomaterial for cellular imaging and photodynamic therapy. J. Colloid Interface Sci. 2019, 538, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Makhadmeh, G.N.; Abuelsamen, A.; Al-Akhras, M.H.; Aziz, A.B. Silica Nanoparticles Encapsulated Cichorium Pumilum as Promising Photosensitizer for Osteosarcoma Photodynamic Therapy. Photodiagnosis Photodyn. Ther. 2022, 38, 102801. [Google Scholar] [CrossRef]
- Dou, Y.; Shang, Y.; He, X.; Li, W.; Li, Y.; Zhang, Y. Preparation of a Ruthenium-Complex-Functionalized Two-Photon-Excited Red Fluorescence Silicon Nanoparticle Composite for Targeted Fluorescence Imaging and Photodynamic Therapy in Vitro. ACS Appl. Mater. Interfaces 2019, 11, 13954–13963. [Google Scholar] [CrossRef]
- Bouramtane, S.; Bretin, L.; Pinon, A.; Léger, D.Y.; Liagre, B.; Richard, L.; Brégier, F.; Sol, V.; Chaleix, V. Porphyrin-xylan-coated silica nanoparticles for anticancer photodynamic therapy. Carbohydr. Polym. 2019, 213, 168–175. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, H.; Liu, Y.; Wen, Y.; Wei, C.; Yu, Q.; Liu, J. Transferrin/aptamer conjugated mesoporous ruthenium nanosystem for redox-controlled and targeted chemo-photodynamic therapy of glioma. Acta Biomater. 2018, 82, 143–157. [Google Scholar] [CrossRef]
- Shabbir; Maryam; Sajid, A.; Hamid, I.; Sharif, A.; Akhtar, M.F.; Raza, M.; Ahmed, S.; Peerzada, S.; Amin, M.U. Influence of different formulation variables on the performance of transdermal drug delivery system containing tizanidine hydrochloride: In Vitro and Ex Vivo evaluations. Braz. J. Pharm. Sci. 2019, 54, e00130. [Google Scholar] [CrossRef]
- Shabbir, M.; Ali, S.; Shahid, N.; Rehman, K.; Amin, U.; Raza, M. Formulation considerations and factors affecting transdermal drug delivery system—A review. Int. J. Pharm. Integr. Life Sci. 2014, 2, 20–35. [Google Scholar]
Therapeutic Option | Classification | Advantages | Disadvantages | Ref. |
---|---|---|---|---|
Photodynamic therapy | Localized |
|
| [5,12] |
Chemotherapy | Systemic |
|
| [20,21] |
Radiotherapy | Localized |
|
| [22,23] |
Surgery | Localized |
|
| [24,25] |
Chemical Name | Trade Name | Scaffold | Chemical Structure | Type of Cancer Treated with PSs | Maximum Absorption Wavelength (nm) | Extinction Coefficient (M−1 cm−1) | Ref. |
---|---|---|---|---|---|---|---|
Porfimer sodium | Photofrin | Porphyrin | Esophageal, endobronchial, and lung cancer | 630 | 3000 | [4,18,40] | |
5-Amino levulinic acid (ALA) | Ameluz\Levulan | Porphyrin precursor | Basal cell carcinoma, squamous cell carcinoma, Actinic keratosis, and head and neck cancer | 635 | <1000 | [4,18,40] | |
Methyl 5-Amino Levulinic acid (MLA) | Metvix\Metvixia | Porphyrin precursor | Basal cell carcinoma, Actinic keratosis, Bowen disease, and viral warts | 635 | <1000 | [4,6] | |
Temoporfin (meta-tetrahydroxy dioxy phenyl chlorine (Mthpc) | Foscan | Chlorin | Head and neck, squamous cell carcinoma, and prostate and pancreatic tumors | 653 | 30,000 | [6] | |
Benzoporphyrin derivative mono acid (BPO-MA) | Visudyne\Vetprofin | Chlorin | Age-related degeneration and nonmelanoma skin cancer | 693 | 35,000 | [6,40] |
