Mechanism of β-Catenin in Pulmonary Fibrosis Following SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Cloning
2.1.1. shRNA
2.1.2. Cloning Vectors
2.1.3. Cloning Strains
2.2. Cell Culture
2.3. Cell Line Construction
2.4. SARS-CoV-2 Infection
2.5. Sample Testing
2.5.1. IFA
2.5.2. RT-qPCR
2.5.3. WB
2.6. Transcriptomics
2.7. Statistical Analysis
3. Results
3.1. Upregulation of β-Catenin and ECM Markers Following SARS-CoV-2 Infection in A549-hACE2 Cells
3.2. Inhibition of β-Catenin Reduces Mesenchymal Accumulation in A549-hACE2 Cells
3.3. Transcriptomics of β-Catenin-Modified Cells After SARS-CoV-2 Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATCC | American Type Culture Collection |
CDS | Coding sequence |
ECM | Extracellular matrix |
FBS | Fetal bovine serum |
hACE2 | Human angiotensin-converting enzyme 2 |
IPF | Idiopathic pulmonary fibrosis |
PF | Pulmonary fibrosis |
qPCR | Quantitative polymerase chain reaction |
SARS-CoV2-2 | Severe acute respiratory syndrome coronavirus 2 |
shRNA | Short hairpin RNA |
WB | Western blotting |
WNT | Wingless gene of Drosophila |
References
- Wang, Q.H.; Zhang, Y.F.; Wu, L.L.; Niu, S.; Song, C.L.; Zhang, Z.Y.; Lu, G.W.; Qiao, C.P.; Hu, Y.; Yuen, K.Y.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.P.; Parkkila, S.; Wu, X.; Aspatwar, A. SARS-CoV-2 variants and COVID-19 vaccines: Current challenges and future strategies. Int. Rev. Immunol. 2023, 42, 393–414. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Aceituno, A.; Garcia-Hernandez, A.; Larumbe-Zabala, E. COVID-19 long-term sequelae: Omicron versus Alpha and Delta variants. Infect. Dis. Now 2023, 53, 104688. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, Y.; Cai, J.; Duan, Y.Q.; Wang, R.S.; Zhang, H.Y.; Ruan, Q.R.; Li, J.S.; Zhao, L.; Ping, Y.F.; et al. Pathological changes in the lungs and lymphatic organs of 12 COVID-19 autopsy cases. Natl. Sci. Rev. 2020, 7, 1868–1878. [Google Scholar] [CrossRef]
- Raby, K.L.; Michaeloudes, C.; Tonkin, J.; Chung, K.F.; Bhavsar, P.K. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front. Immunol. 2023, 14, 1201658. [Google Scholar] [CrossRef]
- Savin, I.A.; Zenkova, M.A.; Sen’kova, A.V. Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int. J. Mol. Sci. 2022, 23, 14959. [Google Scholar] [CrossRef]
- Wu, J.; Chen, L.; Qin, C.A.; Huo, F.; Liang, X.; Yang, X.; Zhang, K.; Lin, P.; Liu, J.N.; Feng, Z.A.; et al. CD147 contributes to SARS-CoV-2-induced pulmonary fibrosis. Signal Transduct. Target. Ther. 2022, 7, 382. [Google Scholar] [CrossRef]
- Dalton, C.J.; Lemmon, C.A. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021, 10, 2443. [Google Scholar] [CrossRef]
- Kuivaniemi, H.; Tromp, G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene 2019, 707, 151–171. [Google Scholar] [CrossRef]
