Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (415)

Search Parameters:
Keywords = PM2.5 impact on human health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2980 KiB  
Article
Temporal Variations in Particulate Matter Emissions from Soil Wind Erosion in Bayingolin Mongol Autonomous Prefecture, Xinjiang, China (2001–2022)
by Shuang Zhu, Fang Li, Yue Yang, Tong Ma and Jianhua Chen
Atmosphere 2025, 16(8), 911; https://doi.org/10.3390/atmos16080911 - 28 Jul 2025
Viewed by 168
Abstract
Soil fugitive dust (SFD) emissions pose a significant threat to both human health and the environment, highlighting the need for accurate and reliable estimation and assessment in the desert regions of northwest China. This study used climate, soil, and vegetation data from Bayingolin [...] Read more.
Soil fugitive dust (SFD) emissions pose a significant threat to both human health and the environment, highlighting the need for accurate and reliable estimation and assessment in the desert regions of northwest China. This study used climate, soil, and vegetation data from Bayingolin Prefecture (2001–2022) and applied the WEQ model to analyze temporal and spatial variations in total suspended particulate (TSP), PM10, and PM2.5 emissions and their driving factors. The region exhibited high emission factors for TSP, PM10, and PM2.5, averaging 55.46 t km−2 a−1, 27.73 t km−2 a−1, and 4.14 t km−2 a−1, respectively, with pronounced spatial heterogeneity and the highest values observed in Yuli, Qiemo, and Ruoqiang. The annual average emissions of TSP, PM10, and PM2.5 were 3.23 × 107 t, 1.61 × 107 t, and 2.41 × 106 t, respectively. Bare land was the dominant source, contributing 72.55% of TSP emissions. Both total emissions and emission factors showed an overall upward trend, reaching their lowest point around 2012, followed by significant increases in most counties during 2012–2022. Annual precipitation, wind speed, and temperature were identified as the primary climatic drivers of soil dust emissions across all counties, and their influences exhibited pronounced spatial heterogeneity in Bazhou. In Ruoqiang, Bohu, Korla, and Qiemo, dust emissions are mainly limited by precipitation, although dry conditions and sparse vegetation can amplify the role of wind. In Heshuo, Hejing, and Yanqi, stable vegetation helps to lessen wind’s impact. In Yuli, wind speed and temperature are the main drivers, whereas in Luntai, precipitation and temperature are both important constraints. These findings highlight the need to consider emission intensity, land use, or surface condition changes, and the potential benefits of increasing vegetation cover in severely desertified areas when formulating regional dust mitigation strategies. Full article
Show Figures

