Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = PPP2R5E

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6341 KB  
Article
Differentially Expressed Genes Associated with the Development of Cervical Cancer
by Diego Armando Alvarado-Camacho, Ricardo Castillo-Velázquez, Angelica Judith Granados-López, Hiram Hernández-López, Yamilé López-Hernández, Rosalinda Gutiérrez-Hernández, José Antonio Varela-Silva, Claudia Araceli Reyes-Estrada, Cesar Rogelio Solorio-Alvarado, Sergio Hugo Sánchez-Rodríguez, David Alejandro García-López and Jesús Adrián López
Int. J. Mol. Sci. 2026, 27(1), 258; https://doi.org/10.3390/ijms27010258 - 26 Dec 2025
Viewed by 53
Abstract
Cervical cancer remains a significant cause of cancer-related mortality among women, particularly in low- and middle-income countries. High-throughput technologies, such as microarrays, have facilitated the comprehensive analysis of gene expression profiles in cervical cancer, enabling the identification of key differentially expressed genes (DEGs) [...] Read more.
Cervical cancer remains a significant cause of cancer-related mortality among women, particularly in low- and middle-income countries. High-throughput technologies, such as microarrays, have facilitated the comprehensive analysis of gene expression profiles in cervical cancer, enabling the identification of key differentially expressed genes (DEGs) involved in their pathogenesis. The publicly available microarray datasets, including GSE39001, GSE9750, GSE7803, GSE6791, GSE63514, and GSE52903 in combination with bioinformatic database predictions, were used to identify differential expression genes, potential biomarkers, and therapeutic targets for cervical cancer; additionally, we undertook bioinformatic analysis to determine gene ontology and possible miRNA targets related to our DEGS. Our analysis revealed several DEGs significantly associated with cervical cancer progression, such as cell death, regulation of DNA replication, protein binding, processes, and transcription factors. The most relevant transcription factors (TFs) identified were SP1, ELF3, E2F1, TP53, RELA, HDAC, and FOXM1. Importantly, the DEGs with more important changes were 11 coding genes that were upregulated (KIF4A, MCM5, RFC4, PLOD2, MMP12, PRC1, TOP2A, MCM2, RAD51AP1, KIF20A, AIM2) and 14 that were downregulated (CXCL14, KRT1, KRT13, MAL, SPINK5, EMP1, CRISP3, ALOX12, CRNN, SPRR3, PPP1R3C, IVL, CFD, CRCT1), which were associated with cervical cancer. Interestingly, hub proteins KIF4A, NUSAP1, BUB1B, CEP55, DLGAP5, NCAPG, CDK1, MELK, KIF11, and KIF20A were found to be potentially regulated by several miRNAs, including miR-107, miR-124-3p, miR-147a, miR-16-5p, miR-34a-5p, miR-34c-5p, miR-126-3p, miR-10b-5p, miR-23b-3p, miR-200b-3p, miR-138-5p, miR-203a-3p, miR-214-3p, and let-7b-5p. The relationship between these genes highlights their potential as candidate biomarkers for further research in treatment, diagnosis, and prognosis. Full article
(This article belongs to the Special Issue MicroRNAs and mRNA in Human Health and Disease)
Show Figures

Figure 1

18 pages, 5040 KB  
Article
B-Cell Receptor-Associated Protein 31 Deficiency Aggravates Ethanol-Induced Liver Steatosis and Liver Injury via Attenuating Fatty Acid Oxidation and Glycogen Synthesis
by Shubin Yu, Yaodong Xia, Chunyan Zhang, Xiangyue Han, Xiaoyue Feng, Liya Li, Hang Ma and Jialin Xu
Int. J. Mol. Sci. 2025, 26(24), 12173; https://doi.org/10.3390/ijms262412173 - 18 Dec 2025
Viewed by 217
Abstract
Alcoholic liver disease (ALD) is a spectrum of alcohol-induced disorders and represents a major global health challenge. B-cell receptor-associated protein 31 (BAP31) is an endoplasmic reticulum-resident chaperone involved in protein transport, apoptosis, cancer biology, and lipid metabolism. To explore its role in ALD, [...] Read more.
Alcoholic liver disease (ALD) is a spectrum of alcohol-induced disorders and represents a major global health challenge. B-cell receptor-associated protein 31 (BAP31) is an endoplasmic reticulum-resident chaperone involved in protein transport, apoptosis, cancer biology, and lipid metabolism. To explore its role in ALD, we used hepatocyte-specific BAP31 knockout mice (BAP31-LKO) and wild-type (WT) littermates exposed to ethanol to assess BAP31′s biochemical and metabolic impact. Following ethanol exposure, BAP31-LKO mice exhibited elevated serum alanine transaminase (23.2%, p < 0.05) and aspartate transaminase (31.4%, p < 0.05) levels compared to WT mice. Increased malondialdehyde (8.5%, p < 0.05) and reduced superoxide dismutase (22.8%, p < 0.05) in BAP31-LKO mice indicate exacerbated liver injury. Furthermore, BAP31 deficiency increased triglyceride (35.7%, p < 0.05) and free fatty acid (16.2%, p < 0.05) accumulation following ethanol treatment, while the expression of fatty acid oxidation-related genes, including Pparα, Cd36, Fatp2, Cpt2, and Acox1, was reduced in BAP31-LKO mice. The mRNA levels of Xbp1, Xbp1s, and Chop, as well as protein levels of p-eIF2α, IRE1α, GRP78, and CHOP, were increased in BAP31-LKO mice compared to WT controls, indicating aggravated ethanol-induced ER stress. Hepatic glycogen content was also reduced in BAP31-LKO mice, along with reduced Ppp1r3c expression, demonstrating impaired glycogen synthesis. Consistently, BAP31 knockdown amplified ethanol-induced lipid accumulation, inflammation, impaired glycogen storage, ER stress, and suppression of Pparα signaling in HepG2 cells. Together, these findings demonstrate that BAP31 deficiency exacerbates ethanol-induced liver steatosis, inflammation, and liver injury by impairing fatty acid oxidation and glycogen synthesis, and by amplifying ER stress responses. Full article
Show Figures