- Nielsen, S.H.; Willumsen, N.; Leeming, D.J.; Daniels, S.J.; Brix, S.; Karsdal, M.A.; Genovese, F.; Nielsen, M.J. Serological Assessment of Activated Fibroblasts by alpha-Smooth Muscle Actin (α-SMA): A Noninvasive Biomarker of Activated Fibroblasts in Lung Disorders. Transl. Oncol. 2019, 12, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Paramio, J.M.; Jorcano, J.L. Beyond structure: Do intermediate filaments modulate cell signalling? Bioessays 2002, 24, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.J.; Guan, Z.J.; Zhang, Z.K.; Ai, H.P.; Peng, X.; Zhou, H.H.; Xu, J.; Gu, Q. Atractylodinol prevents pulmonary fibrosis through inhibiting TGF-β receptor 1 recycling by stabilizing vimentin. Mol. Ther. 2023, 31, 3015–3033. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Shi, X.W.; Gao, R.D.; Fan, L.M.; Chen, R.L.; Cao, Y.; Xu, T.Z.; Yang, J.C. Polydatin alleviates bleomycin-induced pulmonary fibrosis and alters the gut microbiota in a mouse model. J. Cell. Mol. Med. 2023, 27, 3717–3728. [Google Scholar] [CrossRef]
- Chen, Y.L.; Song, M.Y.; Li, Z.G.; Hou, L.; Zhang, H.; Zhang, Z.; Hu, H.Y.; Jiang, X.H.; Yang, J.; Zou, X.; et al. FceRI deficiency alleviates silica-induced pulmonary inflammation and fibrosis. Ecotoxicol. Environ. Saf. 2022, 244, 114043. [Google Scholar] [CrossRef]
- Yoon, H.; Dean, L.S.; Jiyarom, B.; Khadka, V.S.; Deng, Y.P.; Nerurkar, V.R.; Chow, D.C.; Shikuma, C.M.; Devendra, G.; Koh, Y.; et al. Single-cell RNA sequencing reveals characteristics of myeloid cells in post-acute sequelae of SARS-CoV-2 patients with persistent respiratory symptoms. Front. Immunol. 2024, 14, 1268510. [Google Scholar] [CrossRef]
- Harless, W.W.; Lewis, B.; Qorri, B.; Abdulkhalek, S.; Szewczuk, M.R. Novel Therapeutic Target Critical for SARS-CoV-2 Infectivity and Induction of the Cytokine Release Syndrome. Cells 2023, 12, 1332. [Google Scholar] [CrossRef]
- Salton, F.; Confalonieri, P.; Campisciano, G.; Cifaldi, R.; Rizzardi, C.; Generali, D.; Pozzan, R.; Tavano, S.; Bozzi, C.; Lapadula, G.; et al. Cytokine Profiles as Potential Prognostic and Therapeutic Markers in SARS-CoV-2-Induced ARDS. J. Clin. Med. 2022, 11, 2951. [Google Scholar] [CrossRef]
- Reuter, S.; Beckert, H.; Taube, C. Take the Wnt out of the inflammatory sails: Modulatory effects of Wnt in airway diseases. Lab. Investig. 2016, 96, 177–185. [Google Scholar] [CrossRef]
- Jiang, M.; Hou, J.Q.; Lin, L.H.; Chai, Q.Q.; Wang, S.J.; Liu, X.; Liu, L.; Ren, L.; Zhou, Y.W.; Liu, Q. Proteomics of severe SARS-COV-2 infection and paraquat poisoning in human lung tissue samples: Comparison of microbial infected and toxic pulmonary fibrosis. Front. Cell. Infect. Microbiol. 2024, 14, 1446305. [Google Scholar] [CrossRef]
- Liu, J.Q.; Xiao, Q.; Xiao, J.N.; Niu, C.X.; Li, Y.Y.; Zhang, X.J.; Zhou, Z.W.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Valenta, T.; Hausmann, G.; Basler, K. The many faces and functions of β-catenin. EMBO J. 2012, 31, 2714–2736. [Google Scholar] [CrossRef] [PubMed]
- Dev, A.; Vachher, M.; Prasad, C.P. β-catenin inhibitors in cancer therapeutics: Intricacies and way forward. Bioengineered 2023, 14, 2251696. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, N. Pathology and pathophysiology of pneumoconiosis. Curr. Opin. Pulm. Med. 2000, 6, 140–144. [Google Scholar] [CrossRef]
- Hu, Y.N.; Wang, Q.; Yu, J.; Zhou, Q.; Deng, Y.H.; Liu, J.; Zhang, L.; Xu, Y.J.; Xiong, W.N.; Wang, Y. Tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis by modulating β-catenin signaling. Nat. Commun. 2022, 13, 114. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Xia, J.R.; Yang, G.; Li, C.; Qi, Y.M.; Dai, K.; Wu, C.C.; Guo, Y.H.; Yao, W.; Hao, C.F. A2aR inhibits fibrosis and the EMT process in silicosis by regulating Wnt/β-catenin pathway. Ecotoxicol. Environ. Saf. 2023, 249, 114410. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, W.Y.; Xia, C.; Ma, S.C.; Li, Z.Z.; Wang, N.D.; Ding, L.K.; Wang, Y.X.; Cheng, L.H.; Liu, H.B.; et al. TRIOBP modulates β-catenin signaling by regulation of miR-29b in idiopathic pulmonary fibrosis. Cell. Mol. Life Sci. 2024, 81, 13. [Google Scholar] [CrossRef]
