Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,503)

Search Parameters:
Keywords = PIs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 7970 KiB  
Article
Heteroaryl-Capped Hydroxamic Acid Derivatives with Varied Linkers: Synthesis and Anticancer Evaluation with Various Apoptosis Analyses in Breast Cancer Cells, Including Docking, Simulation, DFT, and ADMET Studies
by Ekta Shirbhate, Biplob Koch, Vaibhav Singh, Akanksha Dubey, Haya Khader Ahmad Yasin and Harish Rajak
Pharmaceuticals 2025, 18(8), 1148; https://doi.org/10.3390/ph18081148 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis [...] Read more.
Background/Objectives: Cancer suffers from unresolved therapeutic challenges owing to the lack of targeted therapies and heightened recurrence risk. This study aimed to investigate the new series of hydroxamate by structurally modifying the pharmacophore of vorinostat. Methods: The present work involves the synthesis of 15 differently substituted 2H-1,2,3-triazole-based hydroxamide analogs by employing triazole ring as a cap with varied linker fragments. The compounds were evaluated for their anticancer effect, especially their anti-breast cancer response. Molecular docking and molecular dynamics simulations were conducted to examine binding interactions. Results: Results indicated that among all synthesized hybrids, the molecule VI(i) inhibits the growth of MCF-7 and A-549 cells (GI50 < 10 μg/mL) in an antiproliferative assay. Compound VI(i) was also tested for cytotoxic activity by employing an MTT assay against A549, MCF-7, and MDA-MB-231 cell lines, and the findings indicate its potent anticancer response, especially against MCF-7 cells with IC50 of 60 µg/mL. However, it experiences minimal toxicity towards the normal cell line (HEK-293). Mechanistic studies revealed a dual-pathway activation: first, apoptosis (17.18% of early and 10.22% of late apoptotic cells by annexin V/PI analysis); second, cell cycle arrest at the S and G2/M phases. It also promotes ROS generation in a concentration-dependent manner. The HDAC–inhibitory assay, extended in silico molecular docking, and MD simulation experiments further validated its significant binding affinity towards HDAC 1 and 6 isoforms. DFT and ADMET screening further support the biological proclivity of the title compounds. The notable biological contribution of VI(i) highlights it as a potential candidate, especially against breast cancer cells. Full article
(This article belongs to the Section Medicinal Chemistry)
26 pages, 1030 KiB  
Review
Natural Flavonoids for the Prevention of Sarcopenia: Therapeutic Potential and Mechanisms
by Ye Eun Yoon, Seong Hun Ju, Yebean Kim and Sung-Joon Lee
Int. J. Mol. Sci. 2025, 26(15), 7458; https://doi.org/10.3390/ijms26157458 (registering DOI) - 1 Aug 2025
Abstract
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for [...] Read more.
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for novel, effective, and scalable therapeutics. Flavonoids, a diverse class of plant-derived polyphenolic compounds, have attracted attention for their muti-targeted biological activities, including anti-inflammatory, antioxidant, metabolic, and myogenic effects. This review aims to evaluate the anti-sarcopenic potential of selected flavonoids—quercetin, rutin, kaempferol glycosides, baicalin, genkwanin, isoschaftoside, naringin, eriocitrin, and puerarin—based on recent preclinical findings and mechanistic insights. These compounds modulate key pathways involved in muscle homeostasis, such as NF-κB and Nrf2 signaling, AMPK and PI3K/Akt activation, mitochondrial biogenesis, proteosomal degradation, and satellite cell function. Importantly, since muscle wasting also features prominently in cancer cachexia—a distinct but overlapping syndrome—understanding flavonoid action may offer broader therapeutic relevance. By targeting shared molecular axes, flavonoids may provide a promising, biologically grounded approach to mitigating sarcopenia and the related muscle-wasting conditions. Further translational studies and clinical trials are warranted to assess their efficacy and safety in human populations. Full article
(This article belongs to the Special Issue Role of Natural Products in Human Health and Disease)
18 pages, 929 KiB  
Review
From Hypoxia to Bone: Reprogramming the Prostate Cancer Metastatic Cascade
by Melissa Santos, Sarah Koushyar, Dafydd Alwyn Dart and Pinar Uysal-Onganer
Int. J. Mol. Sci. 2025, 26(15), 7452; https://doi.org/10.3390/ijms26157452 (registering DOI) - 1 Aug 2025
Abstract
Bone is the most frequent site of distant metastasis in advanced prostate cancer (PCa), contributing substantially to patient morbidity and mortality. Hypoxia, a defining feature of the solid tumour microenvironment, plays a pivotal role in driving bone-tropic progression by promoting epithelial-to-mesenchymal transition (EMT), [...] Read more.
Bone is the most frequent site of distant metastasis in advanced prostate cancer (PCa), contributing substantially to patient morbidity and mortality. Hypoxia, a defining feature of the solid tumour microenvironment, plays a pivotal role in driving bone-tropic progression by promoting epithelial-to-mesenchymal transition (EMT), cancer stemness, extracellular matrix (ECM) remodelling, and activation of key signalling pathways such as Wingless/Integrated (Wnt) Wnt/β-catenin and PI3K/Akt. Hypoxia also enhances the secretion of extracellular vesicles (EVs), enriched with pro-metastatic cargos, and upregulates bone-homing molecules including CXCR4, integrins, and PIM kinases, fostering pre-metastatic niche formation and skeletal colonisation. In this review, we analysed current evidence on how hypoxia orchestrates PCa dissemination to bone, focusing on the molecular crosstalk between HIF signalling, Wnt activation, EV-mediated communication, and cellular plasticity. We further explore therapeutic strategies targeting hypoxia-related pathways, such as HIF inhibitors, hypoxia-activated prodrugs, and Wnt antagonists, with an emphasis on overcoming therapy resistance in castration-resistant PCa (CRPC). By examining the mechanistic underpinnings of hypoxia-driven bone metastasis, we highlight promising translational avenues for improving patient outcomes in advanced PCa. Full article
(This article belongs to the Special Issue Hypoxia: Molecular Mechanism and Health Effects)
Show Figures

