Genome-Wide Association Study Reveals Genetic Mechanisms Underlying Intersex and Aproctia in Large White Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Phenotypic Collection
2.3. Genotype Data Acquisition and Quality Control
2.4. Population Genetics and Fst Analysis
2.5. Genome-Wide Association Analysis
2.6. Conditional Analysis
2.7. Identification of Candidate Genes and Functional Enrichment Analysis
3. Results
3.1. Phenotyping and SNP Genotyping
3.2. Genome-Wide Association Analysis Results
3.3. Fst Analysis Results
3.4. Functional Annotation of Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eggers, S.; Sadedin, S.; Van Den Bergen, J.A.; Robevska, G.; Ohnesorg, T.; Hewitt, J.; Lambeth, L.; Bouty, A.; Knarston, I.M.; Tan, T.Y. Disorders of sex development: Insights from targeted gene sequencing of a large international patient cohort. Genome Biol. 2016, 17, 243. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yu, H.; Zhang, Y.; Zhao, H.; Zhong, B.; Yu, C.; Feng, Z.; Yu, H.; Li, H. Pathological characteristics of SRY-negative 38, XX-DSD pigs: A family case report. Anim. Reprod. Sci. 2024, 270, 107579. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.; Greve, T. Intersexuality in pigs: Clinical, physiological and practical considerations. Acta Vet. Scand. 1996, 37, 1–12. [Google Scholar] [CrossRef]
- Pailhoux, E.; Pelliniemi, L.; Barbosa, A.; Parma, P.; Kuopio, T.; Cotinot, C. Relevance of intersexuality to breeding and reproductive biotechnology programs; XX sex reversal in pigs. Theriogenology 1997, 47, 93–102. [Google Scholar] [CrossRef]
- Peretti, V.; Satué, K.; Ciotola, F.; Cristarella, S.; De Majo, M.; Biondi, V.; D’Anza, E.; Albarella, S.; Quartuccio, M. An unusual case of testicular disorder in sex development of arabian mare (64, XX SRY-Negative). Animals 2020, 10, 1963. [Google Scholar] [CrossRef]
- Szczerbal, I.; Komosa, M.; Nowacka-Woszuk, J.; Uzar, T.; Houszka, M.; Semrau, J.; Musial, M.; Barczykowski, M.; Lukomska, A.; Switonski, M. A disorder of sex development in a Holstein–Friesian Heifer with a rare mosaicism (60, XX/90, XXY): A genetic, anatomical, and histological study. Animals 2021, 11, 285. [Google Scholar] [CrossRef]
- Knap, P. Congenital defects inheritance of AI boars: Genetic parameters and breeding value estimation procedures. Livest. Prod. Sci. 1986, 15, 337–352. [Google Scholar] [CrossRef]
- Thaller, G.; Dempfle, L.; Hoeschele, I. Investigation of the inheritance of birth defects in swine by complex segregation analysis. J. Anim. Breed. Genet. 1996, 113, 77–92. [Google Scholar] [CrossRef]
- Wiedemann, S.; Fries, R.; Thaller, G. Genomewide scan for anal atresia in swine identifies linkage and association with a chromosome region on Sus scrofa chromosome 1. Genetics 2005, 171, 1207–1217. [Google Scholar] [CrossRef]
- Hori, T.; Giuffra, E.; Andersson, L.; Ohkawa, H. Mapping loci causing susceptibility to anal atresia in pigs, using a resource pedigree. J. Pediatr. Surg. 2001, 36, 1370–1374. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, C.; Li, X.; Yu, M.; Zhao, S.-H.; Li, X. Molecular characterization and genome-wide mutations in porcine anal atresia candidate gene GLI2. Mamm. Genome 2013, 24, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Mulley, R.; Edwards, M. Prevalence of congenital abnormalities in pigs. Aust. Vet. J. 1984, 61, 116–120. [Google Scholar] [CrossRef]