Figure 1

16 pages, 8121 KB  
Article
All-Trans Retinoic Acid Impacts Early Palatal Shelves Development via the Wnt and TGF-β Signaling Pathways
by Yaping Ma, Binqing Wang, Shikang Gao and Tao Song
Biomedicines 2025, 13(11), 2836; https://doi.org/10.3390/biomedicines13112836 - 20 Nov 2025
Viewed by 437
Abstract
Background/Objectives: All-trans retinoic acid (atRA), a potent derivative of vitamin A, is recognized as a significant teratogen for inducing cleft palate in both humans and mice. The molecular mechanisms underlying it remain intricate and incompletely elucidated. The advent of single-cell sequencing technology offers [...] Read more.
Background/Objectives: All-trans retinoic acid (atRA), a potent derivative of vitamin A, is recognized as a significant teratogen for inducing cleft palate in both humans and mice. The molecular mechanisms underlying it remain intricate and incompletely elucidated. The advent of single-cell sequencing technology offers novel methodologies to investigate the mechanisms by which atRA induces cleft palate. Methods: In this study, we use C57BL/6 mice to conduct cleft palate models, comprising a control group and an atRA-exposed group. Palatal shelves were collected at embryonic day 12.5 (E12.5) for 10x single-cell sequencing analysis to discern and compare the cellular and molecular disparities between the two groups. Validation of the findings was performed using Quantitative real-time polymerase chain reaction and Western blot techniques. Results: The findings indicate that at E12.5, atRA predominantly affects the mesenchymal and epithelial cells of the palatal shelves, inhibiting cellular proliferation and migration. The primary mechanism of atRA’s effect involves modulation of the Wnt and TGF-β signaling pathways. Furthermore, the Ppp1r14b gene was identified as a critical mediator in atRA’s interaction with these pathways. Conclusions: This study provides a more comprehensive understanding of the mechanisms underlying atRA-induced cleft palate formation. It highlights the significance of the Wnt and TGF-β pathways, as well as the Ppp1r14b gene during this procedure. Full article
Show Figures