Graphical abstract

12 pages, 2241 KiB  
Article
PDE Inhibitors and Autophagy Regulators Modulate CRE-Dependent Luciferase Activity in Neuronal Cells from the Mouse Suprachiasmatic Nucleus
by Erik Maronde and Abdelhaq Rami
Molecules 2025, 30(15), 3229; https://doi.org/10.3390/molecules30153229 (registering DOI) - 1 Aug 2025
Abstract
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly [...] Read more.
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly used as autophagy modulators on a cell line stably expressing a cyclic nucleotide element-driven luciferase reporter. Methods: We used an SCN cell line stably transfected with a CRE-luciferase reporter (SCNCRE) to evaluate signaling and vitality responses to various isoform-selective PDE inhibitors and autophagy modulators to evaluate the mechanism of action of the latter. Results: In this study the different impacts of common PDE inhibitors and autophagy modulators on CRE-luciferase activity applied alone and in combination with known CRE-luciferase activating agents showed that (1) PDE3, 4 and 5 are present in SCNCRE cells, with (2) PDE3 being the most active and (3) the autophagy inhibitor 3-Methyladenin (3-MA) displaying PDE inhibitor-like behavior. Conclusions: Experiments provide evidence that, in addition to the extracellular signaling pathways components shown before to be involved in CRE-luciferase activity regulation like cAMP analogs, adenylate cyclase activators and beta-adrenoceptor agonists, cyclic nucleotide metabolism as realized by phosphodiesterase activity, or molecule/agents influencing processes like autophagy or inflammation, modulate transcriptional CRE-dependent activity in these cells. Specifically, we provide evidence that the autophagy inhibitor 3-MA, given that PDEs are expressed, may also act as a PDE inhibitor and inducer of CRE-mediated transcriptional activity. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

