Utilizing LightGBM to Explore the Characterization of PM2.5 Emission Patterns from Broadleaf Tree Combustion in Northeastern China
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Research Gap
1.4. Purpose
2. Materials and Methods
2.1. General Introduction to the Study
2.2. Sample Collection and Preparation
2.3. Determination of PM2.5 Compositions
3. Results
3.1. Analysis of Total PM2.5 Emission from Combustible Combustion
3.2. Patterns of PM2.5 Emission from Tree Branches in Fuel Load Combustion
3.3. Patterns of PM2.5 Emission from Bark in Fuel Load Combustion
3.4. Patterns of PM2.5 Emission from Leaves in Combustible Combustion
3.5. LightGBM Analysis
3.5.1. Flowchart
3.5.2. Detailed Description
- (1)
- Data preprocessing: The dataset of 3240 samples was split into training (70%) and testing (30%) sets using sklearn’s train_test_split function (random_state = 42 for reproducibility)
- (2)
- Hyperparameter optimization: implemented through randomized search
- (3)
- Feature encoding: Numerical features underwent outlier treatment, while categorical features were transformed via one-hot encoding
4. Discussion
4.1. Variability in PM2.5 Emissions Among Broadleaf Species
- (1)
- Our comparative analysis revealed substantial interspecies variation in PM2.5 emission characteristics among the studied broadleaf species (p < 0.05). Ulmus laciniata (UL) consistently demonstrated the lowest emission rates across all experimental conditions, while Prunus maackii (PM) exhibited the highest emission outputs. These differences likely stem from variations in leaf morphology and biochemical composition [31,53].
- (2)
- At the tree parts level, we observed distinct emission patterns: foliar components accounted for over 40% of total PM2.5 emissions, whereas branch emissions remained consistently below 30% of the total output. This disparity may be attributed to the greater surface-area-to-volume ratio and higher volatile content in leaves compared to woody tissues [54].
4.2. Moisture-Dependent Emission Dynamics
- (1)
- The moisture-PM2.5 emission relationship followed a characteristic unimodal pattern, with minimum emissions at 0% moisture content and peak emissions consistently occurring at 15% moisture across all study species. This optimal moisture range likely represents a balance between sufficient water content to facilitate combustion while avoiding excessive moisture that would suppress burning efficiency [55].
- (2)
- Notably, Acer tegmentosum (AT), Ulmus laciniata (UL), and Prunus maackii (PM) displayed a unique linear response to increasing moisture content (0%–20%), contrasting with the unimodal pattern observed in other species. This divergence suggests fundamental differences in combustion physiology that warrant further investigation.
4.3. Phenological Influences on Emission Patterns
- (1)
- The budding period (A) exhibited a straightforward positive correlation between moisture content and PM2.5 emissions. In contrast, both the growing period (B) and defoliation period (C) displayed complex triphasic (“decline-rise-decline”) emission patterns. These phase-specific responses likely reflect seasonal changes in plant physiology [55], including variations in stomatal conductance [56] and secondary metabolite production [57].
- (2)
5. Conclusions
5.1. Key Findings
- (1)
- This study establishes that PM2.5 emissions from broadleaf tree combustion are governed by a complex interplay of species-specific traits, moisture content, and phenological stage. Our results demonstrate that leaves with foliar components are consistently the dominant emission source.
- (2)
- The identification of 15% moisture content as the peak emission condition across multiple species provides crucial data for wildfire emission modeling and forest management strategies. This finding has particular relevance for predicting air quality impacts during periods of moderate drought conditions.
5.2. Practical Implications
- (1)
- Our results suggest that wildfire mitigation efforts should prioritize monitoring and management during the defoliation phase (C), particularly when moisture conditions approach the 15% threshold. This combination of factors represents the highest risk scenario for substantial PM2.5 release.
- (2)
- The developed LightGBM model, with its demonstrated predictive accuracy for within-range conditions (R2 = 0.97), offers a valuable tool for regional air quality forecasting during fire seasons. However, users should exercise caution when extrapolating beyond the studied moisture range (0%–20%).
5.3. Future Research Directions
- (1)
- Subsequent studies should incorporate detailed characterization of leaf surface properties and biochemical composition to better explain the observed interspecies variation in emission patterns.
