Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (166)

Search Parameters:
Keywords = PSN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5627 KiB  
Article
Reliability Modeling of Wind Turbine Gearbox System Considering Failure Correlation Under Shock–Degradation
by Xiaojun Liu, Ziwen Wu, Yiping Yuan, Wenlei Sun and Jianxiong Gao
Sensors 2025, 25(14), 4425; https://doi.org/10.3390/s25144425 - 16 Jul 2025
Viewed by 258
Abstract
To address traditional methods’ limitations in neglecting the interaction between random shock loads and progressive degradation, as well as failure correlations, this study proposes a dynamic reliability framework integrating Gamma processes, homogeneous Poisson processes (HPP), and mixed Copula functions. The framework develops a [...] Read more.
To address traditional methods’ limitations in neglecting the interaction between random shock loads and progressive degradation, as well as failure correlations, this study proposes a dynamic reliability framework integrating Gamma processes, homogeneous Poisson processes (HPP), and mixed Copula functions. The framework develops a wind turbine gearbox reliability model under shock–degradation coupling while quantifying failure correlations. Gamma processes characterize continuous degradation, with parameters estimated from P-S-N curves. Based on stress–strength interference theory, random shocks within damage thresholds are integrated to form a coupled reliability model. A Gumbel–Clayton–Frank mixed Copula with a multi-layer nested algorithm quantifies failure correlations, with correlation parameters estimated via the RSS principle and genetic algorithms. Validation using a 2 MW gearbox’s planetary gear-stage system covers four scenarios: natural degradation, shock–degradation coupling, and both scenarios with failure correlations. The results show that compared to independent assumptions, the model accelerates reliability decline, increasing failure rates by >37%. Relative to natural degradation-only models, failure rates rise by >60%, validating the model’s effectiveness and alignment with real-world operational conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

23 pages, 2939 KiB  
Article
Genetic Characterization and Symbiotic Performance of Soybean Rhizobia Under Cold and Water-Deficient Conditions in Poland
by Riku Watanabe, Maria Daniela Artigas Ramirez, Shin-ichiro Agake, Sonoko Dorothea Bellingrath-Kimura, Sylwia Lewandowska, Yuki Onishi, Yohei Nishikawa, Haruko Takeyama, Michiko Yasuda and Naoko Ohkama-Ohtsu
Plants 2025, 14(12), 1786; https://doi.org/10.3390/plants14121786 - 11 Jun 2025
Viewed by 584
Abstract
Soybeans have been cultivated in Poland for more than 140 years. However, Poland’s cold and water-deficient climatic conditions hinder soybean cultivation. Although the availability of suitable soybean varieties in Poland contributes to meeting the demand for soybean production, it is important to identify [...] Read more.
Soybeans have been cultivated in Poland for more than 140 years. However, Poland’s cold and water-deficient climatic conditions hinder soybean cultivation. Although the availability of suitable soybean varieties in Poland contributes to meeting the demand for soybean production, it is important to identify rhizobial inoculants in Polish soils suitable for soybean cultivation. In this study, we cultivated soybean varieties (Abelina, Merlin, and Sultana) grown in soils taken from four regions in Poland and isolated 330 strains from soybean root nodules. 16S rRNA gene sequencing identified 49 strains of highly stress-tolerant nodule-associated bacteria, including Bradyrhizobium, Rhizobium, Ensifer, Tardiphaga, and Ralstonia spp. Several isolates exhibited positive effects on soybean growth under cold and water-deficient conditions. In particular, the isolate Bradyrhizobium japonicum PSN49, which is phylogenetically similar to B. japonicum USDA 123, increased plant biomass and nodule formation in the soybean cultivar Abelina under abiotic stress conditions due to its high nitrogen-fixing activity. Whole-genome comparisons between PSN49 and other Bradyrhizobium strains revealed that trehalose biosynthesis genes and cold shock proteins contributed to cold stress tolerance. These findings and the strains identified in this study will enhance soybean production and deepen the understanding of the soybean–rhizobium relationship in Poland. Full article
(This article belongs to the Special Issue Advances in Nitrogen Nutrition in Plants)
Show Figures