30 pages, 9213 KiB  
Article
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways
by Karla D. Hernández-González, Monica A. Vinchira-Lamprea, Judith Hernandez-Aranda and J. Alberto Olivares-Reyes
Int. J. Mol. Sci. 2025, 26(15), 7434; https://doi.org/10.3390/ijms26157434 (registering DOI) - 1 Aug 2025
Abstract
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, [...] Read more.
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, in recent years, it has been reported to completely inhibit Akt kinase function in liver cells. Akt is a central protein involved in the metabolic function of insulin and is regulated by the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, we examined the effect of RSV on insulin-induced insulin receptor (IR) phosphorylation and proteins involved in the PI3K/Akt pathway in a hepatic cell model, clone 9 (C9), and in hepatoma cells, Hepa 1-6 (H1-6). In both cell lines, RSV inhibited tyrosine phosphorylation of IR and insulin-induced activation of Akt. We also evaluated the effect of RSV on the activation of protein tyrosine phosphatase 1B (PTP1B), which is associated with IR dephosphorylation, and found that RSV increased PTP1B-Tyr152 phosphorylation in a time- and concentration-dependent manner. Furthermore, we found that the protein kinase C (PKC) inhibitors BIM and Gö6976 prevented the inhibition of Akt phosphorylation by RSV and increased the phosphorylation of Ser/Thr residues in IR, suggesting that PKC is involved in the inhibition of the insulin pathway by RSV. Thus, classical PKC isoforms impair the PI3K/Akt pathway at the IR and GSK3 and GS downstream levels; however, IRS-Tyr632 phosphorylation remains unaffected. These results suggest that RSV can lead to insulin resistance by activating PTP1B and PKC, consequently affecting glucose homeostasis in hepatic cells. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

20 pages, 1383 KiB  
Review
The Multifaceted Role of miR-211 in Health and Disease
by Juan Rayo Parra, Zachary Grand, Gabriel Gonzalez, Ranjan Perera, Dipendra Pandeya, Tracey Weiler and Prem Chapagain
Biomolecules 2025, 15(8), 1109; https://doi.org/10.3390/biom15081109 (registering DOI) - 1 Aug 2025
Abstract
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor [...] Read more.
MicroRNA-211 (miR-211) is a versatile regulatory molecule that plays critical roles in cellular homeostasis and disease progression through the post-transcriptional regulation of gene expression. This review comprehensively examines miR-211’s multifaceted functions across various biological systems, highlighting its context-dependent activity as both a tumor suppressor and oncogene. In physiological contexts, miR-211 regulates cell cycle progression, metabolism, and differentiation through the modulation of key signaling pathways, including TGF-β/SMAD and PI3K/AKT. miR-211 participates in retinal development, bone physiology, and protection against renal ischemia–reperfusion injury. In pathological conditions, miR-211 expression is altered in various diseases, particularly cancer, where it may be a useful diagnostic and prognostic biomarker. Its stability in serum and differential expression in various cancer types make it a promising candidate for non-invasive diagnostics. The review also explores miR-211’s therapeutic potential, discussing both challenges and opportunities in developing miRNA-based treatments. Understanding miR-211’s complex regulatory interactions and context-dependent functions is crucial for advancing its clinical applications for diagnosis, prognosis, and targeted therapy in multiple diseases. Full article
(This article belongs to the Special Issue DNA Damage, Mutagenesis, and Repair Mechanisms)
Show Figures

Figure 1

10 pages, 1460 KiB  
Article
Induction of Sustained Remissions Associated with Immune Activation by Idelalisib in Patients with Follicular Lymphoma
by Anna-Carina Hund, Jörg Larsen and Gerald G. Wulf
Lymphatics 2025, 3(3), 22; https://doi.org/10.3390/lymphatics3030022 - 1 Aug 2025
Abstract
Phosphatidylinositol-3-kinase (PI3K) inhibition has emerged as a therapeutic option against indolent lymphoma, including relapsed follicular lymphoma (FL). While inhibition of active signaling in the lymphoma cell represents the primary mode of action, PI3K inhibition also exerts immunomodulatory effects. Here we have analyzed 17 [...] Read more.
Phosphatidylinositol-3-kinase (PI3K) inhibition has emerged as a therapeutic option against indolent lymphoma, including relapsed follicular lymphoma (FL). While inhibition of active signaling in the lymphoma cell represents the primary mode of action, PI3K inhibition also exerts immunomodulatory effects. Here we have analyzed 17 consecutive advanced treatment line FL patients treated with the delta-selective PI3K inhibitor idelalisib in a retrospective single-center observational study, with a specific focus on response and immune effects. Eleven patients achieved complete remission (CR) or partial remission (PR) with median response duration of 22 (11–88) months following a median idelalisib exposure of 15 (4–88) months. Disease response persisted in three patients for a median of 37 (21–63) months following cessation of idelalisib without another therapy being initiated. Autoimmune side effects occurred in eight of the eleven patients who responded, compared to none in six patients whose disease did not respond. In conclusion, a time-limited exposure to idelalisib may induce sustained remissions in a portion of patients with recurrent and/or refractory (r/r) FL, suggesting immunomodulatory effects of PI3K inhibition to be involved in the control of the disease. Full article
(This article belongs to the Collection Lymphomas)
Show Figures

