Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,868)

Search Parameters:
Keywords = PS-7977

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4055 KiB  
Article
Biphasic Salt Effects on Lycium ruthenicum Germination and Growth Linked to Carbon Fixation and Photosynthesis Gene Expression
by Xinmeng Qiao, Ruyuan Wang, Lanying Liu, Boya Cui, Xinrui Zhao, Min Yin, Pirui Li, Xu Feng and Yu Shan
Int. J. Mol. Sci. 2025, 26(15), 7537; https://doi.org/10.3390/ijms26157537 (registering DOI) - 4 Aug 2025
Abstract
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been [...] Read more.
Since the onset of industrialization, the safety of arable land has become a pressing global concern, with soil salinization emerging as a critical threat to agricultural productivity and food security. To address this challenge, the cultivation of economically valuable salt-tolerant plants has been proposed as a viable strategy. In the study, we investigated the physiological and molecular responses of Lycium ruthenicum Murr. to varying NaCl concentrations. Results revealed a concentration-dependent dual effect: low NaCl levels significantly promoted seed germination, while high concentrations exerted strong inhibitory effects. To elucidate the mechanisms underlying these divergent responses, a combined analysis of metabolomics and transcriptomics was applied to identify key metabolic pathways and genes. Notably, salt stress enhanced photosynthetic efficiency through coordinated modulation of ribulose 5-phosphate and erythrose-4-phosphate levels, coupled with the upregulation of critical genes encoding RPIA (Ribose 5-phosphate isomerase A) and RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase). Under low salt stress, L. ruthenicum maintained intact cellular membrane structures and minimized oxidative damage, thereby supporting germination and early growth. In contrast, high salinity severely disrupted PS I (Photosynthesis system I) functionality, blocking energy flow into this pathway while simultaneously inducing membrane lipid peroxidation and triggering pronounced cellular degradation. This ultimately suppressed seed germination rates and impaired root elongation. These findings suggested a mechanistic framework for understanding L. ruthenicum adaptation under salt stress and pointed out a new way for breeding salt-tolerant crops and understanding the mechanism. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 2906 KiB  
Article
Optimal Design of a Lightweight Terahertz Absorber Featuring Ultra-Wideband Polarization-Insensitive Characteristics
by Yafeng Hao, Tengteng Li, Pu Zhu, Fupeng Ma, Huijia Wu, Cheng Lei, Meihong Liu, Ting Liang and Jianquan Yao
Photonics 2025, 12(8), 787; https://doi.org/10.3390/photonics12080787 (registering DOI) - 4 Aug 2025
Abstract
Metamaterial absorbers in terahertz (THz) based bands have garnered significant attention for their potential applications in military stealth, terahertz imaging, and other fields. Nevertheless, the limited bandwidth, low absorption rate, and heavy weight greatly reduce the further development and wide application of terahertz [...] Read more.
Metamaterial absorbers in terahertz (THz) based bands have garnered significant attention for their potential applications in military stealth, terahertz imaging, and other fields. Nevertheless, the limited bandwidth, low absorption rate, and heavy weight greatly reduce the further development and wide application of terahertz absorbers. To solve these problems, we propose a polystyrene (PS)-based ultra-broadband metamaterial absorber integrated with a polyethylene terephthalate (PET) double-sided adhesive layer and a patterned indium tin oxide (ITO) film through the simulation method, which operates in the THz band. The electromagnetic wave absorption properties and underlying physical absorption mechanisms of the proposed metamaterial absorbers are comprehensively modeled and rigorously numerically simulated. The research demonstrates the metamaterial absorber can achieve absorption performance of over 90% for fully polarized incident waves in the ultra-wideband range of 1.2–10 THz, especially achieving perfect absorption characteristics of over 99.9% near 1.8–1.9 THz and 5.8–6.2 THz. The proposed absorber has a lightweight physical property of 0.7 kg/m2 and polarization-insensitive characteristic, and it achieves a broad-angle that allows a range of incidence angles up to 60°. The simulation research results of this article provide theoretical support for the design of terahertz absorbers with ultra-wideband absorption characteristics. Full article
(This article belongs to the Special Issue Metamaterials and Nanophotonics: Fundamentals and Applications)
Show Figures