- (2)
- We recommend expanding the experimental scope to include a wider range of moisture conditions (particularly, 20%–30%) to improve model generalizability. Parallel studies should investigate the chemical composition of emitted particulates to assess health and climate impacts.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PM2.5 | refers to fine particulate matter in the atmosphere with a diameter of 2.5 μm |
AT | Acer tegmentosum |
AU | Acer ukurunduense |
AP | Acer pictum |
TA | Tilia amurensis |
PA | Phellodendron amurense |
UD | Ulmus davidiana |
UL | Ulmus laciniata |
PP | Prunus padus |
PM | Prunus maackii |
OBB | open biomass burning |
SVM | support vector machine |
RSM | Response Surface Methodology |
GBDT | Gradient Boosting Decision Tree |
LightGBM | Light Gradient Boosting Machine |
DBH | diameter at breast height |
GOSS | gradient-based one-side sampling |
EFB | exclusive feature bundling |
MSE | Mean Square Error |
RMSE | Root Mean Square Error |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
References
- Elmarakby, E.; Elkadi, H. Comprehending particulate matter dynamics in transit-oriented developments: Traffic as a generator and design as a captivator. Sci. Total Environ. 2024, 931, 172528. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Cheng, Y.; Chen, S.; Liu, S.; Wang, Y.; Niu, X.; Sun, J. The Emission Characteristics and Health Risks of Firefighter-Accessed Fire: A Review. Toxics 2024, 12, 739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, H.; Liu, X.; Ma, Y.; Zhou, Q.; Sa, R.; Zhang, Q. Emissions Released by Forest Fuel in the Daxing’an Mountains, China. Forests 2022, 13, 1220. [Google Scholar] [CrossRef]
- Gomes, L.; Schüler, J.; Silva, C.; Alencar, A.; Zimbres, B.; Arruda, V.; Silva, W.V.d.; Souza, E.; Shimbo, J.; Marimon, B.S.; et al. Impacts of Fire Frequency on Net CO2 Emissions in the Cerrado Savanna Vegetation. Fire 2024, 7, 280. [Google Scholar] [CrossRef]
- Chen, X.; Wang, M.; Li, B.; Wang, L.; Ning, J.; Yang, G.; Yu, H. Effects of Fuel Removal on the Flammability of Surface Fuels in Betula platyphylla in the Wildland–Urban Interface. Fire 2024, 7, 261. [Google Scholar] [CrossRef]
- Kayet, N.; Eregowda, T.; Likitha, M.P.; Ganeshker, A.K.V.; Hegde, G. Development of 1 ×1 km gridded emission inventory for air quality assessment and mitigation strategies from open biomass burning in Karnataka, India. Urban Clim. 2024, 58, 102168. [Google Scholar] [CrossRef]
- Shan, Y.; Chen, X.; Yin, S.; Cao, L.; Tang, S.; Yu, B.; Cui, C. Study on the Limit of Moisture Content of the Sub-Surface Fires Converted to the Surface Fires in the Boreal Forests of China. Fire 2023, 6, 364. [Google Scholar] [CrossRef]
- Meneses, O.M.; Ribeiro, N.S.; Shirvani, Z.; Andrew, S.M. Spatio-Temporal Analysis of Wildfire Regimes in Miombo of the LevasFlor Forest Concession, Central Mozambique. Fire 2024, 7, 264. [Google Scholar] [CrossRef]
- Pereira, M.G.; Gonçalves, N.; Amraoui, M. The Influence of Wildfire Climate on Wildfire Incidence: The Case of Portugal. Fire 2024, 7, 234. [Google Scholar] [CrossRef]
- Afolayan, S.; Mekonnen, A.; Gamelin, B.; Lin, Y.-L. Multiscale Interactions between Local Short- and Long-Term Spatio-Temporal Mechanisms and Their Impact on California Wildfire Dynamics. Fire 2024, 7, 247. [Google Scholar] [CrossRef]