Figure 1

24 pages, 7421 KiB  
Article
Pristimerin Dampens Acetaminophen-Induced Hepatotoxicity; The Role of NF-κB/iNOS/COX-II/Cytokines, PI3K/AKT, and BAX/BCL-2/Caspase-3 Signaling Pathways
by Mohammed A. Altowijri, Marwa E. Abdelmageed, Randa El-Gamal, Tahani Saeedi and Dina S. El-Agamy
Pharmaceutics 2025, 17(8), 1003; https://doi.org/10.3390/pharmaceutics17081003 - 31 Jul 2025
Abstract
Background: Acetaminophen (APAP) is a popular and safe pain reliever. Due to its widespread availability, it is commonly implicated in intentional or unintentional overdoses, which result in severe liver impairment. Pristimerin (Prist) is a natural triterpenoid that has potent antioxidant and anti-inflammatory properties. [...] Read more.
Background: Acetaminophen (APAP) is a popular and safe pain reliever. Due to its widespread availability, it is commonly implicated in intentional or unintentional overdoses, which result in severe liver impairment. Pristimerin (Prist) is a natural triterpenoid that has potent antioxidant and anti-inflammatory properties. Our goal was to explore the protective effects of Prist against APAP-induced acute liver damage. Method: Mice were divided into six groups: control, Prist control, N-acetylcysteine (NAC) + APAP, APAP, and two Prist + APAP groups. Prist (0.4 and 0.8 mg/kg) was given for five days and APAP on day 5. Liver and blood samples were taken 24 h after APAP administration and submitted for different biochemical and molecular assessments. Results: Prist counteracted APAP-induced acute liver damage, as it decreased general liver dysfunction biomarkers, and attenuated APAP-induced histopathological lesions. Prist decreased oxidative stress and enforced hepatic antioxidants. Notably, Prist significantly reduced the genetic and protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-II), p-phosphatidylinositol-3-kinase (p-PI3K), p-protein kinase B (p-AKT), and the inflammatory cytokines: nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins-(IL-6 and IL-1β) in hepatic tissues. Additionally, the m-RNA and protein levels of the apoptotic Bcl2-associated X protein (BAX) and caspase-3 were lowered and the anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) was increased upon Prist administration. Conclusion: Prist ameliorated APAP-induced liver injury in mice via its potent anti-inflammatory/antioxidative and anti-apoptotic activities. These effects were mediated through modulation of NF-κB/iNOS/COX-II/cytokines, PI3K/AKT, and BAX/BCL-2/caspase-3 signaling pathways. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

22 pages, 3409 KiB  
Article
Short-Term Prediction Intervals for Photovoltaic Power via Multi-Level Analysis and Dual Dynamic Integration
by Kaiyang Kuang, Jingshan Zhang, Qifan Chen, Yan Zhou, Yan Yan, Litao Dai and Guanghu Wang
Electronics 2025, 14(15), 3068; https://doi.org/10.3390/electronics14153068 (registering DOI) - 31 Jul 2025
Abstract
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV [...] Read more.
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV prediction methods have not deeply explored the multi-level PV power generation elements and have not considered the correlation between different levels, resulting in the inability to obtain potential information on PV power generation. Moreover, traditional probabilistic prediction models lack adaptability, which can lead to a decrease in prediction performance under different PV prediction scenarios. Therefore, a probabilistic prediction method for short-term PV power based on multi-level adaptive dynamic integration is proposed in this paper. Firstly, an analysis is conducted on the multi-level PV power stations together with the influence of the trend of high-level PV power generation on the forecast of low-level power generation. Then, the PV data are decomposed into multiple layers using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and analyzed by combining fuzzy entropy (FE) and mutual information (MI). After that, a new multi-level model prediction method, namely, the improved dual dynamic adaptive stacked generalization (I-Stacking) ensemble learning model, is proposed to construct short-term PV power generation prediction models. Finally, an improved dynamic adaptive kernel density estimation (KDE) method for prediction errors is proposed, which optimizes the performance of the prediction intervals (PIs) through variable bandwidth. Through comparative experiments and analysis using traditional methods, the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