Nanocarrier System | Preparation Method of NPs | Size of NPs (nm) | The PS | PS Position | Surface Decoration | Type of Light Source | Power of Light Dose | Irradiation Dose | In Vivo/ In Vitro | Type of Cancer Cells | Outcome | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mesoporous silica nanoparticles (MSNs) | - | 130 | porphyrin | Encapsulated | Dimannoside-carboxylate grafted on the surface of Np | Laser | 0.003 | 650 | In vitro | Prostate adenocarcinoma (LNCaP) | The development of new ligands with a better affinity for the receptor on cancer cells increases cell death and reduces the incubation time. | [63] |
Periodic mesoporous organosilica nanoparticles (PMOs) | Sol–gel method | 447 | Tetrasiylated porphyrins | On surface | Loaded with gemcitabine hydrochloride | Laser | 2 | 650 | In vitro | Breast cancer cells (MCF-7) | Two-photon excited PDT combined with gemcitabine delivery led to synergy and a very effective cancer cell killing. | [64] |
Mesoporous silica nanoparticles (MSNs) | Oil−water biphase stratification | 88 | TMPyP | Encapsulated | Capped with gold nanoparticles and PEG | Laser | 0.3 | 655 | In vivo | Breast cancer cells (MCF-7) | In vitro, cytotoxicity assay has shown that the viability of MCF-7 cells treated with nanophotosensitizer under irradiation reaches the lowest value of 30%. | [65] |
Periodic mesoporous organosilica nanoparticles (PMOs) | - | 106 | Protoporphyrin IX (PpIX) | Encapsulated | - | Green laser light | 18 | 532 | In vitro | Colon carcinoma (HT-29) | Showed a significant PDT effect on colon carcinoma and Gram-negative bacteria. | [66] |
Silica nanoparticles | Sol–gel method | 80 | porphyrin | Encapsulated | - | Laser | 0.1 | 635 | - | - | The photoactive porphyrin silica nanocomposite particles can generate lethal singlet oxygen. | [67] |
Gold nanorods (AuNR) | Stöber method | 180 | 4-carboxyphenyl porphyrin | On surface | Coated with SiO2 | Far-red radiation | 0.5 | 660 | In vivo | Lung carcinoma epithelial cells (A549) | The prepared nanosystem possesses good biocompatibility and can efficiently generate singlet oxygen. | [68] |
Rod-like mesoporous silica NPs (MSNR) | Co-condensation process | 210 | TPPS4 | On surface | Coated with gold nanoshell modified with ultrasmall gadolinium (Gd) | Laser | 1 | 660 | In vitro and in vivo | Murine breast cancer cells (4T1) | The nanocomposite exhibited high photothermal conversion efficiency and superior ROS productivity. | [69] |
Mesoporous silica nanoparticles (MSNP) | Aqueous phase regrowth method | 79.5 ± 5.2 | Zn-phthalocyanine | Encapsulated | The surface modified with PEG and loaded with cetuximab | Red-light laser | 0.05 | 685 | In vitro and in vivo | Pancreatic cancer cell lines (PANC-1, ASPC1, MIA-PACA-2) | In vitro cell uptake experiment showed high uptake into cancer cells. For in vivo studies, the system revealed that the ratio of necrosis in tumor tissue was higher than in untreated cells. | [70] |
Mesoporous silica nanoparticles (MSNP) | - | 164 | Zinc (II) phthalocyanine | Encapsulated | - | Red light | 0.001 | 610 | In vivo | Hela cells | Serves as a promising nanoplatform for cancer diagnosis and treated PDT. | [71] |
Mesoporous silica nanoparticles (MSNP) | - | 303 ± 26 | Zinc (II) phthalocyanine | Encapsulated | The surface was decorated with PEG and loaded with cetuximab | Red light | 0.009 | 630 | In vitro | Pancreatic cancer cells | Imidazole-capped cetuximab targeted MSNP are excellent vehicles for selective delivery of ZnPcOBP to pancreatic cancer cells expressing the EGFR factor. | [72] |