Figure 1

23 pages, 2885 KB  
Article
Parkia platycephala Pods Modulate Eimeria spp. Parasite Load and Enhance Productive Performance in Naturally Infected Lambs
by Thalia Caldas da Silva, Gabrielle de Melo Oliveira, Osmar Macêdo Fortaleza Neto, Maycon Rodrigo de Souza Diniz, Joana Kellany Gonçalves de Andrade, José Gracione do Nascimento Souza Filho, Janaína Marques do Nascimento, Sara Silva Reis, Michelle de Oliveira Maia Parente, Arlan Araújo Rodrigues, Anderson de Moura Zanine, Henrique Nunes Parente and Ivo Alexandre Leme da Cunha
Animals 2025, 15(19), 2896; https://doi.org/10.3390/ani15192896 - 3 Oct 2025
Viewed by 700
Abstract
Coccidiosis represents a major constraint to sheep productivity worldwide, with increasing concerns regarding anticoccidial resistance and growing interest in reducing dependency on conventional synthetic anticoccidials. This investigation evaluated the anticoccidial properties of faveira pods (Parkia platycephala pod—PpP) and their influence on productive [...] Read more.
Coccidiosis represents a major constraint to sheep productivity worldwide, with increasing concerns regarding anticoccidial resistance and growing interest in reducing dependency on conventional synthetic anticoccidials. This investigation evaluated the anticoccidial properties of faveira pods (Parkia platycephala pod—PpP) and their influence on productive performance in naturally infected lambs. Eighteen uncastrated Dorper × Santa Inês crossbred males (20.0 ± 2.5 kg, 5 months) were randomly allocated to three groups: G1 (0% PpP; n = 6), G2 (100% PpP replacing roughage, 30.0% of total diet; n = 6), and the control group (0% PpP plus 20 mg/kg toltrazuril; n = 5). Parasitological assessments, productive performance, and behavioral parameters were monitored over 45 days using oocyst counts, morphometric analysis, digestibility trials, and biometric measurements. Nine Eimeria species were identified, with E. crandallis, E. parva, and E. bakuensis representing 53.5% of total oocyst shedding. Group G2 demonstrated a numerical 8.5% reduction in parasite load compared to G1 (p = 0.42), while toltrazuril achieved 36.6% efficacy (p < 0.05). Species-specific effects were significant for E. crandallis, E. parva, and E. ovinoidalis (p < 0.01). A robust correlation emerged between parasite load and water consumption (r = 0.652, p = 0.0045), establishing a novel behavioral biomarker for coccidiosis monitoring. Environmental oocyst elimination decreased by 43.4% in the P. platycephala group. These findings demonstrate that PpPs possess moderate anticoccidial properties, offering a sustainable complementary strategy for integrated coccidiosis management while contributing to environmental sustainability. Full article
(This article belongs to the Special Issue Coccidian Parasites: Epidemiology, Control and Prevention Strategies)
Show Figures

Figure 1

21 pages, 2099 KB  
Article
Identifying Molecular Modulators of the Vascular Invasion in Rectal Carcinoma: Role of ADAMTS8 and Its Co-Dependent Genes
by Bojana Kožik, Tarik Čorbo, Naris Pojskić, Ana Božović, Lidija Todorović, Ana Kolaković, Vesna Mandušić and Lejla Pojskić
Int. J. Mol. Sci. 2025, 26(13), 6261; https://doi.org/10.3390/ijms26136261 - 28 Jun 2025
Viewed by 1731
Abstract
Rectal carcinoma (RC) represents approximately 30% of all colorectal carcinomas (CRC) and is considered a distinct clinical entity. Vascular invasion (VI) is recognized as an independent predictor of poor outcomes in RC. In this study, we applied bioinformatics methods to identify gene pathways [...] Read more.
Rectal carcinoma (RC) represents approximately 30% of all colorectal carcinomas (CRC) and is considered a distinct clinical entity. Vascular invasion (VI) is recognized as an independent predictor of poor outcomes in RC. In this study, we applied bioinformatics methods to identify gene pathways most likely associated with VI in rectal carcinoma. As ADAMTS8 showed statistically significant negative relations with the VI in RC patients, we further analyzed its top co-dependent genes—DNAL4, EVI2B, PPP1R35, PTGR3, RPL21, SOX4, and ZNF3—for the experimentally proven molecular modulators. We identified a total of 23 compounds from the Comparative Toxicogenomics Database based on previously reported data for all eight target genes. The search was expanded to include additional chemical agents by structure similarity using the PubChem database, which revealed 9661 additional compounds. These were subsequently used for molecular interaction analysis against target proteins co-expressed with, or associated with, ADAMTS8 in RC with VI. Ultimately, we identified four high-affinity compounds—cyanoginosin LR, doxorubicin, benzo[a]pyrene, and dibenzo(a,e)pyrene—that interacted with all target proteins. These compounds show potential for further assessment of their role in modulating processes related to vascular invasion, which is a strong negative predictor of RC outcomes. Full article
(This article belongs to the Special Issue Genomics and Proteomics of Cancer)
Show Figures