20 pages, 3024 KiB  
Article
The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress
by Qin Guo, Jia-Er Liu, Lin-Xue Liu, Jian Gao and Bin Xu
Microorganisms 2025, 13(8), 1788; https://doi.org/10.3390/microorganisms13081788 - 31 Jul 2025
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their [...] Read more.
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their survival under acid (pH 3 and 4) and bile stress (2%). The results showed that tdh2 expression was significantly upregulated under cold (4 °C) and bile stress (0.9%). Survival assays and PI staining revealed that the tdh2 mutant strain (VP: △tdh2) was more sensitive to acid and bile stress than the wild-type (WT), and this sensitivity was rescued by tdh2 complementation. These findings suggest that tdh2 plays a protective role in enhancing V. parahaemolyticus tolerance to acid and bile stress. In the VP: △tdh2 strain, seven genes were significantly upregulated and six were downregulated as a result of tdh2 deletion. These genes included VPA1332 (vtrA), VPA1348 (vtrB), VP2467 (ompU), VP0301 and VP1995 (ABC transporters), VP0527 (nhaR), and VP2553 (rpoS), among others. Additionally, LC-MS/MS analysis identified 12 differential metabolites between the WT and VP: △tdh2 strains, including phosphatidylserine (PS) (17:2 (9Z,12Z) /0:0 and 20:1 (11Z) /0:0), phosphatidylglycerol (PG) (17:0/0:0), flavin mononucleotide (FMN), and various nucleotides. The protective mechanism of tdh2 may involve preserving cell membrane permeability through regulation of ompU and ABC transporters and enhancing electron transfer efficiency via regulation of nhaR. The resulting reduction in ATP, DNA, and RNA synthesis—along with changes in membrane permeability and electron transfer due to decreased FMN—likely contributed to the reduced survival of the VP: △tdh2 strain. Meanwhile, the cells actively synthesized phospholipids to repair membrane damage, leading to increased levels of PS and PG. This study provides important insights into strategies for preventing and controlling food poisoning caused by tdh+ V. parahaemolyticus. Full article
Show Figures

Figure 1

15 pages, 2220 KiB  
Article
Radiologic Assessment of Periprostatic Fat as an Indicator of Prostate Cancer Risk on Multiparametric MRI
by Roxana Iacob, Emil Radu Iacob, Emil Robert Stoicescu, Diana Manolescu, Laura Andreea Ghenciu, Radu Căprariu, Amalia Constantinescu, Iulia Ciobanu, Răzvan Bardan and Alin Cumpănaș
Bioengineering 2025, 12(8), 831; https://doi.org/10.3390/bioengineering12080831 (registering DOI) - 31 Jul 2025
Abstract
Prostate cancer remains one of the most prevalent malignancies among men, and emerging evidence proposed a potential role for periprostatic adipose tissue (PPAT) in tumor progression. However, its relationship with imaging-based risk stratification systems such as PI-RADS remains uncertain. This retrospective observational study [...] Read more.
Prostate cancer remains one of the most prevalent malignancies among men, and emerging evidence proposed a potential role for periprostatic adipose tissue (PPAT) in tumor progression. However, its relationship with imaging-based risk stratification systems such as PI-RADS remains uncertain. This retrospective observational study aimed to evaluate whether periprostatic and subcutaneous fat thickness are associated with PI-RADS scores or PSA levels in biopsy-naïve patients. We retrospectively reviewed 104 prostate MRI scans performed between January 2020 and January 2024. Fat thickness was measured on axial T2-weighted images, and statistical analyses were conducted using Spearman’s correlation and multiple linear regression. In addition to linear measurements, we also assessed periprostatic fat volume and posterior fat thickness derived from imaging data. No significant correlations were observed between fat thickness (either periprostatic or subcutaneous) and PI-RADS score or PSA values. Similarly, periprostatic fat volume showed only a weak, non-significant correlation with PI-RADS, while posterior fat thickness demonstrated a weak but statistically significant positive association. Additionally, subgroup comparisons between low-risk (PI-RADS < 4) and high-risk (PI-RADS ≥ 4) patients showed no meaningful differences in fat measurements. These findings suggest that simple linear fat thickness measurements may not enhance imaging-based risk assessment in prostate cancer, though regional and volumetric assessments could offer modest added value. Full article
(This article belongs to the Special Issue Label-Free Cancer Detection)
Show Figures