Silicon nanomicelle | - | <10 | phthalocyanine | On surface | - | Laser | 0.2 | 671 | In vitro and in vivo | 4T1 murine breast cancer cells | Tumor cells treated with phthalocyanine silica nanomicelle in the presence of light lead to complete elimination with recurrence, which is greater than ordinary PS without PH response. | [73] |
Mesoporous silica-coated upconversion nanoplatform | Aqueous phase regrowth method | - | Silicon phthalocyanine dihydroxide (SPCD) | Encapsulated | Loaded with Au nanoparticles on the surface, and a small molecule DC50 was loaded into the silica shell | NIR | 2 | 808 | In vitro and in vivo | Prostate cancer cells (H1229) | The nanoplatform exhibited specific cytotoxicity that was based on the expression levels of Atox1 and CCS protein and promoted the selective accumulation of ROS in particular tumor cells. | [74] |
Upconversion nanoparticles (UCNP) | - | 125.8 ± 44.04 | Zinc phthalocyanine (ZnPc) and merocyanine 540 (MC540) | On surface | Coated with mesoporous silica NPs and surface decorated with gold NPs | NIR | 1 | 980 | In vitro | Prostate cancer cells (PC 3) | Successfully produced an efficient nanoplatform MC540/ZnPc-UCNP@Au for superficial and deep-seated PC 3 cells. | [75] |
Amphiphilic copolymer | Nucleophilic substitution process | 100 | Benzyl ester dendrimer silicon (D-Si) and phthalocyanine (Pc) | Encapsulated | - | Laser irradiation | 1 | 670 | In vitro | Glioma cells (U251) | The cell viability of glioma cells was decreased to only about 26% after treatment. | [76] |
DSPE-PEG2000 | Co-precipitation method | 95 | Cholesterol silicon (IV) phthalocyanine (Chol-Pc) | Encapsulated | - | Two-photon laser images | - | 730 | In vitro | Breast cancer cells (MCF 7) | The nanophotosensitizer effectively mediated photodynamic therapy to kill the breast cancer cell. | [77] |
Hollow mesoporous silica nanoparticles (HMSNs) | Stöber method | 120 | Chlorin e6 (Ce6) | On surface | Loaded with metformin and catalase | Laser | 0.5 | 660 | In vitro and in vivo | Breast cancer cells (Bcap37) | The synthesized nonintelligent response system effectively inhibited tumor growth and provided a possibility for tumor imaging diagnosis. | [80] |
Mesoporous silica nanoparticles (MSNs) | Stöber method | 175 | Chlorin e6 (Ce6) | On surface | Decorated with gadolium (Gd) complex and PEG, and also with DOX | Laser | 0.5 | 660 | In vivo | Murine squamous cell carcinoma (SCC 7) | The nanophotosensitizer is considered a promising drug carrier for MR imaging-guided photodynamic chemotherapy of cancer. | [81] |
Mesoporous silica nanoparticles (MSNs) | - | 100 | Chlorin e6 (Ce6) | Encapsulated | Platinum nanoparticles immobilized onto channel and TPP decorated on the surface of the 3D-dendritic MSNs | Laser | 0.05 | 660 | In vitro | Lung cancer cells (A549) | Enhanced the PDT effect of killing A549 cells and promoted a new hydrogen peroxide activatable strategy to overcome hypoxia of tumor cells. | [82] |
Mesoporous silica nanorods (MSNRs) | - | 200 | Chlorin e6 (Ce6) | Encapsulated | Capped with PEG and gold nanoparticles | Laser | 1 | 660 | In vitro and in vivo | Murine breast cancer cells (4T1) | This nanocarrier can serve as a drug delivery platform with high drug loading capacity and enhance the cellular uptake efficiency. | [83] |