Figure 1

86 pages, 96041 KiB  
Article
Sustainable Risk Mapping of High-Speed Rail Networks Through PS-InSAR and Geospatial Analysis
by Seung-Jun Lee, Hong-Sik Yun and Sang-Woo Kwak
Sustainability 2025, 17(15), 7064; https://doi.org/10.3390/su17157064 (registering DOI) - 4 Aug 2025
Abstract
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in [...] Read more.
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in South Korea, the model incorporates both maximum ground deformation and subsidence velocity to construct a dynamic hazard index. Social vulnerability is quantified using five demographic and infrastructural indicators, and a two-stage analytic hierarchy process (AHP) is applied with dependency correction to mitigate inter-variable redundancy. The resulting high-resolution risk maps highlight spatial mismatches between geotechnical hazards and social exposure, revealing vulnerable segments in Gongju and Iksan that require prioritized maintenance and mitigation. The framework also addresses data limitations by interpolating groundwater levels and estimating train speed using spatial techniques. Designed to be scalable and transferable, this methodology offers a practical decision-support tool for infrastructure managers and policymakers aiming to enhance the resilience of linear transport systems. Full article
(This article belongs to the Section Hazards and Sustainability)
19 pages, 11665 KiB  
Article
Upregulating ANKHD1 in PS19 Mice Reduces Tau Phosphorylation and Mitigates Tau Toxicity-Induced Cognitive Deficits
by Xiaolin Tian, Nathan Le, Yuhai Zhao, Dina Alawamleh, Andrew Schwartz, Lauren Meyer, Elizabeth Helm and Chunlai Wu
Int. J. Mol. Sci. 2025, 26(15), 7524; https://doi.org/10.3390/ijms26157524 (registering DOI) - 4 Aug 2025
Abstract
Using the fly eye as a model system, we previously demonstrated that upregulation of the fly gene mask protects against FUS- and Tau-induced photoreceptor degeneration. Building upon this finding, we investigated whether the protective role of mask is conserved in mammals. To this [...] Read more.
Using the fly eye as a model system, we previously demonstrated that upregulation of the fly gene mask protects against FUS- and Tau-induced photoreceptor degeneration. Building upon this finding, we investigated whether the protective role of mask is conserved in mammals. To this end, we generated a transgenic mouse line carrying Cre-inducible ANKHD1, the human homolog of mask. Utilizing the TauP301S-PS19 mouse model for Tau-related dementia, we found that expressing ANKHD1 driven by CamK2a-Cre reduced hyperphosphorylated human Tau in 6-month-old mice. Additionally, ANKHD1 expression was associated with a trend toward reduced gliosis and preservation of the presynaptic marker Synaptophysin, suggesting a protective role of ANKHD1 against TauP301S-linked neuropathology. At 9 months of age, novel object recognition (NOR) testing revealed cognitive impairment in female, but not male, PS19 mice. Notably, co-expression of ANKHD1 restored cognitive performance in the affected female mice. Together, this study highlights the novel effect of ANKHD1 in counteracting the adverse effects induced by the mutant human Tau protein. This finding underscores ANKHD1’s potential as a unique therapeutic target for tauopathies. Full article
Show Figures