- Duarte, E.; Rubilar, R.; Matus, F.; Garrido-Ruiz, C.; Merino, C.; Smith-Ramirez, C.; Aburto, F.; Rojas, C.; Stehr, A.; Dörner, J.; et al. Drought and Wildfire Trends in Native Forests of South-Central Chile in the 21st Century. Fire 2024, 7, 230. [Google Scholar] [CrossRef]
- Dalias, P.; Hadjisterkotis, E.; Omirou, M.; Michaelidou, O.; Ioannides, I.M.; Neocleous, D.; Christou, A. Wildfire Effects on the Soil Respiration and Bacterial Microbiota Composition in Mediterranean-Type Ecosystems. Fire 2024, 7, 213. [Google Scholar] [CrossRef]
- Shahzad, F.; Mehmood, K.; Hussain, K.; Haidar, I.; Anees, S.A.; Muhammad, S.; Ali, J.; Adnan, M.; Wang, Z.; Feng, Z. Comparing machine learning algorithms to predict vegetation fire detections in Pakistan. Fire Ecol. 2024, 20, 57. [Google Scholar] [CrossRef]
- Sharma, S.; Khanal, P. Forest Fire Prediction: A Spatial Machine Learning and Neural Network Approach. Fire 2024, 7, 205. [Google Scholar] [CrossRef]
- Jian, M.; Jian, Y.; Zeng, H.; Cao, D.; Cui, X. Current Status and Prospects of Plant Flammability Measurements. Fire 2024, 7, 266. [Google Scholar] [CrossRef]
- Shapchenkova, O.A.; Kukavskaya, E.A.; Groisman, P.Y. Fire-Induced Changes in Geochemical Elements of Forest Floor in Southern Siberia. Fire 2024, 7, 243. [Google Scholar] [CrossRef]
- Souane, A.A.; Khurram, A.; Huang, H.; Shu, Z.; Feng, S.; Belgherbi, B.; Wu, Z. Utilizing Machine Learning and Geospatial Techniques to Evaluate Post-Fire Vegetation Recovery in Mediterranean Forest Ecosystem: Tenira, Algeria. Forests 2024, 16, 53. [Google Scholar] [CrossRef]
- Romanov, A.A.; Tamarovskaya, A.N.; Gusev, B.A.; Leonenko, E.V.; Vasiliev, A.S.; Krikunov, E.E. Catastrophic PM2.5 emissions from Siberian forest fires: Impacting factors analysis. Environ. Pollut. 2022, 306, 119324. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Bang, H.Q.; Quan, N.H.; Quang, N.X.; Duong, T.A. Effect of Biomass Burnings on Population Exposure and Health Impact at the End of 2019 Dry Season in Southeast Asia. Atmosphere 2024, 15, 1280. [Google Scholar] [CrossRef]
- Siregar, S.; Idiawati, N.; Berekute, A.K.; Maulana, M.; Pan, W.-C.; Yu, K.-P. Association between long-term PM2.5 exposure and mortality on Sumatra Island: Indonesian Family Life Survey (IFLS) 2000–2014. Environ. Monit. Assess. 2024, 196, 1173. [Google Scholar] [CrossRef]
- Borchers-Arriagada, N.; Morgan, G.G.; Van Buskirk, J.; Gopi, K.; Yuen, C.; Johnston, F.H.; Guo, Y.; Cope, M.; Hanigan, I.C. Daily PM2.5 and Seasonal-Trend Decomposition to Identify Extreme Air Pollution Events from 2001 to 2020 for Continental Australia Using a Random Forest Model. Atmosphere 2024, 15, 1341. [Google Scholar] [CrossRef]
- Wu, Z.; Hasham, A.; Zhang, T.; Gu, Y.; Lu, B.; Sun, H.; Shu, Z. Analysis of PM2.5 Concentration Released from Forest Combustion in Liangshui National Natural Reserve, China. Fire 2024, 7, 311. [Google Scholar] [CrossRef]
- Ma, Y.; Tigabu, M.; Guo, X.; Zheng, W.; Guo, L.; Guo, F. Water-Soluble Inorganic Ions in Fine Particulate Emission During Forest Fires in Chinese Boreal and Subtropical Forests: An Indoor Experiment. Forests 2019, 10, 994. [Google Scholar] [CrossRef]
- Lu, J.; Wu, J.; Chen, Y. Indoor environment and brain health across the life course: A systematic review. Build. Environ. 2025, 267, 112156. [Google Scholar] [CrossRef]
- Guerrero, F.; Espinoza, L.; Vidal, V.; Carmona, C.; Krecl, P.; Targino, A.C.; Ruggeri, M.F.; Toledo, M. Black carbon and particulate matter concentrations amid central Chile’s extreme wildfires. Sci. Total Environ. 2024, 951, 175541. [Google Scholar] [CrossRef]