Figure 1

25 pages, 4161 KiB  
Article
Indoor/Outdoor Particulate Matter and Related Pollutants in a Sensitive Public Building in Madrid (Spain)
by Elisabeth Alonso-Blanco, Francisco Javier Gómez-Moreno, Elías Díaz-Ramiro, Javier Fernández, Esther Coz, Carlos Yagüe, Carlos Román-Cascón, Dulcenombre Gómez-Garre, Adolfo Narros, Rafael Borge and Begoña Artíñano
Int. J. Environ. Res. Public Health 2025, 22(8), 1175; https://doi.org/10.3390/ijerph22081175 - 25 Jul 2025
Viewed by 382
Abstract
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated [...] Read more.
According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated carbonaceous species, such as black carbon (BC), which are classified as carcinogenic by the International Agency for Research on Cancer (IARC), are not currently regulated. Compared with IAQ studies in other types of buildings, studies focusing on IAQ in hospitals or other healthcare facilities are scarce. Therefore, this study aims to evaluate the impact of these outdoor pollutants, among others, on the indoor environment of a hospital under different atmospheric conditions. To identify the seasonal influence, two different periods of two consecutive seasons (summer 2020 and winter 2021) were selected for the measurements. Regulated pollutants (NO, NO2, O3, PM10, and PM2.5) and nonregulated pollutants (PM1, PNC, and equivalent BC (eBC)) in outdoor air were simultaneously measured indoor and outdoor. This study also investigated the impact of indoor activities on indoor air quality. In the absence of indoor activities, outdoor sources significantly contribute to indoor traffic-related pollutants. Indoor and outdoor (I-O) measurements showed similar behavior, but indoor concentrations were lower, with peak levels delayed by up to two hours. Seasonal variations in indoor/outdoor (I/O) ratios were lower for particles than for associated gaseous pollutants. Particle infiltration depended on particle size, with it being higher the smaller the particle size. Indoor activities also significantly affected indoor pollutants. PMx (especially PM10 and PM2.5) concentrations were mainly modulated by walking-induced particle resuspension. Vertical eBC profiles indicated a relatively well-mixed environment. Ventilation through open windows rapidly altered indoor air quality. Outdoor-dominant pollutants (PNC, eBC, and NOX) had I/O ratios ≥ 1. Staying in the room with an open window had a synergistic effect, increasing the I/O ratios for all pollutants. Higher I/O ratios were associated with turbulent outdoor conditions in both unoccupied and occupied conditions. Statistically significant differences were observed between stable (TKE ≤ 1 m2 s−2) and unstable (TKE > 1 m2 s−2) conditions, except for NO2 in summer. This finding was particularly significant when the wind direction was westerly or easterly during unstable conditions. The results of this study highlight the importance of understanding the behavior of indoor particulate matter and related pollutants. These pollutants are highly variable, and knowledge about them is crucial for determining their health effects, particularly in public buildings such as hospitals, where information on IAQ is often limited. More measurement data is particularly important for further research into I-O transport mechanisms, which are essential for developing preventive measures and improving IAQ. Full article
Show Figures

Figure 1

25 pages, 1840 KiB  
Article
Airborne Measurements of Real-World Black Carbon Emissions from Ships
by Ward Van Roy, Jean-Baptiste Merveille, Kobe Scheldeman, Annelore Van Nieuwenhove and Ronny Schallier
Atmosphere 2025, 16(7), 840; https://doi.org/10.3390/atmos16070840 - 10 Jul 2025
Viewed by 398
Abstract
The impact of black carbon (BC) emissions on climate change, human health, and the environment is well-documented in the scientific literature. Although BC still remains largely unregulated at the international level, efforts have been made to reduce emissions of BC and Particulate Matter [...] Read more.
The impact of black carbon (BC) emissions on climate change, human health, and the environment is well-documented in the scientific literature. Although BC still remains largely unregulated at the international level, efforts have been made to reduce emissions of BC and Particulate Matter (PM2.5), particularly in sectors such as energy production, industry, and road transport. In contrast, the maritime shipping industry has made limited progress in reducing BC emissions from ships, mainly due to the absence of stringent BC emission regulations. While the International Maritime Organization (IMO) has established emission limits for pollutants such as SOx, NOx, and VOCs under MARPOL Annex VI, as of today, BC emissions from ships are still unregulated at the international level. Whereas it was anticipated that PM2.5 and BC emissions would be reduced with the adoption of the SOx regulations, especially within the sulfur emission control areas (SECA), this study reveals that BC emissions are only partially affected by the current MARPOL Annex VI regulations. Based on 886 real-world black carbon (BC) emission measurements from ships operating in the southern North Sea, the study demonstrates that SECA-compliant fuels do contribute to a notable decrease in BC emissions. However, it is important to note that the average BC emission factors (EFs) within the SECA remain comparable in magnitude to those reported for non-compliant fuels in earlier studies. Moreover, ships using exhaust gas cleaning systems (EGCSs) as a SECA-compliant measure were found to emit significantly higher levels of BC, raising concerns about the environmental sustainability of EGCSs as an emissions mitigation strategy. Full article
(This article belongs to the Special Issue Air Pollution from Shipping: Measurement and Mitigation)
Show Figures