Figure 1

14 pages, 1732 KiB  
Article
A Promising Prognostic Indicator for Pleural Mesothelioma: Pan-Immuno-Inflammation Value
by Serkan Yaşar, Feride Yılmaz, Ömer Denizhan Tatar, Hasan Çağrı Yıldırım, Zafer Arık, Şuayib Yalçın and Mustafa Erman
J. Clin. Med. 2025, 14(15), 5467; https://doi.org/10.3390/jcm14155467 (registering DOI) - 4 Aug 2025
Abstract
Background: Pleural mesothelioma (PM) is a type of cancer that is difficult to diagnose and treat. Patients may have vastly varying prognoses, and prognostic factors may help guide the clinical approach. As a recently identified biomarker, the pan-Immune-Inflammation-Value (PIV) is a simple, comprehensive, [...] Read more.
Background: Pleural mesothelioma (PM) is a type of cancer that is difficult to diagnose and treat. Patients may have vastly varying prognoses, and prognostic factors may help guide the clinical approach. As a recently identified biomarker, the pan-Immune-Inflammation-Value (PIV) is a simple, comprehensive, and peripheral blood cell-based biomarker. Methods: The present study represents a retrospective observational analysis carried out within a single-center setting. Ninety-five patients with PM stages I–IV were enrolled in the study. We analyzed the correlation between patients’ demographic characteristics, clinicopathological factors such as histological subtypes, surgery status, tumor thickness, blood-based parameters, and treatment options with their prognoses. PIV was calculated by the following formula: (neutrophil count × monocyte count × platelet count)/lymphocyte count. Additionally, blood-based parameters were used to calculate the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), and systemic immune inflammation index (SII). Results: We categorized the patients into two groups, low PIV group (PIV ≤ 732.3) and high PIV group (PIV > 732.3) according to the determined cut-off value, which was defined as the median. It was revealed that high PIV was associated with poor survival outcomes. The median follow-up period was 15.8 months (interquartile range, IQR, 7.1 to 29.8 months). The median overall survival (OS) was significantly longer in patients in the low PIV group (median 29.8 months, 95% confidence interval (CI), 15.6 to 44) than the high PIV group (median 14.7 months, 95% CI, 10.8 to 18.6 p < 0.001). Furthermore, the study revealed that patients with low PIV, NLR, and SII values were more likely to be eligible for surgery and were diagnosed at earlier stages. Additionally, these markers were identified as potential predictors of disease-free survival (DFS) in the surgical cohort and of treatment response across the entire patient population. Conclusions: In addition to well-established clinical factors such as stage, histologic subtype, resectability, and Eastern Cooperative Oncology Group (ECOG) performance status (PS), PIV emerged as an independent and significant prognostic factor of overall survival (OS) in patients with PM. Moreover, PIV also demonstrated a remarkable independent prognostic value for disease-free survival (DFS) in this patient population. Additionally, some clues are provided for conditions such as treatment responses, staging, and suitability for surgery. As such, in this cohort, it has outperformed the other blood-based markers based on our findings. Given its ease of calculation and cost-effectiveness, PIV represents a promising and practical prognostic tool in the clinical management of pleural mesothelioma. It can be easily calculated using routinely available laboratory parameters for every cancer patient, requiring no additional cost or complex procedures, thus facilitating its integration into everyday clinical practice. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

13 pages, 1164 KiB  
Case Report
Chronic Hyperplastic Candidiasis—An Adverse Event of Secukinumab in the Oral Cavity: A Case Report and Literature Review
by Ana Glavina, Bruno Špiljak, Merica Glavina Durdov, Ivan Milić, Marija Ana Perko, Dora Mešin Delić and Liborija Lugović-Mihić
Diseases 2025, 13(8), 243; https://doi.org/10.3390/diseases13080243 - 3 Aug 2025
Abstract
Secukinumab (SEC) is a recombinant, fully human monoclonal antibody that is selective for interleukin-17A (IL-17A). SEC may increase the risk of developing infections such as oral herpes and oral candidiasis. The aim of this case report and literature review was to describe chronic [...] Read more.
Secukinumab (SEC) is a recombinant, fully human monoclonal antibody that is selective for interleukin-17A (IL-17A). SEC may increase the risk of developing infections such as oral herpes and oral candidiasis. The aim of this case report and literature review was to describe chronic hyperplastic candidiasis (CHC) in a patient with psoriasis (PsO) and psoriatic arthritis (PsA) treated with SEC. CHC is a rare and atypical clinical entity. A definitive diagnosis requires biopsy of the oral mucosa for histopathological diagnosis (PHD). The differential diagnosis includes hairy tongue, hairy leukoplakia, oral lichen planus (OLP), oral lichenoid reaction (OLR), leukoplakia, frictional keratosis, morsication, oral psoriasis, syphilis, and oral lesions associated with coronavirus disease (COVID-19). In addition to the usual factors (xerostomia, smoking, antibiotics, vitamin deficiency, immunosuppression, comorbidities), the new biological therapies/immunotherapies are a predisposing factor for oral candidiasis. The therapeutic approach must be multidisciplinary and in consultation with a clinical immunologist. Dentists and specialists (oral medicine, dermatologists, rheumatologists) must be familiar with the oral adverse events of the new biological therapies. Simultaneous monitoring of patients by clinical immunology and oral medicine specialists is crucial for timely diagnosis and therapeutic intervention to avoid possible adverse events and improve quality of life (QoL). Full article
(This article belongs to the Special Issue Oral Health and Care)
Show Figures