- Hughes, F.; Parsons, L.; Levy, J.H.; Shindell, D.; Alhanti, B.; Ohnuma, T.; Kasibhatla, P.; Montgomery, H.; Krishnamoorthy, V. Impact of Wildfire Smoke on Acute Illness. Anesthesiology 2024, 141, 779–789. [Google Scholar] [CrossRef]
- Panumasvivat, J.; Sapbamrer, R.; Sittitoon, N.; Khacha-ananda, S.; Kiratipaisarl, W.; Sirikul, W.; Insian, W.; Assavanopakun, P. Exploring the adverse effect of fine particulate matter (PM2.5) on wildland firefighters’ pulmonary function and DNA damage. Sci. Rep. 2024, 14, 7932. [Google Scholar] [CrossRef]
- Thongsak, N.; Chitapanarux, T.; Chotirosniramit, A.; Chakrabandhu, S.; Traisathit, P.; Nakharutai, N.; Srikummoon, P.; Thumronglaohapun, S.; Supasri, T.; Hemwan, P.; et al. Air pollutants and primary liver cancer mortality: A cohort study in crop-burning activities and forest fires area. Front. Public Health 2024, 12, 1389760. [Google Scholar] [CrossRef]
- Ning, J.; Di, X.; Yu, H.; Yuan, S.; Yang, G. Spatial distribution of particulate matter 2.5 released from surface fuel combustion of Pinus koraiensis—A laboratory simulation study. Environ. Pollut. 2021, 287, 117282. [Google Scholar] [CrossRef]
- Ning, J.; Yang, G.; Liu, X.; Geng, D.; Wang, L.; Li, Z.; Zhang, Y.; Di, X.; Sun, L.; Yu, H. Effect of fire spread, flame characteristic, fire intensity on particulate matter 2.5 released from surface fuel combustion of Pinus koraiensis plantation-A laboratory simulation study. Environ. Int. 2022, 166, 107352. [Google Scholar] [CrossRef]
- Ma, B.; Liu, X.; Tong, Z.; Zhang, J.; Wang, X. Coupled Effects of High Temperatures and Droughts on Forest Fires in Northeast China. Remote Sens. 2024, 16, 3784. [Google Scholar] [CrossRef]
- Huang, C.; Cai, Y.; Cao, J.; Deng, Y. Stock complex networks based on the GA-LightGBM model: The prediction of firm performance. Inf. Sci. 2025, 700, 121824. [Google Scholar] [CrossRef]
- Meng, S.; Shi, Z.; Xia, C.; Zhou, C.; Zhao, Y. Exploring LightGBM-SHAP: Interpretable predictive modeling for concrete strength under high temperature conditions. Structures 2025, 71, 108134. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, W.; Xiao, B.; Yuan, Q.; Zhang, R. Fault detection of line-averaged plasma density on EAST using LightGBM. Fusion Eng. Des. 2025, 211, 114772. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, X.; Gui, K.; Wang, Y.; Che, H.; Shen, X.; Zhang, L.; Zhang, Y.; Sun, J.; Zhang, W. Robust prediction of hourly PM2.5 from meteorological data using LightGBM. Natl. Sci. Rev. 2021, 8, nwaa307. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, K.; Liu, Z.; Wang, L. PM2.5 Concentration Prediction Based on LightGBM Optimized by Adaptive Multi-Strategy Enhanced Sparrow Search Algorithm. Atmosphere 2023, 14, 1612. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, F.; Lin, H.; Xu, S. A Forest Fire Susceptibility Modeling Approach Based on Light Gradient Boosting Machine Algorithm. Remote Sens. 2022, 14, 4362. [Google Scholar] [CrossRef]
- Jing, X.; Zhang, D.; Li, X.; Zhang, W.; Zhang, Z. Prediction of Forest Fire Occurrence in Southwestern China. Forests 2023, 14, 1797. [Google Scholar] [CrossRef]
- Tan, H.; Chen, Y.; Mao, F.; Wilson, J.P.; Zhang, T.; Cui, X.; Li, Z. PM2.5 estimation and its relationship with NO2 and SO2 in China from 2016 to 2020. Int. J. Digit. Earth 2024, 17, 1–20. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Zhao, K. Haze prediction method based on stacking learning. Stoch. Environ. Res. Risk Assess. 2023, 37, 1–12. [Google Scholar] [CrossRef]
