Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (455)

Search Parameters:
Keywords = PIN-FORMED2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 7071 KB  
Article
Interpretable AI-Driven Modelling of Soil–Structure Interface Shear Strength Using Genetic Programming with SHAP and Fourier Feature Augmentation
by Rayed Almasoudi, Abolfazl Baghbani and Hossam Abuel-Naga
Geotechnics 2025, 5(4), 69; https://doi.org/10.3390/geotechnics5040069 - 1 Oct 2025
Abstract
Accurate prediction of soil–structure interface shear strength (τmax) is critical for reliable geotechnical design. This study combines experimental testing with interpretable machine learning to overcome the limitations of traditional empirical models and black-box approaches. Ninety large-displacement ring shear tests were performed [...] Read more.
Accurate prediction of soil–structure interface shear strength (τmax) is critical for reliable geotechnical design. This study combines experimental testing with interpretable machine learning to overcome the limitations of traditional empirical models and black-box approaches. Ninety large-displacement ring shear tests were performed on five sands and three interface materials (steel, PVC, and stone) under normal stresses of 25–100 kPa. The results showed that particle morphology, quantified by the regularity index (RI), and surface roughness (Rt) are dominant factors. Irregular grains and rougher interfaces mobilised higher τmax through enhanced interlocking, while smoother particles reduced this benefit. Harder surfaces resisted asperity crushing and maintained higher shear strength, whereas softer materials such as PVC showed localised deformation and lower resistance. These experimental findings formed the basis for a hybrid symbolic regression framework integrating Genetic Programming (GP) with Shapley Additive Explanations (SHAP), Fourier feature augmentation, and physics-informed constraints. Compared with multiple linear regression and other hybrid GP variants, the Physics-Informed Neural Fourier GP (PIN-FGP) model achieved the best performance (R2 = 0.9866, RMSE = 2.0 kPa). The outcome is a set of five interpretable and physics-consistent formulas linking measurable soil and interface properties to τmax. The study provides both new experimental insights and transparent predictive tools, supporting safer and more defensible geotechnical design and analysis. Full article
(This article belongs to the Special Issue Recent Advances in Soil–Structure Interaction)
16 pages, 3860 KB  
Article
Tribological Properties of Eutectic White Cast Iron with Directional and Non-Directional Microstructure
by Małgorzata Trepczyńska-Łent and Jakub Wieczorek
Materials 2025, 18(19), 4516; https://doi.org/10.3390/ma18194516 - 28 Sep 2025
Abstract
Tribological tests were conducted on eutectic white cast iron subjected to directional solidification (resulting in a directionally oriented microstructure) and, for comparison, on white cast iron with an equiaxed (non-directional) structure. The tests were performed under dry sliding conditions on a pin-on-block rig [...] Read more.
Tribological tests were conducted on eutectic white cast iron subjected to directional solidification (resulting in a directionally oriented microstructure) and, for comparison, on white cast iron with an equiaxed (non-directional) structure. The tests were performed under dry sliding conditions on a pin-on-block rig using Cu, AlSi12CuNiMg alloy, AlSi12CuNiMg + SiC composite, and steel grade 1.3505. The friction coefficient and wear rates of these materials were systematically compared. Quantitative and qualitative evaluations of the wear tracks formed on the test specimens were carried out using profilometry. The results demonstrate that the directionally solidified white cast iron exhibits improved friction coefficient stability and reduced wear in the specific tribological pairs. The oriented directional structure demonstrated more favourable interactions when paired with AlSi12CuNiMg + SiC composite and 1.3505 steel. These tribological combinations exhibited reduced roughness values across selected cross-sectional analyses, resulting in correspondingly lower Sa parameter measurements. This finding suggests a promising new application for inserts made of directionally structured white cast iron in structural components requiring enhanced wear resistance at elevated temperatures. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