Figure 1

56 pages, 1035 KiB  
Review
Trace Elements—Role in Joint Function and Impact on Joint Diseases
by Łukasz Bryliński, Katarzyna Brylińska, Filip Woliński, Jolanta Sado, Miłosz Smyk, Olga Komar, Robert Karpiński, Marcin Prządka and Jacek Baj
Int. J. Mol. Sci. 2025, 26(15), 7493; https://doi.org/10.3390/ijms26157493 (registering DOI) - 2 Aug 2025
Viewed by 235
Abstract
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a [...] Read more.
Proper joint function has a significant impact on people’s quality of life. Joints are the point of connection between two or more bones and consist of at least three elements: joint surfaces, the joint capsule, and the joint cavity. Joint diseases are a serious social problem. Risk factors for the development of these diseases include overweight and obesity, gender, and intestinal microbiome disorders. Another factor that is considered to influence joint diseases is trace elements. Under normal conditions, elements such as iron (Fe), copper (Cu), cobalt (Co), iodine (I), manganese (Mn), zinc (Zn), silver (Ag), cadmium (Cd), mercury (Hg), lead (Pb), nickel (Ni) selenium (Se), boron (B), and silicon (Si) are part of enzymes involved in reactions that determine the proper functioning of cells, regulate redox metabolism, and determine the maturation of cells that build joint components. However, when the normal concentration of the above-mentioned elements is disturbed and toxic elements are present, dangerous joint diseases can develop. In this article, we focus on the role of trace elements in joint function. We describe the molecular mechanisms that explain their interaction with chondrocytes, osteocytes, osteoblasts, osteoclasts, and synoviocytes, as well as their proliferation, apoptosis, and extracellular matrix synthesis. We also focus on the role of these trace elements in the pathogenesis of joint diseases: rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), ankylosing spondylitis (AS), and systemic lupus erythematosus (SLE). We describe the roles of increased or decreased concentrations of individual elements in the pathogenesis and development of joint diseases and their impact on inflammation and disease progression, referring to molecular mechanisms. We also discuss their potential application in the treatment of joint diseases. Full article
Show Figures

Figure 1

16 pages, 1526 KiB  
Article
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 - 2 Aug 2025
Viewed by 99
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive [...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs. Full article
Show Figures