Figure 1

14 pages, 2142 KB  
Article
Search for Ancient Selection Traces in Faverolle Chicken Breed (Gallus gallus domesticus) Based on Runs of Homozygosity Analysis
by Anna E. Ryabova, Anastasiia I. Azovtseva, Yuri S. Shcherbakov, Artem P. Dysin and Natalia V. Dementieva
Animals 2025, 15(10), 1487; https://doi.org/10.3390/ani15101487 - 20 May 2025
Cited by 1 | Viewed by 1042
Abstract
Runs of homozygosity (ROHs) are continuous homozygous segments of genomes that can be used to infer the historical development of the population. ROH studies allow us to analyze the genetic structure of a population and identify signs of selection. The present study searched [...] Read more.
Runs of homozygosity (ROHs) are continuous homozygous segments of genomes that can be used to infer the historical development of the population. ROH studies allow us to analyze the genetic structure of a population and identify signs of selection. The present study searched for ROH regions in the Faverolle chicken breed. DNA samples from modern individuals and museum Faverolle specimens were obtained and sent for whole-genome sequencing (WGS) with 30× coverage. The results were aligned to the reference genome and subjected to additional filtering. ROH segments were then analyzed using PLINK 1.9. As a result, 10 regions on GGA1, 2, 3, 4, and 13 were identified. A total of 19 genes associated with fat deposition and lipid metabolism (GBE1, CACNA2D1, STON1, PPP1R21, RPL21L1, ATP6V0E1, CREBRF, NKX2-2, COMMD1), fertility (LHCGR, GTF2A1L, SAMD5), muscle development and body weight (VGLL3, CACNA2D1, FOXN2, ERGIC1, RPL26L1), the shape and relative size of the skeleton (FAT4), and autophagy and apoptosis (BNIP1) were found. Developmental protein genes (PAX1, NKX2-2, NKX2-4, NKX2-5) formed a separate cluster. Probably, selection for the preservation of high flavor characteristics contributed to the consolidation of these ROH regions. The present research enhances our knowledge on the Faverolle breed’s genome and pinpoints their ROH segments that are also specific «selection traces». Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1807 KB  
Article
Genome-Wide Association Study Reveals Genetic Mechanisms Underlying Intersex and Aproctia in Large White Pigs
by Yajun Li, Jiaxin Shi, Yingshan Yang, Donglin Ruan, Jie Wu, Danyang Lin, Zihao Liao, Xinrun Hong, Fuchen Zhou, Langqing Liu, Jie Yang, Ming Yang, Enqin Zheng, Zhenfang Wu, Gengyuan Cai and Zebin Zhang
Animals 2025, 15(8), 1094; https://doi.org/10.3390/ani15081094 - 10 Apr 2025
Viewed by 1050
Abstract
Congenital developmental abnormalities in piglets, such as intersex and aproctia, adversely affect survival rates, growth performance, and genetic breeding efficiency in pig populations. To elucidate their genetic basis, we performed a genome-wide association study (GWAS) on 1030 Large White pigs. We combined 50 [...] Read more.
Congenital developmental abnormalities in piglets, such as intersex and aproctia, adversely affect survival rates, growth performance, and genetic breeding efficiency in pig populations. To elucidate their genetic basis, we performed a genome-wide association study (GWAS) on 1030 Large White pigs. We combined 50 K SNP chip data with SWIM-based genotype imputation to enhance the resolution of genetic variation detection, followed by MLM analysis. Our results identified 53 significant SNPs, with 52 associated with intersex and 1 with aproctia. Key candidate genes included MAD1L1, ID4, EFNA5, and PPP1R16B for intersex and ARNT2 for aproctia. Functional enrichment analysis highlighted pathways related to gonadal development (e.g., progesterone-mediated oocyte maturation) and embryonic morphogenesis. Collectively, the identification of these SNPs and candidate genes advances our understanding of the genetic architecture of intersex and aproctia in piglets. These findings provide actionable insights for optimizing genetic breeding strategies and improving health management in Large White pig production, with potential implications for reducing economic losses caused by congenital disorders. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

14 pages, 2001 KB  
Article
Mechanism of β-Catenin in Pulmonary Fibrosis Following SARS-CoV-2 Infection
by Min Jiang, Jiaqi Hou, Qianqian Chai, Shihao Yin and Qian Liu
Cells 2025, 14(6), 394; https://doi.org/10.3390/cells14060394 - 7 Mar 2025
Cited by 1 | Viewed by 2005
Abstract
Pulmonary fibrosis due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is the leading cause of death in patients with COVID-19. β-catenin, a key molecule in the Wnt/β-catenin signaling pathway, has been shown to be involved in the development of pulmonary fibrosis [...] Read more.
Pulmonary fibrosis due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is the leading cause of death in patients with COVID-19. β-catenin, a key molecule in the Wnt/β-catenin signaling pathway, has been shown to be involved in the development of pulmonary fibrosis (e.g., idiopathic pulmonary fibrosis, silicosis). In this study, we developed a SARS-CoV-2-infected A549-hACE2 cell model to evaluate the efficacy of the A549-hACE2 monoclonal cell line against SARS-CoV-2 infection. The A549-hACE2 cells were then subjected to either knockdown or overexpression of the effector β-catenin, and the modified cells were subsequently infected with SARS-CoV-2. Additionally, we employed transcriptomics and raw letter analysis approaches to investigate other potential effects of β-catenin on SARS-CoV-2 infection. We successfully established a model of cellular fibrosis induced by SARS-CoV-2 infection in lung-derived cells. This model can be utilized to investigate the molecular biological mechanisms and cellular signaling pathways associated with virus-induced lung fibrosis. The results of our mechanistic studies indicate that β-catenin plays a significant role in lung fibrosis resulting from SARS-CoV-2 infection. Furthermore, the inhibition of β-catenin mitigated the accumulation of mesenchymal stroma in A549-hACE2 cells. Additionally, β-catenin knockdown was found to facilitate multi-pathway crosstalk following SARS-CoV-2 infection. The fact that β-catenin overexpression did not exacerbate cellular fibrosis may be attributed to the activation of PPP2R2B. Full article
Show Figures