Figure 1

19 pages, 7764 KiB  
Article
Spatiotemporal Distribution of Atmospheric Particulate Matters and Correlations Among Them in Different Functional Areas of a Typical Mining City in Northwestern China
by Yun Liu, Ruoshui Wang, Tingning Zhao, Jun Gao, Chenghao Zheng and Mengwei Wang
Sustainability 2025, 17(13), 5945; https://doi.org/10.3390/su17135945 - 27 Jun 2025
Cited by 1 | Viewed by 277
Abstract
Identifying the coupling effect mechanisms of particulate matter (PM) in different functional areas on the atmospheric environment will help to carry out graded precision prevention and control measures against pollution within mining cities. This study monitored the pollution of three different functional areas [...] Read more.
Identifying the coupling effect mechanisms of particulate matter (PM) in different functional areas on the atmospheric environment will help to carry out graded precision prevention and control measures against pollution within mining cities. This study monitored the pollution of three different functional areas in Wuhai, a typical mining city in Inner Mongolia. PM1, PM2.5, PM10, and TSP were sampled and analyzed for chemical fractions both in the daytime and at night in spring, summer, autumn, and winter. The results showed that the average daily concentrations of PM were generally higher in the mining area than in the urban and sandy areas in different seasons. The results of the Kerriging analysis showed that the urban area was affected the most when specific ranges of high PM concentrations were detected in the mining area and specific ranges of low PM concentrations were detected in the sandy area. PMF results indicated that the source of pollutants in different functional areas and seasons were dust, industrial and traffic emissions, combustion, and sea salt. The contributions of dust in PM with different particle sizes in the mining and sandy areas were as high as 49–72%, while all the pollutant sources accounted for a large proportion of pollution in the urban area. In addition, dust was the largest source of pollution in summer and winter, and the contribution of combustion sources to pollution was higher in winter. Health risks associated with Cr were higher in the sandy area, and non-carcinogenic risks associated with Mn were higher in the mining area during spring and summer, while there was a greater impact on human health in the urban area during autumn and winter. The results of this study revealed the coupling effect mechanisms of different functional areas on the local atmospheric environment and contribute to the development of regional atmospheric defense and control policies. Full article
Show Figures

Figure 1

22 pages, 6541 KiB  
Article
Stacking Ensemble Learning and SHAP-Based Insights for Urban Air Quality Forecasting: Evidence from Shenyang and Global Implications
by Zhaoxin Xu, Huajian Zhang, Andong Zhai, Chunyu Kong and Jinping Zhang
Atmosphere 2025, 16(7), 776; https://doi.org/10.3390/atmos16070776 - 24 Jun 2025
Viewed by 505
Abstract
Air pollution poses a significant global challenge, impacting human health and environmental sustainability worldwide. Accurate air quality forecasting is essential for effective mitigation strategies, particularly in rapidly urbanizing regions. This study focuses on Shenyang, China, as a representative case to analyze air quality [...] Read more.
Air pollution poses a significant global challenge, impacting human health and environmental sustainability worldwide. Accurate air quality forecasting is essential for effective mitigation strategies, particularly in rapidly urbanizing regions. This study focuses on Shenyang, China, as a representative case to analyze air quality dynamics and develop a high-precision forecasting tool. Using a comprehensive six-year dataset (2020–2025) of daily air quality and meteorological measurements, a rigorous preprocessing pipeline was applied to ensure data integrity. Five gradient-boosted decision-tree models were trained and combined through a ridge-regularized stacking ensemble to enhance the predictive accuracy. The ensemble achieved an R2 of 94.17% and a mean absolute percentage error of 7.79%, outperforming individual models. The feature importance analysis revealed that ozone, PM10, and PM2.5 concentrations are the dominant drivers of daily air quality fluctuations. The resulting forecasting system delivers robust, interpretable predictions across seasonal variations, offering a valuable decision support tool for urban air quality management. This framework demonstrates how advanced machine learning techniques can be applied in a Chinese urban context to inform global air pollution mitigation efforts. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