- Lv, Q.; Wang, J.J.; Xu, C.Q.; Huang, X.Q.; Ruan, Z.Y.; Dai, Y.F. Pirfenidone alleviates pulmonary fibrosis in vitro and in vivo through regulating Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways. Mol. Med. 2020, 26, 49. [Google Scholar] [CrossRef]
- Sun, Z.R.; Yang, Z.Z.; Wang, M.M.; Huang, C.B.; Ren, Y.; Zhang, W.; Gao, F.; Cao, L.P.; Li, L.; Nie, S.N. Paraquat induces pulmonary fibrosis through Wnt/β-catenin signaling pathway and myofibroblast differentiation. Toxicol. Lett. 2020, 333, 170–183. [Google Scholar] [CrossRef]
- Zhu, B.B.; Wu, Y.; Huang, S.; Zhang, R.X.; Son, Y.M.; Li, C.F.; Cheon, I.S.; Gao, X.C.; Wang, M.; Chen, Y.; et al. Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection. Immunity 2021, 54, 1200–1218. [Google Scholar] [CrossRef]
- Chatterjee, S.; Keshry, S.S.; Ghosh, S.; Ray, A.; Chattopadhyay, S. Versatile β-Catenin Is Crucial for SARS-CoV-2 Infection. Microbiol. Spectr. 2022, 10, e01670-22. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Nie, J.; Ma, X.L.; Wei, Y.Q.; Peng, Y.; Wei, X.W. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer 2019, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Conte, E.; Fruciano, M.; Fagone, E.; Gili, E.; Caraci, F.; Iemmolo, M.; Crimi, N.; Vancheri, C. Inhibition of PI3K Prevents the Proliferation and Differentiation of Human Lung Fibroblasts into Myofibroblasts: The Role of Class I P110 Isoforms. PLoS ONE 2011, 6, e24663. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, Y.; Chi, P. Pirfenidone suppresses TGF-β1-induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway. Mol. Med. Rep. 2018, 18, 3907–3913. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.P.; Luo, F.M. The Role of JAK/STAT Pathway in Fibrotic Diseases: Molecular and Cellular Mechanisms. Biomolecules 2023, 13, 119. [Google Scholar] [CrossRef]
- Montero, P.; Milara, J.; Roger, I.; Cortijo, J. Role of JAK/STAT in Interstitial Lung Diseases; Molecular and Cellular Mechanisms. Int. J. Mol. Sci. 2021, 22, 6211. [Google Scholar] [CrossRef]
- Taniguchi, H.; Ebina, M.; Kondoh, Y.; Ogura, T.; Azuma, A.; Suga, M.; Taguchi, Y.; Takahashi, H.; Nakata, K.; Sato, A.; et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur. Respir. J. 2010, 35, 821–829. [Google Scholar] [CrossRef]
- Zou, W.J.; Huang, Z.; Jiang, T.P.; Shen, Y.P.; Zhao, A.S.; Zhou, S.; Zhang, S. Pirfenidone Inhibits Proliferation and Promotes Apoptosis of Hepatocellular Carcinoma Cells by Inhibiting the Wnt/beta-Catenin Signaling Pathway. Med. Sci. Monit. 2017, 23, 6107–6113. [Google Scholar] [CrossRef]
- Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid composition of fruit tissues of Citrus species. Biosci. Biotechnol. Biochem. 2006, 70, 178–192. [Google Scholar] [CrossRef]