Figure 1

37 pages, 2865 KiB  
Review
Ribosome Biogenesis and Function in Cancer: From Mechanisms to Therapy
by Kezia Gitareja, Shalini S. Chelliah, Elaine Sanij, Shahneen Sandhu, Jian Kang and Amit Khot
Cancers 2025, 17(15), 2534; https://doi.org/10.3390/cancers17152534 - 31 Jul 2025
Abstract
Ribosome biogenesis is a highly coordinated, multi-step process that assembles the ribosomal machinery responsible for translating mRNAs into proteins. It begins with the rate-limiting step of RNA polymerase I (Pol I) transcription of the 47S ribosomal RNA (rRNA) genes within a specialised nucleolar [...] Read more.
Ribosome biogenesis is a highly coordinated, multi-step process that assembles the ribosomal machinery responsible for translating mRNAs into proteins. It begins with the rate-limiting step of RNA polymerase I (Pol I) transcription of the 47S ribosomal RNA (rRNA) genes within a specialised nucleolar region in the nucleus, followed by rRNA processing, modification, and assembly with ribosomal proteins and the 5S rRNA produced by Pol III. The ribosomal subunits are then exported to the cytoplasm to form functional ribosomes. This process is tightly regulated by the PI3K/RAS/MYC oncogenic network, which is frequently deregulated in many cancers. As a result, ribosome synthesis, mRNA translation, and protein synthesis rates are increased. Growing evidence supports the notion that dysregulation of ribosome biogenesis and mRNA translation plays a pivotal role in the pathogenesis of cancer, positioning the ribosome as a promising therapeutic target. In this review, we summarise current understanding of dysregulated ribosome biogenesis and function in cancer, evaluate the clinical development of ribosome targeting therapies, and explore emerging targets for therapeutic intervention in this rapidly evolving field. Full article
Show Figures