Figure 1

15 pages, 3014 KiB  
Article
Development of Cu3P/SnS2 Composite and Its High Efficiency Electrocatalytic Reduction of Carbon Dioxide
by Haohong Wei, Zhangwei Wang, Huancong Shi, Yuanhui Zuo and Jing Jin
Catalysts 2025, 15(6), 552; https://doi.org/10.3390/catal15060552 - 3 Jun 2025
Viewed by 426
Abstract
With the increase of CO2 emissions caused by human activities, the development of efficient CO2 reduction technology is crucial to help address the energy crisis and mitigate climate change. In this study, a series of Cu3P/SnS2 composites with [...] Read more.
With the increase of CO2 emissions caused by human activities, the development of efficient CO2 reduction technology is crucial to help address the energy crisis and mitigate climate change. In this study, a series of Cu3P/SnS2 composites with varying Cu/Sn molar ratios were synthesized using a hydrothermal method to improve the activity and selectivity of the electrocatalytic reduction of CO2 (CO2RR). The successful synthesis and structural advantages of the composite were verified via XRD, XPS, SEM, TEM, and BET. Cu3P/SnS2-3 (Cu/Sn = 2:1) had the largest specific surface area (78.01 m2 g−1) and abundant active sites. The electrochemical performance test showed that in 0.1 M KHCO3 electrolyte saturated with CO2, the Faraday efficiency of Cu3P/SnS2-3 to CO reached 87% at −1.0 V potential, which was 29 times and 1.78 times higher than that of Cu3P (3%) and SnS2 (48.88%). In addition, the catalyst maintained a CO Faraday efficiency of more than 75% in a 5 h stability test. The mechanism study shows that the low Tafel slope, low charge transfer resistance, and high electrochemically active area of the composite significantly promote the CO2RR kinetics. Full article
(This article belongs to the Special Issue CO2 Catalytic Valorization and Utilization)
Show Figures

Figure 1

19 pages, 2378 KiB  
Article
Simulation of Water Vapor Sorption Profiles on Activated Carbons in the Context of the Nuclear Industry
by Felipe Cabral Borges Martins, Mouheb Chebbi, Céline Monsanglant-Louvet, Bénoit Marcillaud and Audrey Roynette
Separations 2025, 12(5), 126; https://doi.org/10.3390/separations12050126 - 14 May 2025
Viewed by 431
Abstract
Activated carbons (ACs) are employed in the nuclear industry to mitigate the emission of potential radioactive iodine species. Their retention performances towards iodine are mainly dependent on the relative humidity due to the competitive effect induced by adsorbed water molecules. Thus, this work [...] Read more.
Activated carbons (ACs) are employed in the nuclear industry to mitigate the emission of potential radioactive iodine species. Their retention performances towards iodine are mainly dependent on the relative humidity due to the competitive effect induced by adsorbed water molecules. Thus, this work will focus on the prediction of AC behavior toward the capture of water vapor to better assess the poisoning effect on radiotoxic iodine removal. For the first time, H2O breakthrough curves (BTCs) on nuclear grade ACs are predicted through a specific methodology based on the combination of transport phenomena with adsorption kinetics and equilibrium. Three ACs, similar to those deployed in the nuclear context, are considered within the present study. Our model is based on the Linear Driving Force Model (LDF), governed by an intraparticle diffusion mechanism, notably surface and Knudsen diffusions. In addition, the type V isotherms obtained for H2O and the investigated carbon supports were described through the Klotz equation, taking into account the formation and progressive growth of H2O clusters within the internal porosity. This methodology allowed us to successfully simulate the H2O adsorption by a non-impregnated AC, where only physisorption phenomena are involved. In addition, promising results were highlighted when extrapolating to the two other impregnated ACs (AC 5KI and AC Nuclear). Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Graphical abstract