16 pages, 2053 KiB  
Article
The Impact of Seasonality on Air Quality in Terms of Pollution with Substances Hazardous to the Environment
by Małgorzata Kida and Sabina Ziembowicz
Appl. Sci. 2025, 15(12), 6551; https://doi.org/10.3390/app15126551 - 10 Jun 2025
Viewed by 466
Abstract
The study presents an analysis of the concentrations of polycyclic aromatic hydrocarbons (PAHs) and particulate matter with a diameter of less than 10 µm (PM10) in the air across various locations, as well as their impact on human health. Research in [...] Read more.
The study presents an analysis of the concentrations of polycyclic aromatic hydrocarbons (PAHs) and particulate matter with a diameter of less than 10 µm (PM10) in the air across various locations, as well as their impact on human health. Research in this area was conducted at eight stations as part of the national environmental monitoring system run in Poland by the Chief Inspectorate for Environmental Protection. Daily measurement data of PM10 and the concentrations of PAHs associated with these particles were analyzed for the period from January to December 2023. The results showed that pollutant concentrations in the atmosphere vary depending on location, season, and meteorological conditions. The highest concentrations were observed during the winter season, when the combustion of solid fuels increases, while the lowest concentrations were recorded in the summer. The total concentration of PAHs ranged from 0.35 to 34.50 ng/m3. The annual average concentration of PM10 at the analyzed stations was 19.29 ± 3.01 µg/m3. Principal component analysis indicated that PAHs in the air primarily originate from emissions related to transportation, biomass combustion, and industry. Furthermore, the estimated health risk, considering the Incremental Lifetime Cancer Risk (ILCR) index, showed that the risk of cancer associated with inhaling PAHs by children and adults did not exceed the permissible limits. The main contributor to the total carcinogenic activity of the PAH mixture was benzo(b)fluorantene (BbF) (31.5%), followed by benzo(a)pyrene (BaP) (5.5%), indeno(1,2,3-cd)pyrene (IP) (18.2%), benzo(j)fluorantene (BjF) (12.9%), benzo(k)fluorantene (BkF) (8.5%), benzo(a)anthracene (BaA) (2.5%), and dibenzo(a,h)anthracene (DBahA) (1.0%). Full article
(This article belongs to the Special Issue Advances in Air Pollution Detection and Air Quality Research)
Show Figures

Figure 1

25 pages, 3063 KiB  
Article
Evaluating the Health Risks of Air Quality and Human Thermal Comfort–Discomfort in Relation to Hospital Admissions in the Greater Athens Area, Greece
by Aggelos Kladakis, Adrianos Retalis, Christos Giannaros, Vasileios Vafeiadis, Kyriaki-Maria Fameli, Vasiliki D. Assimakopoulos, Konstantinos Moustris and Panagiotis T. Nastos
Sustainability 2025, 17(11), 5182; https://doi.org/10.3390/su17115182 - 4 Jun 2025
Cited by 1 | Viewed by 675
Abstract
The aim of this study is to examine the impact of poor air quality and adverse meteorological conditions on health risks in the Greater Athens Area (GAA), Greece, during the period from 2018 to 2022. Specifically, the aim is to assess the Relative [...] Read more.
The aim of this study is to examine the impact of poor air quality and adverse meteorological conditions on health risks in the Greater Athens Area (GAA), Greece, during the period from 2018 to 2022. Specifically, the aim is to assess the Relative Risk (RR) of hospital admissions (HAs) for cardiovascular diseases (CVDs) and respiratory diseases (RDs), due to air pollution in combination with thermal discomfort, as well as to identify the time lag effect on admissions. For this purpose, data from six (6) different hospitals within the GAA were collected and used. Statistical analysis of hourly measurements of key pollutants (NO2, O3, PM2.5, and PM10) obtained from the Directorate of Climate Change and Air Quality (DCCAQ), which falls under the auspices of the Ministry of Environment and Energy (MEE), and meteorological parameters (T, RH, and wind velocity), is performed to calculate the daily air quality and human thermal comfort–discomfort levels, respectively. These conditions were examined using appropriate indexes for both air quality and human thermal comfort–discomfort, as independent variables in a Negative Binomial regression model developed in R, with daily HAs (not including scheduled cases or pre-existing health conditions) as the response variable. Moreover, a spatiotemporal analysis of air quality and meteorological parameters is conducted to identify associated variations in health risks. This analysis highlights key risk patterns linked to environmental conditions and the relevant measures to both manage and mitigate the risk. Findings indicate that extreme environmental conditions significantly elevate health risks, with cumulative RR over a one-week period peaking at 1.540 (95% CI: 1.158–2.050) during the warm season, while prolonged increases in the RR are also observed during the cold season, reaching 1.214 (95% CI: 0.937–1.572) under extreme cold exposures. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