Mesoporous silica nanoparticles | - | - | Chlorin e6 (Ce6) | Encapsulated and on surface | The triphenylphosphonium was anchored on the NPs | Laser | 0.1 | 655 | In vitro and in vivo | Murine breast cancer cells (4T1) | The nanophotosensitizer can generate a large amount of ROS in mitochondria, which cause dysfunction and cell apoptosis. | [85] |
Periodic mesoporous organosilica nanoparticles (PMO) | - | 105 ± 12 | Chlorin e6 (Ce6) | Encapsulated | Loaded with Prussian blue nanoparticles | Laser | 1 | 660 | In vivo | Glioma cell lines (U87MG) | The histopathology analysis demonstrates that this oxygen-evolving nanoplatform can effectively elevate singlet oxygen to inhibit tumor growth without obvious damage to major organs. | [85] |
Mesoporous silica nanoparticles (MSNs) | - | - | Chlorin e6 (Ce6) | Encapsulated | Loaded with DOX and decorated with HA | Laser | 0.05 | 670 | In vitro | Murine squamous cell carcinoma (SCC 7) | Demonstrated that HA-MSNs are favorable nanocarriers with a remarkable CD44 (receptor on cancer cells)-targeting capability for effective dual drug delivery. | [86] |
Mesoporous silica nanoparticles (MSNs) | - | 313 ± 21 | Chlorin e6 (Ce6) | Encapsulated | - | Diode laser | 0.1 | 665 | In vitro and in vivo | Breast and glioma cancer cells | Conjugation of Ce6 to MSNs significantly enhanced the cellular uptake and PDT response of Ce6 for both in vitro and in vivo levels. | [87] |
Hollow mesoporous silica nanoparticles | - | 150 | Chlorin e6 (Ce6) | Encapsulated | Serum albumin-integrated manganese dioxide nanoparticles (BSA-MnO2) were anchored on the surface and loaded with DOX | Laser | 1 | 660 | In vitro and in vivo | Cervical carcinoma | The in vitro and in vivo experiments have confirmed that the nanoplatforms effectively suppress human cervical carcinoma via synergistic therapy. | [88] |
Silica nanoparticles (SiO2) | - | - | Chlorin e6 (Ce6) and manganese oxide (MnOx) | Encapsulated | Coating with mesoporous SiO2 and capped with PEG | Laser | 0.05 | 660 | In vitro and in vivo | Murine breast cancer cells (4T1) | Both in vivo and in vitro results confirm that the nanosystem can be applied to MRI-guided sufficient PDT with reduced side effects. | [89] |
Silica nanoparticles (SLN) | Water in oil microemulsion | 115.6 ± 1.6 | Chlorin e6 (Ce6) | Encapsulated | Decorated with cell membrane derived from SGC7901 cells (CM) | NIR light | 1 | 680 | In vitro and in vivo | Colon cancer cells (HT 29) | Demonstrated that CM/SLM/Ce6 showed a better anticancer outcome compared to SLN/Ce6. | [90] |
Upconversion nanoparticles (UCNPs) | - | 85.63 | Chlorin e6 (Ce6) | On surface | Coated with mesoporous silica and loaded with DOX | NIR | - | 980 | In vitro | Murine squamous cell carcinoma (SCC 7) | UCNPs@msSiO2-DOX/Ce6 decreased the SCC7 cell viability and provided a dual function of drug delivery and generation of ROS. | [91] |
Fe3O4 nanoparticles | Sol–gel method | 162 ± 11.3 | Chlorin e6 (Ce6) | On surface | A mesoporous silica shell surrounded the nanoparticles core. DOX was loaded into mSiO2 and a polydopamine coating layer. Finally, HAS molecules were conjugated to the polydopamine surface | Red light | 0.005 | 660 | In vivo | Glioma tumor cells | Fe3O4@mSiO2/DOX@HSA Ce6 nanoplatform was guided to the tumor region by magnetic targeting, and this nanoplatform suppressed glioma tumor growth efficiently. | [92] |