18 pages, 5384 KiB  
Article
A Major Latex Protein-Encoding Gene from Populus simonii × P. nigra (PsnMLP328) Contributes to Defense Responses to Salt and Cadmium Stress
by Xin Sun, Lei Wang, Shuang Liu, Yao Li, Yao Sun, Qiong Wu and Di Fu
Int. J. Mol. Sci. 2025, 26(7), 3350; https://doi.org/10.3390/ijms26073350 - 3 Apr 2025
Viewed by 475
Abstract
Heavy metal pollution and soil salinization harm human health and the environment. Phytoremediation is a widely accepted soil decontamination method, with woody plants being particularly effective due to their large biomass and extensive root systems. In this study, we identified and cloned PsnMLP328 [...] Read more.
Heavy metal pollution and soil salinization harm human health and the environment. Phytoremediation is a widely accepted soil decontamination method, with woody plants being particularly effective due to their large biomass and extensive root systems. In this study, we identified and cloned PsnMLP328 from Populus simonii × P. nigra and demonstrated its role in mitigating salt and cadmium stress. PsnMLP328 expression was up-regulated under both stress conditions, and its overexpression in tobacco enhanced resistance to these stresses, albeit through distinct mechanisms. Transgenic plants exhibited increased Cd2+ uptake and a higher biomass, alleviating Cd2+-induced growth inhibition. Additionally, PsnMLP328 boosted proline content, chlorophyll levels, and antioxidative enzyme activities (POD, SOD) under Cd2+ stress, likely by protecting cells from oxidative damage. Expression analysis revealed that PsnMLP328 down-regulated the cadmium transporter Nramp2 while up-regulating YSL2 (another cadmium transporter) and potassium channels (AKT1 and AKT2/3), suggesting its role in modulating K+ and Cd2+ homeostasis. These findings indicate that PsnMLP328 enhances tobacco resistance to salt and cadmium stress, particularly the latter. This study is the first to elucidate the function of poplar MLP family genes under salt and cadmium stress, advancing our understanding of MLP gene roles in heavy metal stress and offering new insights for remediating salinized and heavy metal-contaminated soils. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 3662 KiB  
Article
Enhanced Catalytic Reduction of 4-Nitrophenol over Porous Silica Nanospheres Encapsulating Pt-SnxOy Hybrid Nanoparticles
by Kaijie Li, Qin Wang, Qifan Zhao, Hongbo Yu and Hongfeng Yin
Catalysts 2025, 15(3), 263; https://doi.org/10.3390/catal15030263 - 11 Mar 2025
Viewed by 764
Abstract
In this article, Pt-SnxOy hybrid nanoparticles encaged in porous silica nanospheres (Pt-SnxOy@PSNs) were prepared by using 1-dodecanethiol (C12-SH) as a coordination agent to confine Pt and Sn ions in a microemulsion system, which is [...] Read more.
In this article, Pt-SnxOy hybrid nanoparticles encaged in porous silica nanospheres (Pt-SnxOy@PSNs) were prepared by using 1-dodecanethiol (C12-SH) as a coordination agent to confine Pt and Sn ions in a microemulsion system, which is formed by cetyltrimethylammonium bromide (CTAB) and C12-SH as co-surfactants in water. Compared with Pt@PSNs, when different molar ratios of SnxOy were introduced into Pt@PSNs to form Pt-SnxOy@PSNs, the catalytic efficiency of 4-nitrophenol (4-NP) reduction with NaBH4 can be significantly enhanced. At molar ratios of 4-NP/Pt of 150/1, the 4-NP conversion reached 100% over Pt-SnxOy@PSNs with Pt/Sn molar ratios of 1/0.75 in 8 min. This catalytic performance showed a slight decrease after six reaction cycles. This enhanced catalytic efficiency can be ascribed to the synergistic effect between Pt and SnxOy, and the protection of porous silica nanostructures can effectively improve the stability of the catalyst. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Homogeneous/Heterogeneous Catalysis)
Show Figures