Figure 1

14 pages, 898 KiB  
Article
Cardiovascular Risk in Rheumatic Patients Treated with JAK Inhibitors: The Role of Traditional and Emerging Biomarkers in a Pilot Study
by Diana Popescu, Minerva Codruta Badescu, Elena Rezus, Daniela Maria Tanase, Anca Ouatu, Nicoleta Dima, Oana-Nicoleta Buliga-Finis, Evelina Maria Gosav, Damiana Costin and Ciprian Rezus
J. Clin. Med. 2025, 14(15), 5433; https://doi.org/10.3390/jcm14155433 (registering DOI) - 1 Aug 2025
Viewed by 114
Abstract
Background: Despite therapeutic advances, morbidity and mortality remain high in patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA), primarily due to increased cardiovascular risk. Objectives: Our study aimed to evaluate the cardiovascular risk profile and biomarker dynamics in patients with RA and [...] Read more.
Background: Despite therapeutic advances, morbidity and mortality remain high in patients with rheumatoid arthritis (RA) and psoriatic arthritis (PsA), primarily due to increased cardiovascular risk. Objectives: Our study aimed to evaluate the cardiovascular risk profile and biomarker dynamics in patients with RA and PsA treated with Janus kinase inhibitors (JAKis). To our knowledge, this is the first study assessing Lp(a) levels in this context. Methods: This prospective, observational study assessed 48 adult patients. The follow-up period was 12 months. Traditional cardiovascular risk factors and biological markers, including lipid profile, lipoprotein(a) [Lp(a)], and uric acid (UA), were assessed at baseline and follow-up. Correlations between JAKi therapy, lipid profile changes, and cardiovascular risk factors were investigated. Cox regression analysis was used to identify predictors of non-major cardiovascular events. Results: A strong positive correlation was observed between baseline and 12-month Lp(a) levels (r = 0.926), despite minor statistical shifts. No major cardiovascular events occurred during follow-up; however, 47.9% of patients experienced non-major cardiovascular events (e.g., uncontrolled arterial hypertension, exertional angina, and new-onset arrhythmias). Active smoking [hazard ratio (HR) 9.853, p = 0.005], obesity (HR 3.7460, p = 0.050), and arterial hypertension (HR 1.219, p = 0.021) were independent predictors of these events. UA (HR 1.515, p = 0.040) and total cholesterol (TC) (HR 1.019, p = 0.034) were significant biochemical predictors as well. Elevated baseline Lp(a) combined with these factors was associated with an increased event rate, particularly after age 60. Conclusions: Traditional cardiovascular risk factors remain highly prevalent and predictive, underscoring the need for comprehensive cardiovascular risk management. Lp(a) remained stable and may serve as a complementary biomarker for risk stratification in JAKi-treated patients. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

19 pages, 5891 KiB  
Article
Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring
by Xiaokai Chen, Yuxin Miao, Krzysztof Kusnierek, Fenling Li, Chao Wang, Botai Shi, Fei Wu, Qingrui Chang and Kang Yu
Remote Sens. 2025, 17(15), 2666; https://doi.org/10.3390/rs17152666 - 1 Aug 2025
Viewed by 88
Abstract
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral [...] Read more.
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral data (S185 sensor) with simulated multispectral data from DJI Phantom 4 Multispectral (P4M), PlanetScope (PS), and Sentinel-2A (S2) in estimating winter wheat PNC. Spectral data were collected across six growth stages over two seasons and resampled to match the spectral characteristics of the three multispectral sensors. Three variable selection strategies (one-dimensional (1D) spectral reflectance, optimized two-dimensional (2D), and three-dimensional (3D) spectral indices) were combined with Random Forest Regression (RFR), Support Vector Machine Regression (SVMR), and Partial Least Squares Regression (PLSR) to build PNC prediction models. Results showed that, while hyperspectral data yielded slightly higher accuracy, optimized multispectral indices, particularly from PS and S2, achieved comparable performance. Among models, SVM and RFR showed consistent effectiveness across strategies. These findings highlight the potential of low-cost multispectral platforms for practical crop N monitoring. Future work should validate these models using real satellite imagery and explore multi-source data fusion with advanced learning algorithms. Full article
(This article belongs to the Special Issue Perspectives of Remote Sensing for Precision Agriculture)
Show Figures