Upconversion nanoparticles (UCNPs) | - | - | Chlorin e6 (Ce6) | Encapsulated | Coated with mSiO2 and loaded with antibody glypican 3 on the surface | NIR | 2 | 808 | In vivo and in vitro | Liver cancer | The in vivo and in vitro studies demonstrate that this nanosystem is safe and has a potential therapeutic option for liver cancer. | |
Mesoporous organosilica nanoparticles | Sol–gel method | 120 | Indocyanine green (ICG) | Encapsulated | Encapsulated with macromolecular catalyst | Laser | 0.8 | 808 | In vitro and in vivo | Murine breast cancer cells (4T1) | The obtained MONs could serve as an intelligent nanothermometer agent for photoacoustic/ ultrasound dual-modality imaging-guided tumor PDT. | [95] |
Hollow mesoporous silica nanoparticles (HMSNs) | The Stöber method | 269 | Indocyanine green (ICG) | Encapsulated | Dopamine-modified hyaluronic acid adhered to the surface of the inorganic nanoparticle and loaded with DOX | NIR | 2 | 808 | In vitro | Murine breast cancer cells (4T1) | In vitro cell experiments perfectly showed that ID@HMSN-HA could inhibit murine mammary carcinoma cell via chemotherapeutic combined with photodynamic therapy. | [96] |
Mesoporous silica nanoparticles | - | 193.4 | Indocyanine green (ICG) | Encapsulated | Cored with PFE and decorated with PEG and FA on the surface of nanoparticles | NIR | 1.5 | 808 | In vitro and in vivo | Breast cancer cells (MCF 7) | The formed nanophotosensitizer exhibited superior antitumor efficiency. | [97] |
Hollow mesoporous silica nanoparticles | Facile method | 250.5 ± 8.1 | Indocyanine green (ICG) | Encapsulated | Loaded with l-methanal (LM) and DOX and the surface decorated with TPP | NIR | 0.8 | 808 | In vitro | Breast cancer cells (MCF 7, A549) | The remarkable synergistic combination of DOX-based chemotherapy and ICG-mediated phototherapy in this versatile nanoplatform, which offers a compelling strategy for cancer treatment. | [98] |
Mesoporous silica nanoparticles | Sol–gel method | 201.1 ± 17.3 | Indocyanine green (ICG) | On surface | Decorated with TPP and with α- tocopherol succinate on the surface | Laser | 0.5 | 808 | In vivo | Breast cancer cells (MCF 7) | Reduce innate oxygen consumption by blocking mitochondrial ROS burst in PDT. | [99] |
Gold nanorods (AuNR) | - | - | Indocyanine green (ICG) | Encapsulated | Mesoporous silica | NIR | 0.1 | 808 | - | Liver cancer cells (Hep-G2) | The optimal configuration activated almost twice the temperature increase, five times the reactive oxygen species generation, and finally three times the cancer cell killing ability compared to free ICG. | [100] |
Dendritic large pore mesoporous silicon Nps (DLMSNs) | Dual template sol–gel method | 153.9 ± 12.6 | IR 780 | Encapsulated | Co-loaded with DOX and camouflaged with LPHM | NIR | 2 | 808 | In vivo | Murine breast cancer cells (4T1) and (TNBC) | LPHM@DDI nanoparticles exhibited synergistic cytotoxic and apoptosis-induced activity in cancer cells and suppressed tumor growth. | [101] |
Semiconductor polymer dots hybrid mesoporous silica nanoparticles | Improved emulsion solvent evaporation method | 152.9 ± 9.41 | Triapazamine (Tpz) | Encapsulated | Treated with polyethylene glycol and folic acid | NIR | 1 | 808 | In vitro and in vivo | - | Local hypoxia caused by molecular oxygen consumption simultaneously activates the cytotoxicity of Tpz, which effectively kills activated macrophage and inhibits the progression of arthritis. | [102] |