- Kang, J.; Zou, X.; Tan, J.; Li, J.; Karimian, H. Short-Term PM2.5 Concentration Changes Prediction: A Comparison of Meteorological and Historical Data. Sustainability 2023, 15, 11408. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Qu, M.; Duan, W.; Wang, Z.; Tian, Z.; Yang, W. Response of Soil Aggregate Composition and Stability to Secondary Succession and Plantation of a Broad-Leaved Korean Pine Forest after Clear-Cutting and Its Causes. Forests 2023, 14, 2010. [Google Scholar] [CrossRef]
- Si, Y.; Meng, D.; Zhong, H.; Zhu, Z.; Zou, H.; Rong, K. Foraging Niche Differentiation of Five Woodpecker Species in the Primitive Broadleaved Korean Pine Forests of Northeast China. Forests 2023, 14, 2166. [Google Scholar] [CrossRef]
- Lu, M.; Jin, G. Variation in functional traits among different mycorrhizal types and life history stages of temperate broadleaf tree species. Perspect. Plant Ecol. Evol. Syst. 2024, 65, 125833. [Google Scholar] [CrossRef]
- Ma, J.; Zong, C.; Wu, Q.; Zou, H.; Sun, Y.; Zheng, X. Hoarding habitat selection of squirrels (Sciurus vulgaris) in Liangshui Nature Reserve, China. Acta Ecol. Sin. 2006, 26, 3542–3548. [Google Scholar] [CrossRef]
- Cline, J.M. Age-Related Morphology of Montane Populations of Shortleaf Pine (Pinus echinata) and Longleaf Pine (Pinus palustris) in the Uwharrie Mountains, North Carolina, USA. M.A.; The University of North Carolina: Greensboro, NC, USA, 2021. [Google Scholar]
- Rosavec, R.; Barčić, D.; Španjol, Ž.; Oršanić, M.; Dubravac, T.; Antonović, A. Flammability and Combustibility of Two Mediterranean Species in Relation to Forest Fires in Croatia. Forests 2022, 13, 1266. [Google Scholar] [CrossRef]
- Pétremand, R.; Suárez, G.; Besançon, S.; Dil, J.H.; Guseva Canu, I. A Real-Time Comparison of Four Particulate Matter Size Fractions in the Personal Breathing Zone of Paris Subway Workers: A Six-Week Prospective Study. Sustainability 2022, 14, 5999. [Google Scholar] [CrossRef]
- Pillarisetti, A.; Carter, E.; Rajkumar, S.; Young, B.N.; Benka-Coker, M.L.; Peel, J.L.; Johnson, M.; Clark, M.L. Measuring personal exposure to fine particulate matter (PM2.5) among rural Honduran women: A field evaluation of the Ultrasonic Personal Aerosol Sampler (UPAS). Environ. Int. 2019, 123, 50–53. [Google Scholar] [CrossRef]
- Lyu, J.; Zheng, P.; Qi, Y.; Huang, G. LightGBM-LncLoc: A LightGBM-Based Computational Predictor for Recognizing Long Non-Coding RNA Subcellular Localization. Mathematics 2023, 11, 602. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Zhao, Q. Improved LightGBM for Extremely Imbalanced Data and Application to Credit Card Fraud Detection. IEEE Access 2024, 12, 159316–159335. [Google Scholar] [CrossRef]
- Liang, J.; Bu, Y.; Tan, K.; Pan, J.; Yi, Z.; Kong, X.; Fan, Z. Estimation of Stellar Atmospheric Parameters with Light Gradient Boosting Machine Algorithm and Principal Component Analysis. Astron. J. 2022, 163. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Meng, H.; Zhang, T. How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter? Forests 2018, 9, 681. [Google Scholar] [CrossRef]
- Liu, M.; Niklas, K.J.; Niinemets, U.; Hölscher, D.; Chen, L.; Shi, P. Comparison of the scaling relationships of leaf biomass versus surface area between spring and summer for two deciduous tree species. Forests 2020, 11, 1010. [Google Scholar] [CrossRef]