Figure 1

18 pages, 1404 KiB  
Article
Comparative Analysis of the Long-Term Real-World Efficacy of Interleukin-17 Inhibitors in a Cohort of Patients with Moderate-to-Severe Psoriasis Treated in Poland
by Wiktor Kruczek, Aleksandra Frątczak, Iga Litwińska-Inglot, Karina Polak, Zuzanna Pawlus, Paulina Rutecka, Beata Bergler-Czop and Bartosz Miziołek
J. Clin. Med. 2025, 14(15), 5421; https://doi.org/10.3390/jcm14155421 (registering DOI) - 1 Aug 2025
Viewed by 104
Abstract
Background: Bimekizumab, secukinumab, and ixekizumab are IL-17-targeting biologics approved for the treatment of moderate-to-severe plaque psoriasis. While secukinumab and ixekizumab selectively inhibit IL-17A, bimekizumab targets both IL-17A and IL-17F, potentially providing greater anti-inflammatory efficacy. This study aimed to compare the real-world effectiveness, [...] Read more.
Background: Bimekizumab, secukinumab, and ixekizumab are IL-17-targeting biologics approved for the treatment of moderate-to-severe plaque psoriasis. While secukinumab and ixekizumab selectively inhibit IL-17A, bimekizumab targets both IL-17A and IL-17F, potentially providing greater anti-inflammatory efficacy. This study aimed to compare the real-world effectiveness, safety, and tolerability of these agents in a Polish dermatology center between 2019 and 2024. Methods: We conducted a retrospective analysis of 98 patients meeting at least one of the following criteria: PASI ≥ 10, BSA ≥ 10, DLQI ≥ 10, or involvement of special areas with inadequate response or contraindications to ≥2 systemic therapies. Patients with prior exposure only to IL-17 inhibitors were excluded. PASI, BSA, and DLQI scores were recorded at baseline, week 4, and week 12. Due to differences in dosing schedules, outcomes were aligned using standardized timepoints and exponential modeling of continuous response trajectories. Mixed-effects ANOVA was used to assess the influence of baseline factors (age, BMI, PsA status) on treatment outcomes. Adverse events were documented at each monthly follow-up visit. Results: Bimekizumab showed the greatest effect size for PASI reduction (Hedges’ g = 3.662), followed by secukinumab (2.813) and ixekizumab (1.986). Exponential modeling revealed a steeper response trajectory with bimekizumab (intercept = 0.289), suggesting a more rapid PASI improvement. The efficacy of bimekizumab was particularly notable in patients who were previously treated with IL-23 inhibitors. All three agents demonstrated favorable safety profiles, with no serious adverse events or discontinuations. The most frequent adverse events were mild and included upper respiratory tract infections and oral candidiasis. Conclusions: This real-world analysis confirmed that IL-17 inhibitors effectively improved PASI, BSA, and DLQI scores in moderate-to-severe psoriasis. Bimekizumab demonstrated the most rapid early improvements and a higher modeled likelihood of complete clearance, without significant differences at week 12. All agents were well tolerated, underscoring the need for further individualized, large-scale studies. Full article
Show Figures

Figure 1

36 pages, 5053 KiB  
Systematic Review
Prescriptive Maintenance: A Systematic Literature Review and Exploratory Meta-Synthesis
by Marko Orošnjak, Felix Saretzky and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8507; https://doi.org/10.3390/app15158507 (registering DOI) - 31 Jul 2025
Viewed by 150
Abstract
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented [...] Read more.
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented Systematic Literature Review of studies published between 2013–2024. We identify key enablers—artificial intelligence and machine learning, horizontal and vertical integration, and deep reinforcement learning—that map the functional space of PsM across industrial sectors. The results from our multivariate meta-synthesis uncover three main thematic research clusters, ranging from decision-automation of technical (multi)component-level systems to strategic and organisational-support strategies. Notably, while predictive models are widely adopted, the translation of these capabilities to PsM remains limited. Primary reasons include semantic interoperability, real-time optimisation, and deployment scalability. As a response, a structured research agenda is proposed to emphasise hybrid architectures, context-aware prescription mechanisms, and alignment with Industry 5.0 principles of human-centricity, resilience, and sustainability. The review establishes a critical foundation for future advances in intelligent, explainable, and action-oriented maintenance systems. Full article
Show Figures