Figure 1

23 pages, 10008 KB  
Review
Multi-Global Navigation Satellite System for Earth Observation: Recent Developments and New Progress
by Shuanggen Jin, Xuyang Meng, Gino Dardanelli and Yunlong Zhu
Remote Sens. 2024, 16(24), 4800; https://doi.org/10.3390/rs16244800 - 23 Dec 2024
Cited by 7 | Viewed by 3529
Abstract
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have [...] Read more.
The Global Navigation Satellite System (GNSS) has made important progress in Earth observation and applications. With the successful design of the BeiDou Navigation Satellite System (BDS), four global navigation satellite systems are available worldwide, together with Galileo, GLONASS, and GPS. These systems have been widely employed in positioning, navigation, and timing (PNT). Furthermore, GNSS refraction, reflection, and scattering signals can remotely sense the Earth’s surface and atmosphere with powerful implications for environmental remote sensing. In this paper, the recent developments and new application progress of multi-GNSS in Earth observation are presented and reviewed, including the methods of BDS/GNSS for Earth observations, GNSS navigation and positioning performance (e.g., GNSS-PPP and GNSS-NRTK), GNSS ionospheric modelling and space weather monitoring, GNSS meteorology, and GNSS-reflectometry and its applications. For instance, the static Precise Point Positioning (PPP) precision of most MGEX stations was improved by 35.1%, 18.7%, and 8.7% in the east, north, and upward directions, respectively, with PPP ambiguity resolution (AR) based on factor graph optimization. A two-layer ionospheric model was constructed using IGS station data through three-dimensional ionospheric model constraints and TEC accuracy was increased by about 20–27% with the GIM model. Ten-minute water level change with centimeter-level accuracy was estimated with ground-based multiple GNSS-R data based on a weighted iterative least-squares method. Furthermore, a cyclone and its positions were detected by utilizing the GNSS-reflectometry from the space-borne Cyclone GNSS (CYGNSS) mission. Over the years, GNSS has become a dominant technology among Earth observation with powerful applications, not only for conventional positioning, navigation and timing techniques, but also for integrated remote sensing solutions, such as monitoring typhoons, river water level changes, geological geohazard warnings, low-altitude UAV navigation, etc., due to its high performance, low cost, all time and all weather. Full article
Show Figures

Graphical abstract

15 pages, 1782 KB  
Article
PPP3R1 Promoter Polymorphism (Allelic Variation) Affects Tacrolimus Treatment Efficacy by Modulating E2F6 Binding Affinity
by Xinyi Zheng, Shengying Qin, Mingkang Zhong, Qinxia Xu, Cong Huai and Xiaoyan Qiu
Biomedicines 2024, 12(12), 2896; https://doi.org/10.3390/biomedicines12122896 - 19 Dec 2024
Viewed by 1233
Abstract
Background: Tacrolimus is widely used as a first-line immunosuppressant in transplant immunology; however, its clinical application is constrained by the narrow therapeutic index and considerable interindividual variability. In this study, we identified the potential regulatory role of a novel PPP3R1 promoter polymorphism, rs4519508 [...] Read more.
Background: Tacrolimus is widely used as a first-line immunosuppressant in transplant immunology; however, its clinical application is constrained by the narrow therapeutic index and considerable interindividual variability. In this study, we identified the potential regulatory role of a novel PPP3R1 promoter polymorphism, rs4519508 C > T, in the tacrolimus pharmacodynamic pathway. Methods: Dual-luciferase reporter assays and bioinformatic analysis were applied to assess the impact of allelic variation. Electrophoretic mobility shift assays (EMSA) validated the altered binding of transcription factors. Quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and Western blots were used to determine the immunosuppressive effect of tacrolimus. Results: Assays revealed that rs4519508 C > T markedly enhanced PPP3R1 promoter activity. EMSA assays validated the binding of E2F6 to rs4519508 C (wild-type) and the binding was significantly weaker to the rs4519508 T (mutant-type). The overexpression of E2F6 significantly reduced the transcriptional activity and expression of PPP3R1 when the rs4519508 site presented as major C allele, an effect that was not observed with the rs4519508 T allele. Furthermore, the downregulation of E2F6 raises the level of downstream immune cytokines inhibited by TAC. Conclusions: This study proposed that E2F6 suppresses the expression of PPP3R1, while rs4519508 C > T impairs the binding of E2F6, and thus elevates the level of PPP3R1, so that the inhibition of the downstream immune cytokines by TAC is attenuated. Our findings reported the potential regulatory role of a novel polymorphism, PPP3R1 rs4519508 C > T, which may serve as pharmacodynamic-associated pharmacogenetic biomarker indicating individual response variability of tacrolimus, and thus aid the clinical management of transplant immunology. Full article
Show Figures