Graphical abstract

17 pages, 7045 KiB  
Article
Correlation of Viscosity, Precursor Structure, Nanocrystallized Structure with Soft Magnetic Properties in FeSiCuBNbAlPSn Alloys
by Menglei Sun, Aina He, Ning Zhang, Bojun Zhang, Yaqiang Dong, Jiawei Li, Qikui Man and Baogen Shen
Metals 2025, 15(3), 262; https://doi.org/10.3390/met15030262 - 28 Feb 2025
Viewed by 617
Abstract
The interplay between melting viscosity, amorphous forming ability (AFA), nanocrystalline structure, and soft magnetic properties (SMPs) in Fe-based multicomponent alloys remains unclear. This study systematically explores the effects of Sn doping on the viscosity, precursor structure, and nanocrystallization behavior of Fe-Si-B-Nb-Cu-Al-P alloys. Sn [...] Read more.
The interplay between melting viscosity, amorphous forming ability (AFA), nanocrystalline structure, and soft magnetic properties (SMPs) in Fe-based multicomponent alloys remains unclear. This study systematically explores the effects of Sn doping on the viscosity, precursor structure, and nanocrystallization behavior of Fe-Si-B-Nb-Cu-Al-P alloys. Sn doping reduces melting viscosity and induces an abnormal viscosity rise during cooling, lowering the fragility parameter ratio (F) between high- and low-temperature zones, thereby enhancing the AFA of the precursor ribbons. High-temperature heat preservation treatment (HTP) of the melt further reduces the F, improves precursor disorder, and refines nanocrystals, leading to reduced average magnetocrystalline anisotropy and optimized SMPs. The HTP-treated Sn-dopped alloy shows superior SMPs, including low coercivity of 0.4 A/m and high permeability of 32,400 at 5 kHz, making it highly promising for advanced electromagnetic device applications. This work reveals the relationship between viscosity, precursor structure, nanocrystalline structure, and SMPs of Fe-based alloys, which provides an approach for the optimization of SMPs. Full article
Show Figures

Figure 1

11 pages, 823 KiB  
Article
Methodology to Determine the Stress Distribution Based on Fatigue Data with Bilinear Behavior and Its P–S–N Field and Testing Plan
by Osvaldo Monclova-Quintana, Manuel R. Piña-Monarrez, María M. Hernández-Ramos and Jesús F. Ortiz-Yáñez
Appl. Sci. 2025, 15(5), 2295; https://doi.org/10.3390/app15052295 - 21 Feb 2025
Cited by 1 | Viewed by 536
Abstract
In this paper, based on the Weibull Inverse Power Law, we present a methodology to determine the following: (1) the failure percentiles, referred to as the P–S–N field, of an S–N curve for a 42CrMo4 steel material exhibiting bilinear ( [...] Read more.
In this paper, based on the Weibull Inverse Power Law, we present a methodology to determine the following: (1) the failure percentiles, referred to as the P–S–N field, of an S–N curve for a 42CrMo4 steel material exhibiting bilinear (s1 and s2) behavior (e.g., a competence failure mode); (2) the Weibull family that characterizes the entire bilinear behavior; and (3) the zero-vibration test plan that meets the required vibration reliability index of Rt=0.97 with a reliability confidence level of CL=0.75. From the application, based on the formulated normal–Weibull relationship, we determine the failure percentiles for the normal (one, two, and three) sigma levels, as well as those failure percentiles corresponding to the capability (Cp) and ability (Cpk) indices. Finally, we present the formulation to determine the Rt index and the CL level associated with each normal percentile, along with their numerical values. Full article
(This article belongs to the Special Issue Fatigue Strength of Machines and Systems)
Show Figures