- Norrish, J.; Rennie, J. Observations on the inheritance of atresia ani in swine. J. Hered. 1968, 59, 186–187. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Wang, S.; Qin, H.; Zeng, H.; Ye, J.; Yang, J.; Cai, G.; Wu, Z.; Zhang, Z. Genome-wide association analysis unveils candidate genes and loci associated with aplasia cutis congenita in pigs. BMC Genom. 2023, 24, 701. [Google Scholar] [CrossRef]
- Ding, R.; Savegnago, R.; Liu, J.; Long, N.; Tan, C.; Cai, G.; Zhuang, Z.; Wu, J.; Yang, M.; Qiu, Y. The SWine IMputation (SWIM) haplotype reference panel enables nucleotide resolution genetic mapping in pigs. Commun. Biol. 2023, 6, 577. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Yuan, J.; Kitchener, A.C.; Lackey, L.B.; Sun, T.; Jiangzuo, Q.; Tuohetahong, Y.; Zhao, L.; Yang, P.; Wang, G.; Huang, C. The genome of the black-footed cat: Revealing a rich natural history and urgent conservation priorities for small felids. Proc. Natl. Acad. Sci. USA 2024, 121, e2310763120. [Google Scholar] [CrossRef]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Crew, F. Hermaphroditism in the Pig. BJOG Int. J. Obstet. Gynaecol. 1924, 31, 369–386. [Google Scholar] [CrossRef]
- Baker, J.R. On sex-intergrade pigs: Their anatomy, genetics, and developmental physiology. J. Exp. Biol. 1925, 2, 247–263. [Google Scholar] [CrossRef]
- Baker, J.R. A new type of mammalian intersexuality. J. Exp. Biol. 1928, 6, 56–64. [Google Scholar] [CrossRef]
- Brambell, F.R. The histology of an hermaphrodite pig and its developmental significance. J. Anat. 1929, 63, 397. [Google Scholar]
- Johnston, E.; Zeller, J.; Cantwell, G. Sex anomalies in swine. J. Hered. 1958, 49, 254–261. [Google Scholar] [CrossRef]
- Breeuwsma, A.J. Studies on intersexuality in pigs. Tijdschr. Voor Diergeneeskd. 1971, 96, 514–519. [Google Scholar]
- Basrur, P.; Kanagawa, H. Sex anomalies in pigs. Reproduction 1971, 26, 369–371. [Google Scholar] [CrossRef]
- Booth, W.; Polge, C. The occurrence of C19 steroids in testicular tissue and submaxillary glands of intersex pigs in relation to morphological characteristics. Reproduction 1976, 46, 115–121. [Google Scholar] [CrossRef]
- Hunter, R.; Baker, T.; Cook, B. Morphology, histology and steroid hormones of the gonads in intersex pigs. Reproduction 1982, 64, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.; Cook, B.; Baker, T. Intersexuality in five pigs, with particular reference to oestrous cycles, the ovotestis, steroid hormone secretion and potential fertility. J. Endocrinol. 1985, 106, 233-NP. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, P.; Poulsenm, P. Analysis of the gonadal sex of five intersex pigs using Y chromosomal markers. Hereditas 1993, 119, 205–207. [Google Scholar] [CrossRef]
- Pailhoux, E.; Cotinot, C.; Popescu, P.; Boscher, J.; Legault, C.; Fellous, M.; Parma, P.; Molteni, L. Genetic analysis of 38XX males with genital ambiguities and true hermaphrodites in pigs. Anim. Genet. 1994, 25, 299–305. [Google Scholar] [CrossRef]
- Eyarefe, O.D.; Atawalna, J.; Emikpe, B.O.; Folitse, R.; Dei, D.; Duduyemi, B.; Okungbowa, S.; Okai, D. Intersex piglet with bilobed urinary bladder in Kumasi, Ghana: A case report. Anim. Res. Int. 2017, 14, 2720–2724. [Google Scholar]