Graphical abstract

23 pages, 4725 KB  
Article
Transcriptome and Metabolome Insights into Key Genes Regulating Fat Deposition and Meat Quality in Pig Breeds
by Suthar Teerath Kumar, Yunlong Zheng, Jing Xu, Ziyi Zhao, Qi Zhang, Yunpeng Zhang, Min Li, Hong Zou, Riaz Muhammad Azeem, Wu-Sheng Sun, Yuan Zhao and Shu-Min Zhang
Animals 2024, 14(24), 3560; https://doi.org/10.3390/ani14243560 - 10 Dec 2024
Cited by 11 | Viewed by 3126
Abstract
Meat quality is a complex trait that exhibits significant variation across pig breeds, and the regulatory mechanisms governing pork meat quality are not fully elucidated. We compared the transcriptomics and metabolomics of the longissimus dorsi (LD) muscle between the Songliao Black Pig (SBP) [...] Read more.
Meat quality is a complex trait that exhibits significant variation across pig breeds, and the regulatory mechanisms governing pork meat quality are not fully elucidated. We compared the transcriptomics and metabolomics of the longissimus dorsi (LD) muscle between the Songliao Black Pig (SBP) and Large White × Landrace Pig (LWLDP) to investigate breed-specific differences in meat quality and underlying regulatory pathways. The results showed that SBP meat had a higher marbling score and backfat thickness, a richer color, a lower shear force, and reduced drip loss. Fatty acid (FA) analysis identified 15 significant FAs in the LWLDP, with docosahexaenoic acid (DHA) in the SBP, while amino acid (AA) analysis revealed no breed-based differences. Transcriptome analysis identified 134 upregulated and 362 downregulated genes in the SBP. Protein–protein interaction (PPI) network analysis found 25 key genes, which are associated with muscle development, fat deposition, and overall meat quality, while genes in the insulin signaling pathway, such as PPP1R3B, PPARGC1A, SOCS1, EIF4E, PRKAR2A, PRKAG2, and FASN, play a crucial role in balancing fat metabolism and catabolism. Metabolomic analysis identified 89 upregulated and 10 downregulated metabolites in the SBP, primarily involved in fructose and mannose metabolism, amino acid biosynthesis, nucleotide sugar metabolism, and glucagon signaling pathways. Gene–metabolite association analysis found that the PPP1R3B gene had a strong association with Thr-Leu, Maltol, D-myo-Inositol-4-phosphate, and Fructose-6-phosphate, while MYOG correlated with Mannose-6-phosphate, Fructose-1-phosphate, Mannose-1-phosphate, and Glucose-6-phosphate. In contrast, NR4A3 and PPARGC1A showed a strong negative correlation with most upregulated metabolites. In conclusion, this study identified functional genes, elucidated the mechanisms associated with meat quality traits, and identified gene–metabolite associations involved in energy metabolism, muscle development, and fat deposition, providing valuable insights into the molecular mechanisms that regulate meat quality between pig breeds. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