26 pages, 1487 KiB  
Article
The Impact of Smart City Construction on PM2.5 Concentrations: Empirical Analysis from Chinese Counties
by Chenxue Li, Yuxin Duan, Zhicheng Zhou and Shen Zhong
Sustainability 2025, 17(11), 5100; https://doi.org/10.3390/su17115100 - 2 Jun 2025
Viewed by 594
Abstract
Fine particulate matter (PM2.5) pollution poses a major threat to human physical and mental health. Smart cities (SCs) provide innovative paths for PM2.5 pollution prevention and control through Internet of Things (IoT) monitoring, intelligent transportation optimization, and other technological means. [...] Read more.
Fine particulate matter (PM2.5) pollution poses a major threat to human physical and mental health. Smart cities (SCs) provide innovative paths for PM2.5 pollution prevention and control through Internet of Things (IoT) monitoring, intelligent transportation optimization, and other technological means. Based on the panel data of 2,141 counties in China between 2006 and 2021, this paper constructs a difference-in-differences with multiple time periods (MDID) to systematically assess the impact of SC on PM2.5 concentration and analyze its mechanism of action by combining the satellite remote sensing PM2.5 concentration (PM2.5C) and the list of smart city pilots. This study finds the following: (1) SC significantly reduced the PM2.5 concentration in the test area by about 3.58%. This conclusion was verified through rigorous robustness testing; (2) SC can effectively reduce PM2.5C through the innovation effect; (3) High-quality economic development can strengthen the emission reduction effect of SC on PM2.5C; (4) The environmental benefits of SC show significant spatial heterogeneity, with the largest PM2.5 reductions occurring in the western regions (4.3% reduction), followed by regions with mature digital infrastructure and cities in high administrative level cities. The results of this study provide a reference for the regional differentiated implementation of the “14th Five-Year Plan for the Development of Innovative Smarter Cities”, and make targeted recommendations for the synergistic management of air quality under the “dual-carbon” goal. Full article
Show Figures

Figure 1

23 pages, 698 KiB  
Review
Air Pollution and Its Impact on Health and Performance in Football Players
by George John, Ekaterina A. Semenova, Dana Amr Mohamed, Tiffany Georges Abi Antoun, Rinat A. Yusupov and Ildus I. Ahmetov
Sports 2025, 13(6), 170; https://doi.org/10.3390/sports13060170 - 30 May 2025
Viewed by 1445
Abstract
Air pollution is an escalating global concern with significant implications for human health and athletic performance. This narrative review synthesizes and critically compares the current literature on the impact of air pollution on health and football performance, elucidates the physiological mechanisms involved, and [...] Read more.
Air pollution is an escalating global concern with significant implications for human health and athletic performance. This narrative review synthesizes and critically compares the current literature on the impact of air pollution on health and football performance, elucidates the physiological mechanisms involved, and evaluates available mitigation strategies. Comparative studies consistently demonstrate that football players—who frequently engage in high-intensity outdoor exercise—are particularly susceptible to the harmful effects of airborne pollutants such as particulate matter (PM), volatile organic compounds (VOCs), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO). These pollutants bypass natural respiratory defenses due to increased pulmonary ventilation during exercise, reaching deeper lung regions and triggering oxidative stress, inflammation, and impaired lung function. Evidence across studies indicates that poor air quality is associated with decreased football performance, including reduced distance covered, fewer high-intensity efforts, elevated physiological strain, and diminished training adaptation. Long-term exposure exacerbates respiratory conditions, suppresses immune function, and heightens the risk of illness and injury. Furthermore, comparative genetic research highlights inter-individual variability in pollution sensitivity, with specific gene variants conferring either increased vulnerability or resilience to adverse effects. This review also explores practical and emerging mitigation strategies—such as timing training to avoid peak pollution, utilizing air quality monitoring and antioxidant-rich diets, and promoting sustainable infrastructure—to safeguard athlete health and optimize performance. Novel approaches including respiratory training, anti-smog masks, indoor sessions, and personalized recovery protocols offer additional protection and recovery support. Full article
Show Figures