15 pages, 7341 KB  
Article
Inspection and Modeling Analysis of Locking Pins in the Penultimate-Stage Blades of a 600 MW Steam Turbine
by Ke Tang, Weiwen Chen, Jiang Zhu, Binhao Yi, Qing Hao, Jiashun Gao, Zhilong Xu, Bicheng Guo and Shiqi Chen
Materials 2025, 18(19), 4487; https://doi.org/10.3390/ma18194487 - 26 Sep 2025
Abstract
The fracture behavior of a locking pin used in the penultimate-stage blades of a 600 MW steam turbine in a thermal power plant was investigated through microstructural and microhardness characterization, fracture surface and energy-dispersive spectroscopy (EDS) analysis, as well as finite element load [...] Read more.
The fracture behavior of a locking pin used in the penultimate-stage blades of a 600 MW steam turbine in a thermal power plant was investigated through microstructural and microhardness characterization, fracture surface and energy-dispersive spectroscopy (EDS) analysis, as well as finite element load simulation. The microhardness values measured on the cross-section of the service pins ranged from 528 to 541 HV0.1, showing little difference from the unused pins. Scanning electron microscopy analysis revealed that approximately 70% of the fracture surfaces exhibited an intergranular “rock candy” morphology. The results indicate that pin failure was primarily caused by the combined effects of fretting wear and stress corrosion cracking (SCC). Specifically, vibration at the blade root, impeller, and pins due to start–stop cycles and load variations led to fretting wear, forming pits approximately 75 μm in size. Under the combined effects of weakly corrosive wet steam environments and shear stresses, SCC initiated at the high stress concentration points of these pits. Early crack propagation primarily followed original austenite grain boundaries, while later stages mainly extended along martensite plate boundaries. As cracks advanced, the cross-sectional area gradually decreased, causing the effective shear stress to increase until it exceeded the shear strength, ultimately leading to fracture. These findings not only provide a scientific basis for enhancing the reliability of steam turbine locking pins and extending their service life, but also contribute to a broader understanding of the failure mechanisms of key components operating under corrosive and fluctuating load environments. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 3057 KB  
Case Report
Rack-and-Pinion Displacement of an Intramedullary Pin During Minimally Invasive Plate–Rod Osteosynthesis of the Canine Femur—A Case Report
by Daniel J. Wills, Max J. Lloyd, Kristy L. Hospes and William R. Walsh
Animals 2025, 15(19), 2777; https://doi.org/10.3390/ani15192777 - 23 Sep 2025
Viewed by 121
Abstract
We present a case of unexpected proximal displacement of an intramedullary pin (IMP) during plate–rod repair of a femoral fracture caused by minimally invasive plate osteosynthesis (MIPO), requiring immediate revision. Implant retrieval analysis and ex vivo modelling were performed to characterise the technique [...] Read more.
We present a case of unexpected proximal displacement of an intramedullary pin (IMP) during plate–rod repair of a femoral fracture caused by minimally invasive plate osteosynthesis (MIPO), requiring immediate revision. Implant retrieval analysis and ex vivo modelling were performed to characterise the technique failure mode. The case details are reported. Implant retrieval analysis consisted of stereo zoom microscopic examination of the retrieved IMP. Wear patterns formed by conflict with a 2.8 mm, two-fluted surgical drill bit and a 3.5 mm AO locking screw were replicated using a simple paper impression model. The mechanism of pin movement was replicated in a benchtop laminated polyurethane foam block model, and wear patterns produced during drilling and screw insertion were characterised using stereo zoom. The wear pattern visible on the retrieved IMP suggested axial displacement caused by a rack-and-pinion-like mechanism, enacted by contact with either the drill bit or locking screws during placement of the repair construct. Significant axial displacement of the IMP due to conflict with screws during construct placement is possible during the placement of plate–rod fixation. Surgeons should confirm implant positioning if implant conflict is recognised intra-operatively. Full article
(This article belongs to the Special Issue Advanced Management of Small Animal Fractures)
Show Figures