Figure 1

20 pages, 21466 KiB  
Article
Influence of the Deformation Degree on the Evolution of the Microstructure and Properties of Al-10.0Zn-2.7Mg-2.3Cu Alloy During Short-Flow Thermo-Mechanical Treatment
by Hao Li, Yongxing Zhao, Yuanchun Huang, Yu Liu and Junhua Cheng
Materials 2025, 18(3), 554; https://doi.org/10.3390/ma18030554 - 26 Jan 2025
Viewed by 804
Abstract
A simple short-flow thermo-mechanical treatment (TMT) named L-ITMT (consisting of three steps: solution, warm deformation, and solution) was applied to ultra-high-strength Al-10.0Zn-2.7Mg-2.3Cu alloy to study the influence of the deformation degree on the particle distribution, resolubility, microstructure evolution, recrystallization mechanism, formation and development [...] Read more.
A simple short-flow thermo-mechanical treatment (TMT) named L-ITMT (consisting of three steps: solution, warm deformation, and solution) was applied to ultra-high-strength Al-10.0Zn-2.7Mg-2.3Cu alloy to study the influence of the deformation degree on the particle distribution, resolubility, microstructure evolution, recrystallization mechanism, formation and development of deformation bonds, and mechanical properties. Increasing the rolling deformation during the L-ITMT process can effectively break up the second phase at the grain boundary and promote its dissolution, which is beneficial to aging precipitation strengthening and improves the strength of the alloy. The dominant mechanism changes from recovery to recrystallization when the deformation degree reaches 80%. As the strain increases, the deformation band becomes flatter and eventually becomes nearly parallel to the RD direction, promoting the occurrence of geometric recrystallization or continuous recrystallization (CRX). Under high-strain conditions, the formation mechanisms of recrystallized grains include discontinuous recrystallization (DRX), CRX, and particle-stimulated nucleation (PSN), but the main contributions to the formation of large-area fine-grained bands are CRX and PSN. The results showed that as the deformation degree increased from 10% to 80%, the improvement of solid solubility and grain refinement in the short-flow TMT process increased the ultimate tensile strength (701 MPa), yield strength (658 MPa), and elongation (11.3%) of the alloy by 15.7%, 10.8%, and 842%, respectively. This shows that the short L-ITMT process has a synergistic effect in significantly improving the plasticity and maintaining the strength of this ultra-high strength Al-Zn-Mg-Cu alloy. Full article
Show Figures

Figure 1

21 pages, 10101 KiB  
Article
Genome-Wide Identification of CBL Gene Family and RNA-Seq Analysis Under Alkaline Stress in Poplar
by Hanzeng Wang, Juan Wu, Zhixin Ju, Jingli Yang and Xue Leng
Forests 2025, 16(2), 200; https://doi.org/10.3390/f16020200 - 22 Jan 2025
Viewed by 876
Abstract
Calcium ions (Ca2+) play a crucial role as a key messenger in various adaptive and developmental processes. In plants, the calcineurin B-like protein (CBL) family is a unique calcium sensor, which plays a key role in regulating plant growth and development [...] Read more.
Calcium ions (Ca2+) play a crucial role as a key messenger in various adaptive and developmental processes. In plants, the calcineurin B-like protein (CBL) family is a unique calcium sensor, which plays a key role in regulating plant growth and development as well as responding to external environmental stimuli throughout the Ca2+ signaling pathway. However, the CBL gene family in poplar has not been systematically described. In this study, thirteen CBL genes were identified from the Populus trichocarpa genome using bioinformatics methods. Multiple sequence alignment showed that all PtrCBLs contained four conserved EF-hand domains. Promoter cis-acting elements revealed that PtrCBL promoters contained at least one abiotic-related or hormone response element. A protein–protein interaction network revealed that PtrCBLs interacted with various CIPK proteins to participate in growth and development or respond to environmental stimuli in poplar. Transcriptome data demonstrated that numerous PsnCBLs were involved in the response to alkaline stress in Populus simonii × Populus nigra. RT-qPCR and RNA-seq analyses implied that PsnCBLs exhibited complex expression patterns in poplar under alkaline stress at different time points. These results provide comprehensive information for future research on the CBL gene function and lay a research foundation for studying alkaline stress in poplar. Full article
Show Figures