Mesoporous silica nanoparticles | - | - | Verteporfin (Ver) | Encapsulated | - | Red light | - | 693 | In vitro and in vivo | Skin melanoma cancer cells | The red-light irradiated Ver-MSNs can significantly reduce tumor angiogenesis of skin melanoma. | [103] |
Hollow mesoporous silica NPs (HMSN) | The Stöber method | 120 ± 10 | Rose Bengal (RB) | Encapsulated | Hyaluronic acid (HA) was modified on the surface and loaded | Uv light | 0.01 | 532 | In vitro | Murine mammary cancer cells (4T1) and (TNBC) | Could precisely target murine mammary cells and effectively inhibit tumor cell viability with chem-photodynamic synergistic therapy. | [105] |
Mesoporous silica nanoparticles (MSNs) | - | 197 | curcumin | Encapsulated | Capped with PEG | - | 0.02 | 430 | In vitro | Hela cells | MSN-PEG@Cur could be effectively endocytosed into cells and release Cur, which can promptly generate ROS upon irradiation. | [106] |
Mesoporous silica nanoparticles (MSNs) | - | 199 ± 24 | Ru (II) polypyridine complex | Encapsulated | Functionalized with folic acid | - | - | 480 or 540 | In vivo | Lung and ovarian cancer cells | The conjugates were found to be nontoxic in noncancerous human normal lung fibroblast cells, while showing a phototoxic effect upon irradiation in ovarian cancer cells. | [107] |
Mesoporous silica nanoparticles (MSNs) | Sol–gel method | 72.5 ± 4.8 | Methylene blue (MB0 | Encapsulated | Capped with PEG and loaded with DOX | Laser | 0.015 | 660 | In vivo | Murine breast cancer cells (4T1) | Chemo-photodynamic therapy elicited long-term systemic antitumor immunity for suppressing distant and metastatic tumor growth as well as inhibiting tumor recurrence. | [108] |
Mesoporous silica nanoparticles (MSiO2) | - | 140 | Manganese dioxide nanosheets | On surface | A great amount of gold nanoclusters were loaded onto the surface | Laser | 0.1 | 635 | In vivo | Breast cancer cells (MDA-MB-435) | The hydrogen peroxide response of nanophotosensitizer showed excellent off/on modulation and enhancement of magnetic resonance imaging and PDT and was a promising intelligent nanoprobe for safe and high-efficiency theranostic outcomes. | [109] |
Mesoporous silica nanoparticles | - | 155 | Gold nanoparticles | On surface | Loaded with DOX and decorated with PEG | - | 0.04 | 550 | In vitro | Hela cells | In vitro data indicate that the loaded DOX could be controlled released from the formed nanophotosensitizer and could generate ROS-induced apoptosis of tumor cells. | [110] |
Mesoporous silica nanoparticles (MSNs) | - | - | Singlet oxygen | On surface | Integrated with a nitric oxide photodoner and encapsulated with DOX | Green light | - | 532 | In vitro | Melanoma cancer cell line (A375) | Preliminary biological results performed using A 357cancer cells show good tolerability of the functionalized MSNs in the dark and potential activity of DOX upon radiation. | [111] |
Hollow mesoporous silica nanoparticles | Optimized selective etching method | 115 | Pheophorbide (PA) | Encapsulated | Loaded with DOX. Capped and crosslinked with chitosan and glycidoxypropyl- trimethoxy silane and targeted with folic acid | Laser | 0.5 | 680 | In vitro and in vivo | Oral squamous cell carcinoma (KB cells) | The nanocarrier showed excellent drug-controlled release properties based on the pH-dependent swelling effect of the coating layer. | [112] |