Figure 1

27 pages, 7975 KB  
Article
Effect of Laser-Textured Groove Patterns on Friction Reduction and Stress Distribution in High-Speed Steel Surfaces
by Viboon Saetang, Ponthep Vengsungnle, Hao Zhu, Huan Qi, Haruetai Maskong and Witthaya Daodon
Lubricants 2025, 13(9), 419; https://doi.org/10.3390/lubricants13090419 - 18 Sep 2025
Viewed by 286
Abstract
Excessive surface friction encountered during metal-forming processes typically leads to die wear and seizure in part surfaces, which consequently shortens the die’s service lifespan and lowers the surface quality of the formed parts. To minimize surface friction, tool surface modification is required. This [...] Read more.
Excessive surface friction encountered during metal-forming processes typically leads to die wear and seizure in part surfaces, which consequently shortens the die’s service lifespan and lowers the surface quality of the formed parts. To minimize surface friction, tool surface modification is required. This study focuses on reducing the sliding friction of SKH51 high-speed steel by fabricating micro-grooves with various crosshatch angles using a nanosecond pulse laser. The effects of laser texturing parameters on achieving the groove aspect ratio of 0.1 were investigated. This aspect ratio facilitates lubricant retention and enhances lubrication performance on the contact surfaces. The influence of groove crosshatch angles (30°, 60°, and 90°) on the friction in the sliding contact between a textured high-speed steel disc and an AISI304 stainless steel pin was evaluated using a pin-on-disc test with a constant load. Moreover, the contact pressure distribution and stress concentration associated with each groove pattern were numerically analyzed using the finite element method. The results demonstrated that a laser power of 20 W effectively produced groove geometries with the desired aspect ratio. Among the tested patterns, the surface textured with a 60° crosshatch angle exhibited the lowest coefficient of friction of 0.111, compared to 0.148 for the untextured surface. Finite element analysis further revealed that the 60° crosshatch pattern provided the most balanced combination of load redistribution, reduced mean pressure, and average stress, which may reduce the friction under sliding conditions. These findings confirm that laser surface texturing, particularly with an optimized crosshatch angle, can significantly reduce sliding friction and enhance the tribological performance of high-speed steel tools. Full article
Show Figures

Figure 1

21 pages, 15695 KB  
Article
Microstructure Evolution of Keyhole Repair Using Refilling Friction Stir Spot Welding of 6082 Aluminum Alloys
by Liangliang Zhang and Guijie Yue
Metals 2025, 15(9), 1029; https://doi.org/10.3390/met15091029 - 17 Sep 2025
Viewed by 201
Abstract
The keyhole defect located at the termination of the friction stir welding (FSW) seam of 6082 aluminum alloys was repaired utilizing the refilling friction stir spot technique. This study examined the impact of the plunge depths on the microstructure of the welding spot. [...] Read more.
The keyhole defect located at the termination of the friction stir welding (FSW) seam of 6082 aluminum alloys was repaired utilizing the refilling friction stir spot technique. This study examined the impact of the plunge depths on the microstructure of the welding spot. The results show that under the action of shear stress introduced by the pin, the (111)[11¯0] shear texture and (112)[111¯] Copper texture were formed. The formation of (001)[100] Cube and (001)[310] CubeND textures was due to the occurrence of discontinuous dynamic recrystallization. When the plunge depth of the sleeve was 1.0 mm, the volume fraction of deformed grains in the welding spot reached 45%, and the tensile strength of the welding spots was 184 MPa. When the plunge depth of the sleeve was 1.5 mm, the tensile strength of the repaired spot welding was 210 MPa, which was basically equal to the strength of the FSW seam. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