Figure 1

19 pages, 2104 KiB  
Article
Presence of Micro- and Nanoplastics Affects Degradation of Chlorinated Solvents
by Fadime Kara Murdoch, Yanchen Sun, Mark E. Fuller, Larry Mullins, Amy Hill, Jacob Lilly, John Wilson, Frank E. Löffler and Katarzyna H. Kucharzyk
Toxics 2025, 13(8), 656; https://doi.org/10.3390/toxics13080656 (registering DOI) - 31 Jul 2025
Viewed by 139
Abstract
Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such [...] Read more.
Microplastics (MPs) and nanoplastics (NPs) can affect microbial abundance and activity, likely by damaging cell membrane components. While their effects on anaerobic digestion are known, less is understood about their impact on microbes involved in contaminant bioremediation. Chlorinated volatile organic contaminants (CVOCs) such as tetrachloroethene (PCE) and explosives like hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are common in the environment, and their bioremediation is a promising cleanup strategy. This study examined how polystyrene (PS) and polyamide 6 (PA6) MPs and NPs influence CVOC and RDX biodegradation. PS particles did not inhibit the CVOC-degrading community SDC-9, but PA6 MPs impaired the reductive dechlorination of trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE), causing a “cis-DCE stall” with no further conversion to vinyl chloride (VC) or ethene. Only 45% of TCE was dechlorinated to cis-DCE, and Dehalococcoides mccartyi abundance dropped 1000-fold in 35 days with PA6 MPs. In contrast, neither PA6 nor PS MPs and NPs affected RDX biotransformation. These results highlight the significant impact of PA6 MPs on CVOC biodegradation and the need to consider plastic pollution in environmental management. Full article
(This article belongs to the Special Issue Novel Technologies for Degradation of Organic Pollutants)
Show Figures

Graphical abstract

16 pages, 2389 KiB  
Article
Designing an SOI Interleaver Using Genetic Algorithm
by Michael Gad, Mostafa Fedawy, Mira Abboud, Hany Mahrous, Gamal A. Ebrahim, Mostafa M. Salah, Ahmed Shaker, W. Fikry and Michael Ibrahim
Photonics 2025, 12(8), 775; https://doi.org/10.3390/photonics12080775 (registering DOI) - 31 Jul 2025
Viewed by 84
Abstract
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 [...] Read more.
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 GHz, channel bandwidth of 20 GHz, free spectral range of 100 GHz, maximum channel dispersion of 30 ps/nm, and maximum crosstalk of −23 dB. The challenges for the optimization process include the lack of a closed-form expression for the device performance and the trade-off between the conflicting performance parameters. So, for this multi-objective problem, the proposed approach maneuvers to find a compromise between the performance parameters within a few minutes, saving the designer the laborious design process previously proposed in the literature, which relies on visually inspecting the Z-plane for the dynamics of the transmission poles and zeros. Designs of better performance are achieved, with fewer ring resonators, a channel dispersion as low as 1.6 ps/nm, and crosstalk as low as −30 dB. Full article
(This article belongs to the Special Issue Advanced Materials and Devices for Silicon Photonics)
Show Figures

Figure 1

42 pages, 3564 KiB  
Review
A Review on Sustainable Upcycling of Plastic Waste Through Depolymerization into High-Value Monomer
by Ramkumar Vanaraj, Subburayan Manickavasagam Suresh Kumar, Seong Cheol Kim and Madhappan Santhamoorthy
Processes 2025, 13(8), 2431; https://doi.org/10.3390/pr13082431 - 31 Jul 2025
Viewed by 439
Abstract
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular [...] Read more.
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular approach that converts plastic waste back into valuable monomers and chemical feedstocks. This article provides an in-depth narrative review of recent progress in the upcycling of major plastic types such as PET, PU, PS, and engineering plastics through thermal, chemical, catalytic, biological, and mechanochemical depolymerization methods. Each method is critically assessed in terms of efficiency, scalability, energy input, and environmental impact. Special attention is given to innovative catalyst systems, such as microsized MgO/SiO2 and Co/CaO composites, and emerging enzymatic systems like engineered PETases and whole-cell biocatalysts that enable low-temperature, selective depolymerization. Furthermore, the conversion pathways of depolymerized products into high-purity monomers such as BHET, TPA, vanillin, and bisphenols are discussed with supporting case studies. The review also examines life cycle assessment (LCA) data, techno-economic analyses, and policy frameworks supporting the adoption of depolymerization-based recycling systems. Collectively, this work outlines the technical viability and sustainability benefits of depolymerization as a core pillar of plastic circularity and monomer recovery, offering a path forward for high-value material recirculation and waste minimization. Full article
Show Figures

Figure 1

Back to TopTop