12 pages, 2193 KB  
Article
Thirteen New Patients of PPP2R5D Gene Mutation and the Fine Profile of Genotype–Phenotype Correlation Unraveling the Pathogenic Mechanism Underlying Macrocephaly Phenotype
by Yinmo Jiang, Bingbing Wu, Xi Zhang, Lin Yang, Sujuan Wang, Huiping Li, Shuizhen Zhou, Yanyan Qian and Huijun Wang
Children 2024, 11(8), 897; https://doi.org/10.3390/children11080897 - 26 Jul 2024
Cited by 1 | Viewed by 3153
Abstract
Background: Neurodevelopmental disorders (NDDs) are a group of diseases that severely affect the physical and mental health of children. The PPP2R5D gene encodes B56δ, the regulatory subunit of protein phosphatase 2A (PP2A). NDDs related to the PPP2R5D gene have recently been defined as [...] Read more.
Background: Neurodevelopmental disorders (NDDs) are a group of diseases that severely affect the physical and mental health of children. The PPP2R5D gene encodes B56δ, the regulatory subunit of protein phosphatase 2A (PP2A). NDDs related to the PPP2R5D gene have recently been defined as Houge–Janssens syndrome 1. Methods: Clinical/whole exome sequencing was performed on approximately 3000 patients with NDDs from 2017 to 2023. In vitro experiments were performed to assess the impairment of variants to protein expression and the assembly of PP2A holoenzyme. The genetic information and phenotypes of the reported patients, as well as patients in this study, were summarized, and the genotype–phenotype relationship was analyzed. The probability of pathogenic missense variants in PPP2R5D was predicted using AlphaMissense (AM), and the relationship between certain phenotype and 3D protein structural features were analyzed. Results: Thirteen new patients carrying twelve PPP2R5D gene variants were detected, including five novel missense variants and one novel frameshift variant. In vitro experiments revealed that the frameshift variant p.H463Mfs*3 resulted in a ~50 kDa truncated protein with lower expression level. Except for E420K and T536R, other missense variants impaired holoenzyme assembly. Furthermore, we found that pathogenic/likely pathogenic (P/LP) variants that have been reported so far were all missense variants and clustered in three conserved regions, and the likelihood of P/LP mutations located in these conserved regions was extremely high. In addition, the macrocephaly phenotype was related to negatively charged residues involved in substrate recruitment. Conclusions: We reported thirteen new patients with PPP2R5D gene variants and expanded the PPP2R5D variant spectrum. We confirmed the pathogenicity of novel variants through in vitro experiments. Our findings in genotype–phenotype relationship provide inspiration for genetic counseling and interpretation of variants. We also provide directions for further research on the mechanism of macrocephaly phenotype. Full article
(This article belongs to the Special Issue Neurodevelopmental Disorders in Pediatrics)
Show Figures

Figure 1

12 pages, 3261 KB  
Article
Unraveling the Pathogenetic Mechanisms Underlying the Association between Specific Mitochondrial DNA Haplogroups and Parkinson’s Disease
by Min-Yu Lan, Tsu-Kung Lin, Baiba Lace, Algirdas Utkus, Birute Burnyte, Kristina Grigalioniene, Yu-Han Lin, Inna Inashkina and Chia-Wei Liou
Cells 2024, 13(8), 694; https://doi.org/10.3390/cells13080694 - 17 Apr 2024
Viewed by 2175
Abstract
Variants of mitochondrial DNA (mtDNA) have been identified as risk factors for the development of Parkinson’s disease (PD). However, the underlying pathogenetic mechanisms remain unclear. Cybrid models carrying various genotypes of mtDNA variants were tested for resistance to PD-simulating MPP+ treatment. The [...] Read more.
Variants of mitochondrial DNA (mtDNA) have been identified as risk factors for the development of Parkinson’s disease (PD). However, the underlying pathogenetic mechanisms remain unclear. Cybrid models carrying various genotypes of mtDNA variants were tested for resistance to PD-simulating MPP+ treatment. The most resistant line was selected for transcriptome profiling, revealing specific genes potentially influencing the resistant characteristic. We then conducted protein validation and molecular biological studies to validate the related pathways as the influential factor. Cybrids carrying the W3 mtDNA haplogroup demonstrated the most resistance to the MPP+ treatment. In the transcriptome study, PPP1R15A was identified, while further study noted elevated expressions of the coding protein GADD34 across all cybrids. In the study of GADD34-related mitochondrial unfolding protein response (mtUPR), we found that canonical mtUPR, launched by the phosphate eIF2a, is involved in the resistant characteristic of specific mtDNA to MPP+ treatment. Our study suggests that a lower expression of GADD34 in the late phase of mtUPR may prolong the mtUPR process, thereby benefitting protein homeostasis and facilitating cellular resistance to PD development. We herein demonstrate that GADD34 plays an important role in PD development and should be further investigated as a target for the development of therapies for PD. Full article
Show Figures