Figure 1

26 pages, 4807 KiB  
Article
Utilizing LightGBM to Explore the Characterization of PM2.5 Emission Patterns from Broadleaf Tree Combustion in Northeastern China
by Bingbing Lu, Hui Huang, Zhiyuan Wu, Tianbao Zhang, Yu Gu, Feng Wang and Zhan Shu
Forests 2025, 16(5), 836; https://doi.org/10.3390/f16050836 - 18 May 2025
Viewed by 384
Abstract
PM2.5 emissions significantly impact atmospheric environments and human health in the context of forest fires. However, research on PM2.5 emissions from forest fires remains insufficient. This study systematically investigated PM2.5 emission characteristics from broadleaf tree combustion through controlled experiments examining [...] Read more.
PM2.5 emissions significantly impact atmospheric environments and human health in the context of forest fires. However, research on PM2.5 emissions from forest fires remains insufficient. This study systematically investigated PM2.5 emission characteristics from broadleaf tree combustion through controlled experiments examining three key factors: species variation (Acer tegmentosum [AT], Acer ukurunduense [AU], Acer pictum [AP], Tilia amurensis [TA], Phellodendron amurense [PA], Ulmus davidiana [UD], Ulmus laciniata [UL], Prunus padus [PP], Prunus maackii [PM]), moisture content (0%–20%), and phenological stages (budding [A], growing [B], defoliation [C]). The results demonstrated: (1) Significant interspecies differences, with UL showing the lowest, and PM the highest emissions; (2) A unimodal moisture—emission relationship peaking at 15% moisture content across most species, while AT, UL and PM exhibited unique linear responses; (3) Distinct phenological patterns, including triphasic fluctuations during the growing and defoliation phases. The LightGBM model effectively predicted emissions (R2 = 0.97), identifying species (36.2% importance) and moisture content (21.6%) as dominant factors. These findings provide critical data for wildfire emission modeling and highlight the need for species-specific parameters in air quality forecasts. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

27 pages, 8076 KiB  
Article
Identification and Diagnosis of Wind Health-Vulnerable Spaces in High-Rise Residential Areas of Xi’an
by Jiewen Chen, Siqing Ma, Yuan Meng, Yu Liu and Juan Ren
Buildings 2025, 15(9), 1538; https://doi.org/10.3390/buildings15091538 - 2 May 2025
Viewed by 534
Abstract
As urbanization accelerates, high-rise residential areas (HRRAs) have become a dominant urban housing typology. However, their complex building layouts significantly alter local wind environments, potentially impacting residents’ health. While existing studies mainly focus on macro-scale wind analysis, there is limited exploration of the [...] Read more.
As urbanization accelerates, high-rise residential areas (HRRAs) have become a dominant urban housing typology. However, their complex building layouts significantly alter local wind environments, potentially impacting residents’ health. While existing studies mainly focus on macro-scale wind analysis, there is limited exploration of the micro-environmental interactions between wind conditions and human activities. This study proposes the concept of Wind Health-Vulnerable Space (WHVS) and addresses the following scientific question: How do building layouts affect local wind fields and influence pollutant accumulation and health risks, particularly for air pollutants like PM2.5 (particulate matter with an aerodynamic diameter of 2.5 μm or less), which is closely associated with adverse respiratory and cardiovascular health outcomes? To investigate this, a multidimensional framework integrating computational fluid dynamics (CFD) simulations with point-of-interest (POI) data was developed to identify and diagnose these spaces. Case studies of two typical HRRAs in Xi’an, China, reveal two types of WHVSs: (1) localized calm zones between buildings (wind speed < 0.5 m/s, pressure −0.5 to 3 Pa), where PM2.5 concentrations are 25–30% higher than surrounding areas; and (2) large-scale weak wind areas in enclosed layouts (wind speed < 0.5 m/s, pressure −1 to −2 Pa), with PM2.5 concentrations increased by 28–35%. The results highlight a dual mechanism in the formation of vulnerable spaces: wind field disturbances caused by building layout and the overlay effect of human activity distribution. This framework offers new insights and scientific support for health-oriented urban planning and building layout optimization. Full article
Show Figures