12 pages, 3089 KB  
Article
Temperature-Dependent Microstructure and Tribological Performance of Boride Layers Formed on 40 Kh Steel Using Boric Acid-Based Boriding
by Laila Sulyubayeva, Daryn Baizhan, Nurbol Berdimuratov, Dastan Buitkenov and Balym Alibekova
Materials 2025, 18(18), 4342; https://doi.org/10.3390/ma18184342 - 17 Sep 2025
Viewed by 276
Abstract
Boriding is widely used in various industries due to the unique combination of high mechanical, corrosion, and tribological properties of boride layers formed on the surface of steel components. In this work, the powder boriding of 40 Kh steel was investigated in a [...] Read more.
Boriding is widely used in various industries due to the unique combination of high mechanical, corrosion, and tribological properties of boride layers formed on the surface of steel components. In this work, the powder boriding of 40 Kh steel was investigated in a closed capsule using a specially prepared powder mixture containing boric acid as the boron source. Boriding was carried out in a furnace at 850, 900, and 950 °C for 10 h. The resulting boride layers were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), which confirmed that all three coatings consist exclusively of the Fe2B phase. It was found that with increasing temperature, the thickness of the boride layer increased from 68 μm to 160 μm. The tribological properties were evaluated using the pin-on-disk method, followed by analysis of the wear surfaces using optical profilometry and SEM. The most significant reduction in wear rate was observed at 850 °C, where the wear decreased by a factor of 4.2—from 8.471 × 10−5 to 1.999 × 10−5 mm3·N−1·m−1. In addition, the hardness increased fivefold compared to the untreated material. These results demonstrate the high potential of diffusion boriding for enhancing the operational performance of parts subjected to severe wear conditions. Full article
Show Figures

Figure 1

11 pages, 2963 KB  
Communication
Optimization Design of Haptic Units for Perception Feedback Interfaces Based on Vibrotactile Amplitude Modulation
by Weichao Guo, Jingchen Huang, Lechuan Zhou, Yun Fang, Li Jiang and Xinjun Sheng
Biomimetics 2025, 10(9), 597; https://doi.org/10.3390/biomimetics10090597 - 7 Sep 2025
Viewed by 411
Abstract
Tactile sensation is a crucial sensory pathway for humans to acquire information from the environment, and vibration feedback is one form of tactile feedback, offering advantages such as low cost, ease of integration, and high comfort. Avoiding mechanical crosstalk without changing the spacing [...] Read more.
Tactile sensation is a crucial sensory pathway for humans to acquire information from the environment, and vibration feedback is one form of tactile feedback, offering advantages such as low cost, ease of integration, and high comfort. Avoiding mechanical crosstalk without changing the spacing between vibration units is a significant challenge in the design of haptic interfaces. This work focuses on the joint optimization design of vibration source characteristics and packaging materials of vibration units. From a theoretical modeling perspective, we explore the correlation between material properties and the amplitude of vibrations generated on the skin surface. A three-layer vibration unit optimization design scheme using a pogo pin structure is thus proposed. Parameters are optimized through finite element analysis, and experimental results prove that the three-layer vibration unit with pogo pins has amplitude modulation capabilities, laying the foundation for the design of array-based vibration tactile feedback interfaces and human-inspired grasp control. Full article
(This article belongs to the Special Issue Human-Inspired Grasp Control in Robotics 2025)
Show Figures

Figure 1

17 pages, 4717 KB  
Article
Design of Stretch-Dominated Metamaterials Avoiding Bandgap Resonance
by Zijian Wang
Symmetry 2025, 17(9), 1390; https://doi.org/10.3390/sym17091390 - 26 Aug 2025
Viewed by 689
Abstract
Mechanical metamaterials subjected to dynamic loads within their bandgaps can still experience significant undesired structural responses, which are referred to as bandgap resonances. This paper proposes a design method for stretch-dominated metamaterials to avoid such a phenomenon. The metamaterials are modeled as pin-jointed [...] Read more.
Mechanical metamaterials subjected to dynamic loads within their bandgaps can still experience significant undesired structural responses, which are referred to as bandgap resonances. This paper proposes a design method for stretch-dominated metamaterials to avoid such a phenomenon. The metamaterials are modeled as pin-jointed bar structures, and the sufficient condition for preventing their bandgap resonances is derived: they must exhibit spatial inversion symmetry and satisfy certain boundary conditions. A matrix-form perturbation expression of the bandgap is then provided to generate expected bandgaps by adjusting the node coordinates and element cross-sectional areas of the unit cells under symmetry constraint. As an example, a two-dimensional metamaterial is designed to achieve an expected bandgap of 600–1000 Hz. The frequency-response analyses show that the sufficient condition ensures the suppression of bandgap resonances. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