Figure 1

21 pages, 2272 KiB  
Article
Physiological, Photosynthetic Characteristic and Transcriptome Analysis of PsnWRKY70 Transgenic Populus simonii × Populus nigra Under Salt Stress
by Hui Zhao, Wenhu Wang, Yujie Fan, Guifeng Liu, Shaokang Guo and Guoqiang Fan
Int. J. Mol. Sci. 2025, 26(1), 81; https://doi.org/10.3390/ijms26010081 - 25 Dec 2024
Cited by 2 | Viewed by 849
Abstract
The PsnWRKY70 transcription factor (TF) was reported to play an important role in the salt stress response mechanism of Populus simonii × Populus nigra in our previous research, and we also produced several PsnWRKY70 overexpression (OEXs) and RNAi suppression (REXs) P. simonii [...] Read more.
The PsnWRKY70 transcription factor (TF) was reported to play an important role in the salt stress response mechanism of Populus simonii × Populus nigra in our previous research, and we also produced several PsnWRKY70 overexpression (OEXs) and RNAi suppression (REXs) P. simonii × P. nigra lines. In order to further compare the photosynthetic and physiological characteristics of NT (non-transgenic line) and transgenic lines under salt stress, the dynamic phenotypic change, Na+ and K+ content in leaf and root tissues, superoxide dismutase (SOD) and peroxidase (POD) activity, malondialdehyde (MDA) content, chlorophyll content (Chl), photosynthesis parameters (net photosynthetic rate, Pn; stomatal conductance, Gs; intercellular CO2 concentration, Ci; transpiration rate, Tr), chlorophyll fluorescence parameters (electron transport rate, ETR; maximum photochemical efficiency of photosystem II (PSII), Fv/Fm; actual efficiency of PSII, ΦPSII; photochemical quenching coefficient, qP; non-photochemical quenching, NPQ; the photosynthetic light-response curves of ΦPSII and ETR) and RNA-seq of NT, OEX and REX lines were detected and analyzed. The phenotypic observation, MDA content and Chl detection results indicate that the stress damage of REXs was less severe than that of NT and OEX lines under salt stress. Photosynthesis parameter (Pn, Gs, Tr and Ci) and chlorophyll fluorescence parameter (ETR, Fv/Fm, ΦPSII qP and NPQ) detection results indicate that the REX lines exhibited much better photosynthetic adaptability than NT and OEX lines during salt stress. The photosynthetic light-response curves of ΦPSII and ETR of NT, OEX and REX lines indicate that REXs exhibited better ability to activate the photosynthetic protection mechanism and adapt to a certain degree of strong light than NT and OEX lines under salt stress. RNA-seq analysis indicates that the DEGs between OEX1 vs. NT and REX1 vs. NT in different tissues (apical bud and fifth functional leaf) were all different in category and change trend. The expression of PsnWRKY70 was significantly up-regulated in both the apical bud and fifth functional leaf of OEX1, and showed no significant change (namely maintained low expression level) in both the apical bud and fifth functional leaf of REX1, thus indicating the negative regulation role of PsnWRKY70 in P. simonii × P. nigra under salt stress. Additionally, there were a lot of stress response-related TF genes (such as bHLH, WRKY, MYB, NAM and AP2/EREBP) and photosynthesis-related genes among all the DEGs. In REX1, the expression of three Photosystem I P700 chlorophyll a apoprotein A1 genes (Potri.003G065200, Potri.013G141800 and Potri.019G028100) and a Photosystem II protein D1 gene (Potri.013G138300) were significantly up-regulated after 6 days of salt stress. In OEX1, the Heterodimeric geranylgeranyl pyrophosphate synthase small subunit gene (Potri.015G043400) and Phospho-2-dehydro-3-deoxyheptonate aldolase 1 gene (Potri.007G095700) were significantly down-regulated after 6 days of salt stress. These photosynthesis-related genes are probably regulated by PsnWRKY70 TF in response to salt stress. In conclusion, the REX lines suffered less severe salt damage and exhibited better photosynthetic adaptability than NT and OEXs under salt stress. The differences among the DEGs between OEX1 vs. NT and REX1 vs. NT in apical bud and fifth functional leaf, and the significantly differentially expressed photosynthesis-related genes are probably the key clues for discovering the photosynthesis adaptability mechanism of PsnWRKY70 transgenic P. simonii × P. nigra under salt stress. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