Figure 1

14 pages, 1279 KiB  
Review
Air Pollution and Effects of Tropospheric Ozone (O3) on Public Health
by Pavlos Vongelis, Nikolaos G. Koulouris, Petros Bakakos and Nikoletta Rovina
Int. J. Environ. Res. Public Health 2025, 22(5), 709; https://doi.org/10.3390/ijerph22050709 - 30 Apr 2025
Cited by 1 | Viewed by 1029
Abstract
Air pollution is a significant and widespread issue that presents serious challenges for both human health and the environment because of the presence of a variety of harmful substances in the air, such as tropospheric ozone (O3), particulate matter (PM10 [...] Read more.
Air pollution is a significant and widespread issue that presents serious challenges for both human health and the environment because of the presence of a variety of harmful substances in the air, such as tropospheric ozone (O3), particulate matter (PM10), nitrogen oxides (NOx), sulfur dioxide (SO2), and carbon monoxide (CO). In this research, the aim is to evaluate the current evidence for the harmful effects of air pollution on human health, focusing on tropospheric ozone, and to highlight the need for further research in the future. The objective is to evaluate recent data on the respiratory and cardiovascular risks caused by air pollution, the potential association between climate change due to air pollution and human disorders, and the subsequent economic burden. A systematic search of the literature is conducted using PubMed, Scopus, Web of Science, and regulatory reports (EPA), focusing on peer-reviewed studies, epidemiological analyses, and clinical and experimental studies. The key findings indicate that O3 exposure contributes to inflammatory lung injury and to the worsening of preexisting conditions like asthma and COPD, is associated with cancer, and also has numerous negative impacts on neurological, metabolic, and reproductive health, combined with increased healthcare costs. These findings highlight the significance of O3 pollution as a major public health concern, emphasizing the need for immediate measures to decrease emissions and effective policies to protect the climate and the health of the individuals. Full article
Show Figures

Figure 1

32 pages, 5315 KiB  
Article
Correlating Indoor Environmental Quality Parameters with Human Physiological Responses for Adaptive Comfort Control in Commercial Buildings
by Haoyue Dai, Saba Imani and Joon-Ho Choi
Energies 2025, 18(9), 2280; https://doi.org/10.3390/en18092280 - 29 Apr 2025
Viewed by 743
Abstract
This study investigates the critical role of indoor environmental quality (IEQ) adaptations in influencing human physiological responses within commercial building settings. By integrating environmental engineering and human physiology, this research offers empirical insights into the relationship between IEQ modifications and occupant well-being, particularly [...] Read more.
This study investigates the critical role of indoor environmental quality (IEQ) adaptations in influencing human physiological responses within commercial building settings. By integrating environmental engineering and human physiology, this research offers empirical insights into the relationship between IEQ modifications and occupant well-being, particularly in the context of energy performance and efficiency. This study examines correlations between human physiological responses and key IEQ components, including indoor air quality (IAQ), thermal comfort, lighting, and acoustics, using data collected from two office areas with 14 participants. Sensors tracked environmental parameters, while wearable devices monitored physiological responses. Cross-correlation analysis revealed significant relationships between physiological indicators and environmental factors, with indoor temperature, PM2.5, and relative humidity showing the strongest impacts on electrodermal activity, skin temperature, and stress levels, respectively (p < 0.05). Furthermore, supervised machine learning techniques were employed to develop predictive models that evaluate IAQ and thermal comfort at both personal and general levels. Individual models achieved 84.76% accuracy for IAQ evaluation and 70.5% for thermal comfort prediction, outperforming the general model (69.7% and 64.3%, respectively). Males showed greater overall sensitivity to IEQ indicators, while females demonstrated higher sensitivity specifically to air quality and thermal comfort conditions. The findings underscore the potential of physiological signals to predict environmental satisfaction, providing a foundation for designing energy-efficient buildings that prioritize occupant health and comfort. This research bridges a critical gap in the literature by offering data-driven approaches to align sustainable building practices with human-centric needs. Future studies should expand participant diversity and explore broader demographics to enhance the robustness and applicability of predictive models. Full article
(This article belongs to the Special Issue Human-Centered Energy Optimization in Built Environment)
Show Figures