13 pages, 1891 KB  
Article
Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid
by Zhichun Yang, Mengyu Li, Jinyan Chen, Waqar Ahmad, Guofeng Zhang, Chengbing Qin, Liantuan Xiao and Suotang Jia
Nanomaterials 2025, 15(16), 1229; https://doi.org/10.3390/nano15161229 - 12 Aug 2025
Viewed by 742
Abstract
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose [...] Read more.
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose a defect-targeted passivation strategy using 2-chlorocinnamic acid (2-Cl) to simultaneously enhance the efficiency and stability of perovskite solar cells (PSCs). The crystallization kinetics, film morphology, and optical and electronic properties of the used formamidinium–cesium lead halide (FA0.85Cs0.15Pb(I0.95Br0.05)3, FACs) absorber were modulated and systematically investigated by various characterizations. Mechanistically, the carbonyl group in 2-Cl coordinates with undercoordinated Pb2+ ions, while the chlorine atom forms Pb–Cl bonds, effectively passivating the surface and interfacial defects. The optimized FACs perovskite film was incorporated into inverted (p-i-n) PSCs with a typical architecture of ITO/NiOx/PTAA/Al2O3/FACs/PEAI/PCBM/BCP/Ag. The optimal device delivers a champion power conversion efficiency (PCE) of 22.58% with an open-circuit voltage of 1.14 V and a fill factor of 82.8%. Furthermore, the unencapsulated devices retain 90% of their initial efficiency after storage in ambient air for 30 days and 83% of their original PCE after stress under 1 sun illumination with maximum power point tracking at 50 °C in a N2 environment, demonstrating the practical potential of dual-site molecular passivation for durable perovskite photovoltaics. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

10 pages, 3553 KB  
Article
A Trench Heterojunction Diode-Integrated 4H-SiC LDMOS with Enhanced Reverse Recovery Characteristics
by Yanjuan Liu, Fangfei Bai and Junpeng Fang
Micromachines 2025, 16(8), 909; https://doi.org/10.3390/mi16080909 - 4 Aug 2025
Viewed by 459
Abstract
In this paper, a novel 4H-SiC LDMOS structure with a trench heterojunction in the source (referred as to THD-LDMOS) is proposed and investigated for the first time, to enhance the reverse recovery performance of its parasitic diode. Compared with 4H-SiC, silicon has a [...] Read more.
In this paper, a novel 4H-SiC LDMOS structure with a trench heterojunction in the source (referred as to THD-LDMOS) is proposed and investigated for the first time, to enhance the reverse recovery performance of its parasitic diode. Compared with 4H-SiC, silicon has a smaller band energy, which results in a lower built-in potential for the junction formed by P+ polysilicon and a 4N-SiC N-drift region. A trench P+ polysilicon is introduced in the source side, forming a heterojunction with the N-drift region, and this heterojunction is unipolar and connected in parallel with the body PiN diode. When the LDMOS operates as a freewheeling diode, the trench heterojunction conducts first, preventing the parasitic PiN from turning on and thereby significantly reducing the number of carriers in the N-drift region. Consequently, THD-LDMOS exhibits superior reverse recovery characteristics. The simulation results indicate that the reverse recovery peak current and reverse recovery charge of THD-LDMOS are reduced by 55.5% and 77.6%, respectively, while the other basic electrical characteristics remains unaffected. Full article
(This article belongs to the Special Issue Advanced Wide Bandgap Semiconductor Materials and Devices)
Show Figures