- Moon, J.Y.; Manh Hung, L.V.; Unno, T.; Cho, S.K. Nobiletin Enhances Chemosensitivity to Adriamycin through Modulation of the Akt/GSK3beta/beta(-)Catenin/MYCN/MRP1 Signaling Pathway in A549 Human Non-Small-Cell Lung Cancer Cells. Nutrients 2018, 10, 1829. [Google Scholar] [CrossRef]
- Wang, H.; Jia, Q.; Feng, J.; Miao, C.; Ding, Y.; Liu, S.; Feng, C.; Lv, Y.; Huang, J.; Han, S. Establishment of angiotensin-converting enzyme 2 and cluster of differentiation 147 dual target cell membrane chromatography based on SNAP-tag technology for screening anti severe acute respiratory syndrome coronavirus 2 active components. J. Chromatogr. A 2023, 1693, 463903. [Google Scholar] [CrossRef]
- Majchrzak-Celinska, A.; Slocinska, M.; Barciszewska, A.M.; Nowak, S.; Baer-Dubowska, W. Wnt pathway antagonists, SFRP1, SFRP2, SOX17, and PPP2R2B, are methylated in gliomas and SFRP1 methylation predicts shorter survival. J. Appl. Genet. 2016, 57, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Ghatak, S.; Raha, S. Differential alterations of positive and negative regulators of beta catenin enhance endogenous expression and activity of beta catenin in A549 non small cell lung cancer (NSCLC) cells. Genes Dis. 2016, 3, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.H.; Dong, X.M.; Lu, H.; Tong, F.; Chen, L.J.; Zhang, R.G.; Dong, J.H.; Hu, Y.; Wu, G.; Dong, X.R. LPCAT1 promotes brain metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC pathway. J. Exp. Clin. Cancer Res. 2019, 38, 95. [Google Scholar] [CrossRef] [PubMed]
- Günther, J.; Petzl, W.; Bauer, I.; Ponsuksili, S.; Zerbe, H.; Schuberth, H.J.; Brunner, R.M.; Seyfert, H.M. Differentiating Staphylococcus aureus from Escherichia coli mastitis: S. aureus triggers unbalanced immune-dampening and host cell invasion immediately after udder infection. Sci. Rep. 2017, 7, 4811. [Google Scholar] [CrossRef]
- Almanza-Hurtado, A.; Martínez-Avila, M.C.; Rodríguez-Yánez, T.; Paternina-Mendoza, M.C.; Gutiérrez-Ariza, J.C.; Gómez-Arroyo, G. Viral Cardiomyopathies Associated With SARS-CoV-2 Infection. Clin. Med. Insights Case Rep. 2022, 15, 11795476221088140. [Google Scholar] [CrossRef]
- Van Linthout, S.; Klingel, K.; Tschope, C. SARS-CoV-2-related myocarditis-like syndromes Shakespeare’s question: What’s in a name? Eur. J. Heart Fail. 2020, 22, 922–925. [Google Scholar] [CrossRef]
- Ye, X.; Hemida, M.G.; Qiu, Y.; Hanson, P.J.; Zhang, H.M.; Yang, D. MiR-126 promotes coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/beta-catenin signal pathways. Cell. Mol. Life Sci. 2013, 70, 4631–4644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Hou, J.; Chai, Q.; Yin, S.; Liu, Q. Mechanism of β-Catenin in Pulmonary Fibrosis Following SARS-CoV-2 Infection. Cells 2025, 14, 394. https://doi.org/10.3390/cells14060394
Jiang M, Hou J, Chai Q, Yin S, Liu Q. Mechanism of β-Catenin in Pulmonary Fibrosis Following SARS-CoV-2 Infection. Cells. 2025; 14(6):394. https://doi.org/10.3390/cells14060394
Chicago/Turabian StyleJiang, Min, Jiaqi Hou, Qianqian Chai, Shihao Yin, and Qian Liu. 2025. "Mechanism of β-Catenin in Pulmonary Fibrosis Following SARS-CoV-2 Infection" Cells 14, no. 6: 394. https://doi.org/10.3390/cells14060394
APA StyleJiang, M., Hou, J., Chai, Q., Yin, S., & Liu, Q. (2025). Mechanism of β-Catenin in Pulmonary Fibrosis Following SARS-CoV-2 Infection. Cells, 14(6), 394. https://doi.org/10.3390/cells14060394