Figure 1

15 pages, 2303 KiB  
Article
Identification and Characterization of Atmospheric Nickel-Containing Particles in Guangzhou After the Implementation of the Clean Fuel Policy
by Zaihua Wang, Xuanxiao Chen, Cheng Wu, Hong Ju, Zhong Fu, Xin Xiong, Ting Qiu, Yuchen Lu, Junjie He, Yaxi Liu, Haining Wu, Chunlei Cheng and Mei Li
Toxics 2025, 13(5), 345; https://doi.org/10.3390/toxics13050345 - 26 Apr 2025
Viewed by 462
Abstract
Nickel, as a toxic trace element in fine particulate matter (PM2.5), has detrimental effects on both air quality and human health. Based on measurements from 2020 to 2021 using a single-particle aerosol mass spectrometer (SPAMS), this study investigates the properties of [...] Read more.
Nickel, as a toxic trace element in fine particulate matter (PM2.5), has detrimental effects on both air quality and human health. Based on measurements from 2020 to 2021 using a single-particle aerosol mass spectrometer (SPAMS), this study investigates the properties of nickel-containing particles (NCPs) in Guangzhou. The composition, sources, and temporal trends of NCPs were evaluated and the impact of the clean ship fuel policy introduced in 2020 was also examined. The key findings include: (1) Nickel particles account for 0.08% number fraction of PM2.5, which is consistent with previously reported mass fraction in PM2.5. (2) Three distinct types of NCPs were identified, including Ni-fresh, Ni-aged, and Ni-ash. Each type exhibits unique characteristics in size distribution, wind direction dependence, sources, and temporal variations. Ni-fresh particles originate from shipping emissions in the Huangpu Port area 2 km away and are the major contributors to fine nickel particles in the region. (3) Ni-aged and Ni-ash particles, which carry secondary components, tend to be larger (>500 nm) and are representative of regional or background nickel particles. (4) The implementation of the clean ship fuel policy has effectively reduced the number concentrations of NCPs and is beneficial to regional and local air quality. Full article
Show Figures

Figure 1

36 pages, 1542 KiB  
Review
Volatile Organic Compounds in Indoor Air: Sampling, Determination, Sources, Health Risk, and Regulatory Insights
by Tajana Horvat, Gordana Pehnec and Ivana Jakovljević
Toxics 2025, 13(5), 344; https://doi.org/10.3390/toxics13050344 - 26 Apr 2025
Cited by 1 | Viewed by 3155
Abstract
Indoor air pollution is a serious public health issue caused by the accumulation of numerous toxic contaminants within enclosed spaces. Particulate matter (PM2.5 and PM10), biological contaminants (mould, bacteria, and allergies), inorganic gases (carbon monoxide, carbon dioxide, ozone, and nitrogen [...] Read more.
Indoor air pollution is a serious public health issue caused by the accumulation of numerous toxic contaminants within enclosed spaces. Particulate matter (PM2.5 and PM10), biological contaminants (mould, bacteria, and allergies), inorganic gases (carbon monoxide, carbon dioxide, ozone, and nitrogen dioxide), and a variety of volatile organic compounds (VOCs) are examples of common indoor air pollutants. VOCs are one of the chief indoor contaminants, and their effects on human health have made indoor air quality a serious concern. Indoor VOC concentrations are frequently higher than outdoor levels, according to studies, which raises the danger of exposure, particularly for young people and those with respiratory disorders. VOCs originate from both biogenic and anthropogenic sources, and they can create secondary pollutants like ozone and aerosols, which can lead to cardiovascular and pulmonary problems. Prolonged exposure to VOCs has been associated with respiratory irritation, neurological effects, and an increased risk of chronic diseases. This review examines the primary sources, sampling and analysis approach, and health impact of VOCs in indoor air. Additionally, we compared worldwide regulatory guidelines for VOC exposure limits, emphasizing the need for strict exposure limits to protect human health. Full article
Show Figures

Figure 1

Back to TopTop