Figure 1

23 pages, 25086 KB  
Article
U-Net Segmentation with Bayesian-Optimized Weight Voting for Worn Surface Analysis of a PEEK-Based Tribological Composite
by Yuxiao Zhao and Leyu Lin
Lubricants 2025, 13(8), 324; https://doi.org/10.3390/lubricants13080324 - 24 Jul 2025
Viewed by 690
Abstract
This study presents a U-Net-based automatic segmentation framework for quantitative analysis of surface morphology in a PEEK-based composite following tribological testing. Controlled Pin-on-Disc tests were conducted to characterize tribological performance, worn surfaces were captured by laser scanning microscopy to acquire optical images and [...] Read more.
This study presents a U-Net-based automatic segmentation framework for quantitative analysis of surface morphology in a PEEK-based composite following tribological testing. Controlled Pin-on-Disc tests were conducted to characterize tribological performance, worn surfaces were captured by laser scanning microscopy to acquire optical images and height maps, and the model produced pixel-level segmentation masks distinguishing different regions, enabling high-throughput, objective analysis of worn surface morphology. Sixty-three manually annotated image sets—with labels for fiber, third-body patch, and matrix regions—formed the training corpus. A 70-layer U-Net architecture with four-channel input was developed and rigorously evaluated using five-fold cross-validation. To enhance performance on the challenging patch and fiber classes, the top five model instances were ensembled through Bayesian-optimized weighted voting, achieving significant improvements in class-specific F1 metrics. Segmentation outputs on unseen data confirmed the method’s robustness and generalizability across complex surface topographies. This approach establishes a scalable, accurate tool for automated morphological analysis, with potential extensions to real-time monitoring and other composite systems. Full article
(This article belongs to the Special Issue New Horizons in Machine Learning Applications for Tribology)
Show Figures