- Jolly, W.M.; Conrad, E.T.; Brown, T.P.; Hillman, S.C. Combining ecophysiology and combustion traits to predict conifer live fuel moisture content: A pyro-ecophysiological approach. Fire Ecol. 2025, 21, 19. [Google Scholar] [CrossRef]
- Zhang, F.P.; Zhao, X.D.; Han, L.J.; Li, H.R. Leaf dry mass per unit area and leaf pigments underlying the higher stomatal conductance of deciduous species relative to evergreen species in Dendrobium. Bot. Stud. 2025, 66, 11. [Google Scholar] [CrossRef]
- Ahmed, S.; Griffin, T.S.; Kraner, D.; Schaffner, M.K.; Sharma, D.; Hazel, M.; Leitch, A.R.; Orians, C.M.; Han, W.; Stepp, J.R.; et al. Environmental Factors Variably Impact Tea Secondary Metabolites in the Context of Climate Change. Front. Plant Sci. 2019, 10, 939. [Google Scholar] [CrossRef]
- Panozzo, A.; Bolla, P.K.; Barion, G.; Botton, A.; Vamerali, T. Phytohormonal Regulation of Abiotic Stress Tolerance, Leaf Senescence and Yield Response in Field Crops: A Comprehensive Review. BioTech 2025, 14, 14. [Google Scholar] [CrossRef]
- Holmlund, H.I.; Lekson, V.M.; Gillespie, B.M.; Nakamatsu, N.A.; Burns, A.M.; Sauer, K.E.; Pittermann, J.; Davis, S.D. Seasonal changes in tissue-water relations for eight species of ferns during historic drought in California. Am. J. Bot. 2016, 103, 1607. [Google Scholar] [CrossRef]
Species of Trees | Taxonomic Families and Genera |
---|---|
Acer tegmentosum | Aceraceae |
Acer ukurunduense | Aceraceae |
Acer pictum | Aceraceae |
Tilia amurensis | Tiliaceae |
Phellodendron amurense | Rutaceae |
Ulmus davidiana | Ulmaceae |
Ulmus laciniata | Ulmaceae |
Prunus padus | Rosaceae |
Prunus maackii | Rosaceae |
Parameter Name | Parameter Value |
---|---|
Training time | 0.421 s |
Data segmentation | 0.7 |
Data shuffling | Yes |
Cross validation | 5 |
Base learner | gbdt |
Number of base learners | 300 |
Learning rate | 0.15 |
L1 regular term | 0.5 |
L2 regular term | 0 |
Sample sampling rate | 0.5 |
Tree feature sampling rate | 1 |
Node split threshold | 0 |
Minimum weight of samples in leaf nodes | 0.001 |
Maximum tree depth | 11 |
Minimum number of samples for leaf nodes | 20 |
MSE | RMSE | MAE | MAPE | R2 | |
---|---|---|---|---|---|
training set | 548,867.201 | 740.8557 | 537.1264 | 6.1105 | 0.988 |
cross-validation set | 6,460,880.09 | 2536.101 | 1777.268 | 16.176 | 0.912 |
test set | 1,331,578.99 | 1153.940 | 852.2080 | 9.3805 | 0.973 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, B.; Huang, H.; Wu, Z.; Zhang, T.; Gu, Y.; Wang, F.; Shu, Z. Utilizing LightGBM to Explore the Characterization of PM2.5 Emission Patterns from Broadleaf Tree Combustion in Northeastern China. Forests 2025, 16, 836. https://doi.org/10.3390/f16050836
Lu B, Huang H, Wu Z, Zhang T, Gu Y, Wang F, Shu Z. Utilizing LightGBM to Explore the Characterization of PM2.5 Emission Patterns from Broadleaf Tree Combustion in Northeastern China. Forests. 2025; 16(5):836. https://doi.org/10.3390/f16050836
Chicago/Turabian StyleLu, Bingbing, Hui Huang, Zhiyuan Wu, Tianbao Zhang, Yu Gu, Feng Wang, and Zhan Shu. 2025. "Utilizing LightGBM to Explore the Characterization of PM2.5 Emission Patterns from Broadleaf Tree Combustion in Northeastern China" Forests 16, no. 5: 836. https://doi.org/10.3390/f16050836
APA StyleLu, B., Huang, H., Wu, Z., Zhang, T., Gu, Y., Wang, F., & Shu, Z. (2025). Utilizing LightGBM to Explore the Characterization of PM2.5 Emission Patterns from Broadleaf Tree Combustion in Northeastern China. Forests, 16(5), 836. https://doi.org/10.3390/f16050836