Mesoporous silica nanoparticles (MSNP) | - | 100 | BODIPY | On surface | Decorated the surface using PEG | Green light | 0.016 | 500 | In vitro | Hela cells | The formed nanophotosensitizer has good toxicity against tumor cells, and adding glutathione could further improve the photodynamic effect. | [113] |
Mesoporous silica nanoparticles (MSNs) | - | 50 ± 10 | BODIPY dyes | On surface | Functionalized with PEG and folic acid (FA) | Red light | - | 518 | In vitro | Hela cells | Photosensitizer silica NPs functionalized with PEG and FA proved to be suitable and biocompatible nanosystem, able to overcome the drawbacks of free PS. | [114] |
Upconversion nanoparticles | Sol–gel reaction | <100 | Mercy anine 540 (MC 540) | Encapsulated | Decorated with tumor antigens (TF) and a tumor cell fragment and loaded with chicken oval albumin protein (OVA), and the surface coated with mesoporous silica nanoparticles | NIR | 0.5 | 980 | In vivo | Colon cancer | The formed nanoparticles more effectively inhibited tumor growth and showed the best synergistic immunopotentiation. | [115] |
Silica nanoparticles (SNPs) | Water in oil microemulsion procedure | 60 | Hexamolybdenum | On surface | Decorated with 3500 amino groups | Light-emitting diode | 0.03 | 420 | In vitro | Breast cancer cells (MCF 7) | The prepared C-SNs hybrid reveals a significant photodynamic therapy effect on the breast cancer cell line. | [116] |
Silica nanoparticles | Reverse micellar method | - | Cichorium pumilum (CP) | Encapsulated | - | - | 0.27 | 350 | In vitro | Osteosarcoma cells line (U-2) | The engineered silica nanoparticles loaded with photosensitizer enhance the PDT by increasing CP bioavailability. | [117] |
Silicon nanoparticles SiNPs | - | - | ruthenium (Ru) | On surface | Decorated with folic acid | Laser | - | 655 | In vitro and in vivo | Hela cells | Serve as a targeted two-photon fluorescence imaging probe and kill cancer cells via PDT in vitro. | [118] |
Silica nanoparticles | - | 78.43 ± 19.92 | Xylan carrying TPPOH | On surface | Capped with (3-aminopropyl) triethoxysilane (APTES) | Red light | - | 630–660 | In vitro | Colon cancer (HCT116 and HT-29 cells | In vitro analysis showed that the nanophotosensitizer is more effective than free TPPOH. | [119] |
Mesoporous silica ruthenium nanoparticles (MRN) | Double template method | 138 ± 8.1 | [Ru(bpy)2 (tip)]2 (RBT) | Encapsulated | Transferrin (TF) and aptamer AS1411 are grafted on the surface of MRN with high loading capacity | Laser | 0.25 | 808 | In vitro and in vivo | Glioma cancer cells | Effective treatment of brain tumor. | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nady, D.S.; Hassan, A.; Amin, M.U.; Bakowsky, U.; Fahmy, S.A. Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment. Pharmaceutics 2024, 16, 14. https://doi.org/10.3390/pharmaceutics16010014
Nady DS, Hassan A, Amin MU, Bakowsky U, Fahmy SA. Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment. Pharmaceutics. 2024; 16(1):14. https://doi.org/10.3390/pharmaceutics16010014
Chicago/Turabian StyleNady, Doaa Sayed, Afnan Hassan, Muhammad Umair Amin, Udo Bakowsky, and Sherif Ashraf Fahmy. 2024. "Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment" Pharmaceutics 16, no. 1: 14. https://doi.org/10.3390/pharmaceutics16010014
APA StyleNady, D. S., Hassan, A., Amin, M. U., Bakowsky, U., & Fahmy, S. A. (2024). Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment. Pharmaceutics, 16(1), 14. https://doi.org/10.3390/pharmaceutics16010014