30 pages, 5277 KiB  
Article
Sea Anemone Kunitz Peptide HCIQ2c1: Structure, Modulation of TRPA1 Channel, and Suppression of Nociceptive Reaction In Vivo
by Aleksandra N. Kvetkina, Sergey D. Oreshkov, Pavel A. Mironov, Maxim M. Zaigraev, Anna A. Klimovich, Yulia V. Deriavko, Aleksandr S. Menshov, Dmitrii S. Kulbatskii, Yulia A. Logashina, Yaroslav A. Andreev, Anton O. Chugunov, Mikhail P. Kirpichnikov, Ekaterina N. Lyukmanova, Elena V. Leychenko and Zakhar O. Shenkarev
Mar. Drugs 2024, 22(12), 542; https://doi.org/10.3390/md22120542 - 2 Dec 2024
Cited by 1 | Viewed by 1742
Abstract
TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone Heteractis magnifica that inhibits serine proteases. Here, we showed that HCIQ2c1 significantly reduces AITC- [...] Read more.
TRPA1 is a homotetrameric non-selective calcium-permeable channel. It contributes to chemical and temperature sensitivity, acute pain sensation, and development of inflammation. HCIQ2c1 is a peptide from the sea anemone Heteractis magnifica that inhibits serine proteases. Here, we showed that HCIQ2c1 significantly reduces AITC- and capsaicin-induced pain and inflammation in mice. Electrophysiology recordings in Xenopus oocytes expressing rat TRPA1 channel revealed that HCIQ2c1 binds to open TRPA1 and prevents its transition to closed and inhibitor-insensitive ‘hyperactivated’ states. NMR study of the 15N-labeled recombinant HCIQ2c1 analog described a classical Kunitz-type structure and revealed two dynamic hot-spots (loops responsible for protease binding and regions near the N- and C-termini) that exhibit simultaneous mobility on two timescales (ps–ns and μs–ms). In modelled HCIQ2c1/TRPA1 complex, the peptide interacts simultaneously with one voltage-sensing-like domain and two pore domain fragments from different channel’s subunits, and with lipid molecules. The model explains stabilization of the channel in the open conformation and the restriction of ‘hyperactivation’, which are probably responsible for the observed analgetic activity. HCIQ2c1 is the third peptide ligand of TRPA1 from sea anemones and the first Kunitz-type ligand of this channel. HCIQ2c1 is a prototype of efficient analgesic and anti-inflammatory drugs. Full article
(This article belongs to the Special Issue Toxins as Marine-Based Drug Discovery, 2nd Edition)
Show Figures

Figure 1

13 pages, 4833 KiB  
Article
Research on the Characteristics of High-Performance Textured Ceramic Materials and Their Application in Composite Rod Transducers
by Fenghua Tian, Yiming Liu, Wenqiang Tian, Lei Wang, Baoan Hao and Shuai Yang
Actuators 2024, 13(11), 437; https://doi.org/10.3390/act13110437 - 1 Nov 2024
Cited by 1 | Viewed by 1253
Abstract
Recently, textured piezoelectric ceramics have become a hot topic in the field of piezoelectric materials. Due to their high cost-effectiveness, textured ceramics are expected to be the material of choice for the next generation of acoustic transducers. In this study, we investigated the [...] Read more.
Recently, textured piezoelectric ceramics have become a hot topic in the field of piezoelectric materials. Due to their high cost-effectiveness, textured ceramics are expected to be the material of choice for the next generation of acoustic transducers. In this study, we investigated the coercive field (Ec), piezoelectric constant (d33), and dielectric constant (ε33) of textured PIN-PSN-PT ceramics under different torques, in response to the demand for the development of composite rod transducer technology for transmitting and receiving. Based on the obtained data, a wideband composite rod transducer was designed and fabricated using textured PIN-PSN-PT ceramics with high performance. Compared with conventional PZT piezoelectric ceramic transducers of the same size, the wideband composite rod transducer made with textured ceramics extends the frequency band to a lower frequency of 6.5 kHz, improves the emission performance by 2 dB, and enhances the reception performance by 2 dB. Compared with conventional PZT piezoelectric ceramics in the same frequency band, the acoustic performance is comparable, but there is a volume reduction of 59.23% and a weight reduction of 49.7%, solving the technical bottleneck of developing composite rod transducers that are miniaturized and lightweight. The research results of this study have important reference value for the engineering application of textured ceramic materials in acoustic transducers. Full article
(This article belongs to the Special Issue Ultrasonic Transducers for Biomedical Applications)
Show Figures