- Nowacka-Woszuk, J.; Szczerbal, I.; Stachowiak, M.; Szydlowski, M.; Nizanski, W.; Dzimira, S.; Maslak, A.; Payan-Carreira, R.; Wydooghe, E.; Nowak, T. Association between polymorphisms in the SOX9 region and canine disorder of sex development (78, XX.; SRY-negative) revisited in a multibreed case-control study. PLoS ONE 2019, 14, e0218565. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.; Liu, Y.; Kong, Y.; Xu, W.; Zeng, X.; Li, H.; Guo, Y.; Tang, X.; Zhang, J.; Zhu, B. Maternal genetic polymorphisms in the major mitotic checkpoint genes MAD1L1 and MAD2L1 associated with the risk of survival in abnormal chromosomal fetuses. Front. Genet. 2023, 14, 1105184. [Google Scholar] [CrossRef]
- Bandala-Jacques, A.; Hernández-Cruz, I.A.; Castro-Hernández, C.; Díaz-Chávez, J.; Arriaga-Canon, C.; Barquet-Muñoz, S.A.; Prada-Ortega, D.G.; Cantú-de León, D.; Herrera, L.A. Prognostic significance of the MAD1L1 1673 G: A polymorphism in ovarian adenocarcinomas. Rev. De Investig. Clin. 2020, 72, 372–379. [Google Scholar] [CrossRef]
- Oatley, J.M.; Brinster, R.L. Regulation of spermatogonial stem cell self-renewal in mammals. Annu. Rev. Cell Dev. Biol. 2008, 24, 263–286. [Google Scholar] [CrossRef]
- Beger, C.; Pierce, L.N.; Krüger, M.; Marcusson, E.G.; Robbins, J.M.; Welcsh, P.; Welch, P.J.; Welte, K.; King, M.-C.; Barber, J.R. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. Proc. Natl. Acad. Sci. USA 2001, 98, 130–135. [Google Scholar] [CrossRef]
- Dong, J.; Huang, S.; Caikovski, M.; Ji, S.; McGrath, A.; Custorio, M.G.; Creighton, C.J.; Maliakkal, P.; Bogoslovskaia, E.; Du, Z. ID4 regulates mammary gland development by suppressing p38MAPK activity. Development 2011, 138, 5247–5256. [Google Scholar] [CrossRef] [PubMed]
SSC a | SNP ID | Position (bp) b | Beta | p-Value | Nearest Gene | Data Types | |
---|---|---|---|---|---|---|---|
2 | 2_106861018_A | 106861018 | 0.018 | 5.53 × 10−10 | ST8SIA4 | Imputed | Intersex |
2 | 2_107619718_G | 107619718 | 0.21 | 5.53 × 10−10 | SLCO4C1 | ||
2 | 2_112265453_C | 112265453 | 0.21 | 5.53 × 10−10 | EFNA5 | ||
2 | 2_117364329_C | 117364329 | 0.198 | 9.65 × 10−9 | EPB41L4A | ||
3 | 3_1481804_A | 1481804 | 0.183 | 1.81 × 10−8 | MRM2, SNX8, EIF3B, ENSSSCG00000039023, CHST12, MAD1L1, NUDT1 | ||
17 | 17_42520428_T | 42520428 | 0.174 | 5.02 × 10−8 | FAM83D, PPP1R16B, DHX35 | ||
4 | 4_15237878_G | 15237878 | 0.143 | 2.11 × 10−6 | ID4 | Chip | |
7 | 7_49191557_A | 49191557 | 0.116 | 1.84 × 10−7 | ZFAND6, FAH, CTXND1, ARNT2 | Imputed | Aproctia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Shi, J.; Yang, Y.; Ruan, D.; Wu, J.; Lin, D.; Liao, Z.; Hong, X.; Zhou, F.; Liu, L.; et al. Genome-Wide Association Study Reveals Genetic Mechanisms Underlying Intersex and Aproctia in Large White Pigs. Animals 2025, 15, 1094. https://doi.org/10.3390/ani15081094
Li Y, Shi J, Yang Y, Ruan D, Wu J, Lin D, Liao Z, Hong X, Zhou F, Liu L, et al. Genome-Wide Association Study Reveals Genetic Mechanisms Underlying Intersex and Aproctia in Large White Pigs. Animals. 2025; 15(8):1094. https://doi.org/10.3390/ani15081094
Chicago/Turabian StyleLi, Yajun, Jiaxin Shi, Yingshan Yang, Donglin Ruan, Jie Wu, Danyang Lin, Zihao Liao, Xinrun Hong, Fuchen Zhou, Langqing Liu, and et al. 2025. "Genome-Wide Association Study Reveals Genetic Mechanisms Underlying Intersex and Aproctia in Large White Pigs" Animals 15, no. 8: 1094. https://doi.org/10.3390/ani15081094
APA StyleLi, Y., Shi, J., Yang, Y., Ruan, D., Wu, J., Lin, D., Liao, Z., Hong, X., Zhou, F., Liu, L., Yang, J., Yang, M., Zheng, E., Wu, Z., Cai, G., & Zhang, Z. (2025). Genome-Wide Association Study Reveals Genetic Mechanisms Underlying Intersex and Aproctia in Large White Pigs. Animals, 15(8), 1094. https://doi.org/10.3390/ani15081094