Figure 1

17 pages, 7494 KB  
Article
The Effect of Strain Aging on the Microstructure and Mechanical Properties of Steel for Reel-Lay Coiled Steel Pipelines
by Yuxi Cao, Guofeng Zuo, Yang Peng, Lin Zhu, Shuai Tong, Shubiao Yin and Xinjun Sun
Materials 2025, 18(15), 3462; https://doi.org/10.3390/ma18153462 - 24 Jul 2025
Viewed by 675
Abstract
Deep-sea oil and gas pipelines undergo significant plastic strain during reel-lay installation. Additionally, the static strain aging phenomenon that occurs during service can further deteriorate the mechanical properties of the pipelines. This study investigates the plastic deformation mechanism of reel-lay pipeline steel by [...] Read more.
Deep-sea oil and gas pipelines undergo significant plastic strain during reel-lay installation. Additionally, the static strain aging phenomenon that occurs during service can further deteriorate the mechanical properties of the pipelines. This study investigates the plastic deformation mechanism of reel-lay pipeline steel by subjecting the test steel to 5% pre-strain followed by aging treatment at 250 °C for 1 h. The present study systematically correlates the evolution of mechanical properties with microstructural changes through microstructural characterization techniques such as EBSD, TEM, and XRD. The results demonstrate that after pre-straining, the yield strength of the experimental steel increases due to dislocation strengthening and residual stress generation, while its uniform elongation decreases. Although no significant changes in grain size are observed macroscopically, microstructural characterization reveals a substantial increase in dislocation density within the matrix, forming dislocation cells and walls. These substructures lead to a deterioration of the material’s work hardening capacity. Following aging treatment, the tested steel exhibits further increased yield strength and reduced uniform elongation. After aging treatment, although the dislocation density in the matrix slightly decreases and dislocation tangles are somewhat reduced, the Cottrell atmosphere pinning effect leads to a further decline in work hardening capability, ultimately resulting in the deterioration of plasticity in reel-lay pipeline steel. The instantaneous hardening exponent curve shows that the work hardening phenomenon becomes more pronounced in the tested steel after strain aging as the tempering temperature increases. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 2413 KB  
Article
Soil Inoculated with Streptomyces rochei D74 Invokes the Defense Mechanism of Helianthus annuus Against Orobanche cumana
by Jiao Xi, Tengqi Xu, Zanbo Ding, Chongsen Li, Siqi Han, Ruina Liang, Yongqing Ma, Quanhong Xue and Yanbing Lin
Agriculture 2025, 15(14), 1492; https://doi.org/10.3390/agriculture15141492 - 11 Jul 2025
Viewed by 2729
Abstract
Orobanche cumana Wallr. is a root parasitic plant that causes considerable yield losses of up to 50% in sunflower Helianthus annuus plantations. The holoparasite fulfills its entire demand for water, minerals, and organic nutrients from the host’s vascular system. Agronomic practices alone are [...] Read more.
Orobanche cumana Wallr. is a root parasitic plant that causes considerable yield losses of up to 50% in sunflower Helianthus annuus plantations. The holoparasite fulfills its entire demand for water, minerals, and organic nutrients from the host’s vascular system. Agronomic practices alone are not effective in controlling this pest. This study investigated the mechanism of a verified plant growth-promoting strain, Streptomyces rochei D74, on the inhibition of the parasitism of O. cumana in a co-culture experiment. We conducted potted and sterile co-culture experiments using sunflower, O. cumana, and S. rochei D74. Our results suggest that the inoculated bacteria invoked the sunflower systemic resistance (SAR and ISR) by increasing the activity of resistance-related enzymes (SOD, POD, PPO, and PAL), the gene expression of systemic resistance marker genes (PR-1 and NPR1), ethylene synthesis genes (HACS. 1 and ACCO1), and JA synthesis genes (pin2 and lox). The expression levels of ISR marker genes (lox, HACS. 1, ACCO1, and pin2) increased by 1.66–7.91-fold in the seedling stage. Simultaneously, S. rochei D74 formed a protective layer on the sunflower root surface, preventing O. cumana from connecting to the vascular system of the sunflower roots. In addition, S. rochei D74 reduced 5DS synthesis of the strigol precursor substance, resulting in a reduction in O. cumana germination. These results demonstrated that the S. rochei D74 strain improved systemic resistance and decreased seed germination to prevent O. cumana parasitism. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

22 pages, 2022 KB  
Article
Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes
by Jean Marie Vianney Nsabiyumva, Ciro Apollonio, Giulio Castelli, Elena Bresci, Andrea Petroselli, Mohamed Sabir, Cyrille Hicintuka and Federico Preti
Land 2025, 14(7), 1419; https://doi.org/10.3390/land14071419 - 6 Jul 2025
Viewed by 1393
Abstract
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface [...] Read more.
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface conditions and erosion in Isare (Mumirwa) and Buhinyuza (Eastern Depressions), Burundi. Slow-forming, or progressive, terraces were installed on 16 December 2022 (Isare) and 30 December 2022 (Buhinyuza), featuring ditches and soil bunds to enhance soil and water conservation. Twelve plots were established, with 132 measurement pins, of which 72 were in non-terraced plots (n_PT) and 60 were in terraced plots (PT). Monthly measurements, conducted until May 2023, assessed erosion reduction, surface conditions, roughness, and soil thickness. Terracing reduced soil loss by 54% in Isare and 9% in Buhinyuza, though sediment accumulation in ditches was excessive, especially in n_PT. Anti-erosion ditches improved surface stability by reducing slope length, lowering erosion and runoff. Covered Surface (CoS%) exceeded 95%, while Opened Surface (OS%) and Bare Surface (BS%) declined significantly. At Isare, OS% dropped from 97% to 80%, and BS% from 96% to 3% in PT. Similar trends appeared in Buhinyuza. Findings highlight PRRPB effectiveness in this short-term timeframe, and provide insights for soil conservation in steep-slope regions of Central Africa. Full article
Show Figures

Figure 1

Back to TopTop