Figure 1

23 pages, 4313 KB  
Article
Obesity-Dependent Association of the rs10454142 PPP1R21 with Breast Cancer
by Irina Ponomarenko, Konstantin Pasenov, Maria Churnosova, Inna Sorokina, Inna Aristova, Vladimir Churnosov, Marina Ponomarenko, Yuliya Reshetnikova, Evgeny Reshetnikov and Mikhail Churnosov
Biomedicines 2024, 12(4), 818; https://doi.org/10.3390/biomedicines12040818 - 8 Apr 2024
Cited by 10 | Viewed by 2575
Abstract
The purpose of this work was to find a link between the breast cancer (BC)-risk effects of sex hormone-binding globulin (SHBG)-associated polymorphisms and obesity. The study was conducted on a sample of 1498 women (358 BC; 1140 controls) who, depending on the presence/absence [...] Read more.
The purpose of this work was to find a link between the breast cancer (BC)-risk effects of sex hormone-binding globulin (SHBG)-associated polymorphisms and obesity. The study was conducted on a sample of 1498 women (358 BC; 1140 controls) who, depending on the presence/absence of obesity, were divided into two groups: obese (119 BC; 253 controls) and non-obese (239 BC; 887 controls). Genotyping of nine SHBG-associated single nucleotide polymorphisms (SNP)—rs17496332 PRMT6, rs780093 GCKR, rs10454142 PPP1R21, rs3779195 BAIAP2L1, rs440837 ZBTB10, rs7910927 JMJD1C, rs4149056 SLCO1B1, rs8023580 NR2F2, and rs12150660 SHBG—was executed, and the BC-risk impact of these loci was analyzed by logistic regression separately in each group of obese/non-obese women. We found that the BC-risk effect correlated by GWAS with the SHBG-level polymorphism rs10454142 PPP1R21 depends on the presence/absence of obesity. The SHBG-lowering allele C rs10454142 PPP1R21 has a risk value for BC in obese women (allelic model: CvsT, OR = 1.52, 95%CI = 1.10–2.11, and pperm = 0.013; additive model: CCvsTCvsTT, OR = 1.71, 95%CI = 1.15–2.62, and pperm = 0.011; dominant model: CC + TCvsTT, OR = 1.95, 95%CI = 1.13–3.37, and pperm = 0.017) and is not associated with the disease in women without obesity. SNP rs10454142 PPP1R21 and 10 proxy SNPs have adipose-specific regulatory effects (epigenetic modifications of promoters/enhancers, DNA interaction with 51 transcription factors, eQTL/sQTL effects on five genes (PPP1R21, RP11-460M2.1, GTF2A1L, STON1-GTF2A1L, and STON1), etc.), can be “likely cancer driver” SNPs, and are involved in cancer-significant pathways. In conclusion, our study detected an obesity-dependent association of the rs10454142 PPP1R21 with BC in women. Full article
Show Figures

Figure 1

22 pages, 7443 KB  
Article
Identification of a Novel Germline PPP4R3A Missense Mutation Asp409Asn on Familial Non-Medullary Thyroid Carcinoma
by Yixuan Hu, Zhuojun Han, Honghao Guo, Ning Zhang, Na Shen, Yujia Jiang and Tao Huang
Biomedicines 2024, 12(1), 244; https://doi.org/10.3390/biomedicines12010244 - 22 Jan 2024
Cited by 2 | Viewed by 2599
Abstract
Familial non-medullary thyroid carcinoma (FNMTC) accounts for 3% to 9% of all thyroid cancer cases, yet its genetic mechanisms remain unknown. Our study aimed to screen and identify novel susceptibility genes for FNMTC. Whole-exome sequencing (WES) was conducted on a confirmed FNMTC pedigree, [...] Read more.
Familial non-medullary thyroid carcinoma (FNMTC) accounts for 3% to 9% of all thyroid cancer cases, yet its genetic mechanisms remain unknown. Our study aimed to screen and identify novel susceptibility genes for FNMTC. Whole-exome sequencing (WES) was conducted on a confirmed FNMTC pedigree, comprising four affected individuals across two generations. Variants were filtered and analyzed using ExAC and 1000 Genomes Project, with candidate gene pathogenicity predicted using SIFT, PolyPhen, and MutationTaster. Validation was performed through Sanger sequencing in affected pedigree members and sporadic patients (TCGA database) as well as general population data (gnomAD database). Ultimately, we identified the mutant PPP4R3A (NC_000014.8:g.91942196C>T, or NM_001366432.2(NP_001353361.1):p.(Asp409Asn), based on GRCH37) as an FNMTC susceptibility gene. Subsequently, a series of functional experiments were conducted to investigate the impact of PPP4R3A and its Asp409Asn missense variant in thyroid cancer. Our findings demonstrated that wild-type PPP4R3A exerted tumor-suppressive effects via the Akt-mTOR-P70 S6K/4E-BP1 axis. However, overexpression of the PPP4R3A Asp409Asn mutant resulted in loss of tumor-suppressive function, ineffective inhibition of cell invasion, and even promotion of cell proliferation and migration by activating the Akt/mTOR signaling pathway. These results indicated that the missense variant PPP4R3A Asp409Asn is a candidate susceptibility gene for FNMTC, providing new insights into the diagnosis and intervention of FNMTC. Full article
(This article belongs to the Special Issue Thyroid Nodule: Updates on the Molecular Mechanism and Diagnosis)
Show Figures

Figure 1

Back to TopTop