Figure 1

14 pages, 8719 KiB  
Article
Serum from Hypertensive Patients Induces Cancer-Supporting Phenotype of Vascular Endothelium In Vitro
by Paweł Uruski, Justyna Mikuła-Pietrasik, Andrzej Tykarski and Krzysztof Książek
Biomolecules 2024, 14(11), 1374; https://doi.org/10.3390/biom14111374 - 28 Oct 2024
Cited by 1 | Viewed by 1195
Abstract
Background/Objectives: Large-scale epidemiological studies have established a bidirectional association between hypertension and cancer. However, the underlying mechanisms explaining this connection remain unclear. In our study, we investigated whether serum from patients with hypertension (HT) could enhance the aggressiveness of cancer cells in vitro [...] Read more.
Background/Objectives: Large-scale epidemiological studies have established a bidirectional association between hypertension and cancer. However, the underlying mechanisms explaining this connection remain unclear. In our study, we investigated whether serum from patients with hypertension (HT) could enhance the aggressiveness of cancer cells in vitro through alterations in endothelial cell phenotype. Methods: Experiments were performed using EAhy926 endothelial cells and ovarian (SKOV-3), colorectal (SW480), pancreatic (PSN-1), breast (MCF-7), and lung (A549) cancer cell lines. Results: This study showed that conditioned medium (CM) produced by EAhy926 cells, when exposed to serum from patients with untreated hypertension (HT-CM), promotes the proliferation, migration, and invasion of every cancer cell line tested. In addition, endothelial cells subjected to HT serum promote the adhesion of all cancer cell types except PSN-1. An intensified transendothelial invasion of cancer cells was accompanied by decreased expression of junctional proteins (connexin 43, E-cadherin, occluding, desmoglein) in HT serum-treated endothelial cells. Quantitative analysis of the secretome of endothelial cells subjected to HT serum showed that they secrete increased amounts of CCL2, CXCL1, CXCL8, bFGF, HGF, IL-6, PAI-1, and TGF-β1. Moreover, cancer cells exposed to HT-CM display increased mRNA expression for several pro-cancerogenic agents, including CXCL8, tPA, and VEGF. Conclusions: Our report shows that hypertension may potentiate cancer cell aggressiveness by modulating endothelial cell phenotype. Further tests with antihypertensive drugs are required to assess whether effective treatment of hypertension can mitigate its cancer-promoting potential. Full article
(This article belongs to the Special Issue State-of-the-Art Cardio-Oncology)
Show Figures

Figure 1

34 pages, 12191 KiB  
Article
Artificial Intelligence-Based Segmentation and Classification of Plant Images with Missing Parts and Fractal Dimension Estimation
by Ganbayar Batchuluun, Seung Gu Kim, Jung Soo Kim, Tahir Mahmood and Kang Ryoung Park
Fractal Fract. 2024, 8(11), 633; https://doi.org/10.3390/fractalfract8110633 - 27 Oct 2024
Cited by 2 | Viewed by 1669
Abstract
Existing research on image-based plant classification has demonstrated high performance using artificial intelligence algorithms. However, limited camera viewing angles can cause parts of the plant to be invisible in the acquired images, leading to an inaccurate classification. However, this issue has not been [...] Read more.
Existing research on image-based plant classification has demonstrated high performance using artificial intelligence algorithms. However, limited camera viewing angles can cause parts of the plant to be invisible in the acquired images, leading to an inaccurate classification. However, this issue has not been addressed by previous research. Hence, our study aims to introduce a method to improve classification performance by taking these limitations into account; specifically, we incorporated both segmentation and classification networks structured as shallow networks to expedite the processing times. The proposed shallow plant segmentation network (Shal-PSN) performs adversarial learning based on a discriminator network; and a shallow plant classification network (Shal-PCN) with applied residual connections was also implemented. Moreover, the fractal dimension estimation is used in this study for analyzing the segmentation results. Additionally, this study evaluated the performance of the proposed Shal-PSN that achieved the dice scores (DSs) of 87.43% and 85.71% with PlantVillage and open leaf image (OLID-I) open datasets, respectively, in instances where 40–60% of plant parts were missing. Moreover, the results demonstrate that the proposed method increased the classification accuracy from 41.16% to 90.51% in the same instances. Overall, our approach achieved superior performance compared to the existing state-of-the-art classification methods. Full article
Show Figures

Figure 1

Back to TopTop