Figure 1

13 pages, 1321 KiB  
Article
Intravitreal Povidone-Iodine Injection and Low-Dose Antibiotic Irrigation for Infectious Endophthalmitis: A Retrospective Case Series
by Yumiko Machida, Hiroyuki Nakashizuka, Hajime Onoe, Yorihisa Kitagawa, Naoya Nakagawa, Keisuke Miyata, Misato Yamakawa, Yu Wakatsuki, Koji Tanaka, Ryusaburo Mori and Hiroyuki Shimada
Pharmaceutics 2025, 17(8), 995; https://doi.org/10.3390/pharmaceutics17080995 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: Infectious endophthalmitis is a vision-threatening complication of intraocular surgery and intravitreal injections. Standard treatment involves intravitreal antibiotics; however, concerns regarding multidrug resistance and vancomycin-associated hemorrhagic occlusive retinal vasculitis (HORV) highlight the need for alternative antimicrobial strategies. This study aimed to evaluate the [...] Read more.
Background/Objectives: Infectious endophthalmitis is a vision-threatening complication of intraocular surgery and intravitreal injections. Standard treatment involves intravitreal antibiotics; however, concerns regarding multidrug resistance and vancomycin-associated hemorrhagic occlusive retinal vasculitis (HORV) highlight the need for alternative antimicrobial strategies. This study aimed to evaluate the clinical efficacy and safety of a protocol combining intravitreal injection of 1.25% povidone-iodine (PI) with intraoperative irrigation using low concentrations of vancomycin and ceftazidime. Methods: We retrospectively analyzed 11 eyes from patients diagnosed with postoperative or injection-related endophthalmitis. Six of the eleven cases received an initial intravitreal injection of 1.25% PI, followed by pars plana vitrectomy with irrigation using balanced salt solution PLUS containing vancomycin (20 μg/mL) and ceftazidime (40 μg/mL). A second intravitreal PI injection was administered at the end of surgery in all cases. Additional PI injections were administered postoperatively based on clinical response. Clinical outcomes included best-corrected visual acuity (BCVA), microbial culture results, corneal endothelial cell density, and visual field testing. Results: All eyes achieved complete infection resolution without recurrence. The mean BCVA improved significantly from 2.18 logMAR at baseline to 0.296 logMAR at final follow-up (p < 0.001). No adverse events were observed on specular microscopy or visual field assessment. The protocol was well tolerated, and repeated PI injections showed no signs of ocular toxicity. Conclusions: This combination protocol provides a safe and effective treatment strategy for infectious endophthalmitis. It enables rapid and complete infection resolution while minimizing the risks associated with intravitreal antibiotics. These findings support further investigation of this protocol as a practical and globally accessible alternative to standard intravitreal antimicrobial therapy. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Ocular Diseases)
Show Figures

Graphical abstract

2 pages, 615 KiB  
Correction
Correction: Lin et al. Induction of HO-1 by Mevastatin Mediated via a Nox/ROS-Dependent c-Src/PDGFRα/PI3K/Akt/Nrf2/ARE Cascade Suppresses TNF-α-Induced Lung Inflammation. J. Clin. Med. 2020, 9, 226
by Chih-Chung Lin, Wei-Ning Lin, Rou-Ling Cho, Chien-Chung Yang, Yi-Cheng Yeh, Li-Der Hsiao, Hui-Ching Tseng and Chuen-Mao Yang
J. Clin. Med. 2025, 14(15), 5390; https://doi.org/10.3390/jcm14155390 (registering DOI) - 31 Jul 2025
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Current and Emerging Uses of Statins in Clinical Therapeutics)
Show Figures

Figure 3

17 pages, 91001 KiB  
Article
PONet: A Compact RGB-IR Fusion Network for Vehicle Detection on OrangePi AIpro
by Junyu Huang, Jialing Lian, Fangyu Cao, Jiawei Chen, Renbo Luo, Jinxin Yang and Qian Shi
Remote Sens. 2025, 17(15), 2650; https://doi.org/10.3390/rs17152650 (registering DOI) - 30 Jul 2025
Abstract
Multi-modal object detection that fuses RGB (Red-Green-Blue) and infrared (IR) data has emerged as an effective approach for addressing challenging visual conditions such as low illumination, occlusion, and adverse weather. However, most existing multi-modal detectors prioritize accuracy while neglecting computational efficiency, making them [...] Read more.
Multi-modal object detection that fuses RGB (Red-Green-Blue) and infrared (IR) data has emerged as an effective approach for addressing challenging visual conditions such as low illumination, occlusion, and adverse weather. However, most existing multi-modal detectors prioritize accuracy while neglecting computational efficiency, making them unsuitable for deployment on resource-constrained edge devices. To address this limitation, we propose PONet, a lightweight and efficient multi-modal vehicle detection network tailored for real-time edge inference. PONet incorporates Polarized Self-Attention to improve feature adaptability and representation with minimal computational overhead. In addition, a novel fusion module is introduced to effectively integrate RGB and IR modalities while preserving efficiency. Experimental results on the VEDAI dataset demonstrate that PONet achieves a competitive detection accuracy of 82.2% mAP@0.5 while sustaining a throughput of 34 FPS on the OrangePi AIpro 20T device. With only 3.76 M parameters and 10.2 GFLOPs (Giga Floating Point Operations), PONet offers a practical solution for edge-oriented remote sensing applications requiring a balance between detection precision and computational cost. Full article
Show Figures

Figure 1

Back to TopTop