Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (409)

Search Parameters:
Keywords = PET PSMA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1472 KiB  
Article
Furosemide Reduces Radionuclide Activity in the Bladder in 18F-PSMA-1007-PET/CT: A Single-Center Retrospective Intra-Individual Comparative Study
by Martin A. Cahenzli, Andreas S. Kreusch, Philipp Huber, Marco Dressler, Janusch P. Blautzik and Gregor Sommer
Diagnostics 2025, 15(15), 1931; https://doi.org/10.3390/diagnostics15151931 - 31 Jul 2025
Abstract
Background/Objectives: 18F-PSMA-1007 is one of the more widely used radioligands in prostate cancer imaging with PET/CT. Its major advantage lies in the low urinary tracer activity due to primarily hepatobiliary clearance, but unexpectedly high tracer accumulation in the bladder can occur, [...] Read more.
Background/Objectives: 18F-PSMA-1007 is one of the more widely used radioligands in prostate cancer imaging with PET/CT. Its major advantage lies in the low urinary tracer activity due to primarily hepatobiliary clearance, but unexpectedly high tracer accumulation in the bladder can occur, potentially hindering assessment of lesions near the prostate bed. This study assesses the impact of furosemide on 18F-PSMA-1007 tracer accumulation in the bladder. Methods: In this single-center, retrospective, intra-individual comparative analysis, 18 patients undergoing two consecutive 18F-PSMA-1007 PET/CT scans for biochemical relapse (BCR) or persistence (BCP)—one with and one without prior furosemide administration—were included. Images were acquired 60 min post-injection of 250 MBq of tracer activity. Standardized Uptake Values (SUVmax, SUVpeak, SUVmean) were measured in the bladder and in tissues with physiological uptake by three readers. Differences were analyzed using Wilcoxon signed-rank tests. The inter-reader agreement was assessed using intraclass correlation coefficient. Results: Furosemide significantly decreased bladder SUVmax, SUVpeak, and SUVmean (all p < 0.001). Mean bladder SUVmax decreased from 13.20 ± 10.40 to 3.92 ± 3.47, SUVpeak from 10.94 ± 8.02 to 3.47 ± 3.13, and SUVmean from 8.74 ± 6.66 to 2.81 ± 2.56, representing a large effect size (r ≈ 0.55). Physiological tracer uptake in most organs was not significantly influenced by furosemide (all p > 0.05). Conclusions: Despite the predominantly hepatobiliary clearance of 18F-PSMA-1007, furosemide-induced forced diuresis leads to a significant reduction in tracer activity in the bladder, which in clinical practice could help in early detection of tumor recurrence. Full article
(This article belongs to the Special Issue Research Update on Nuclear Medicine)
Show Figures

Figure 1

26 pages, 1745 KiB  
Review
Emerging PET Imaging Agents and Targeted Radioligand Therapy: A Review of Clinical Applications and Trials
by Maierdan Palihati, Jeeban Paul Das, Randy Yeh and Kathleen Capaccione
Tomography 2025, 11(8), 83; https://doi.org/10.3390/tomography11080083 - 28 Jul 2025
Viewed by 273
Abstract
Targeted radioligand therapy (RLT) is an emerging field in anticancer therapeutics with great potential across tumor types and stages of disease. While much progress has focused on agents targeting somatostatin receptors and prostate-specific membrane antigen (PSMA), the same advanced radioconjugation methods and molecular [...] Read more.
Targeted radioligand therapy (RLT) is an emerging field in anticancer therapeutics with great potential across tumor types and stages of disease. While much progress has focused on agents targeting somatostatin receptors and prostate-specific membrane antigen (PSMA), the same advanced radioconjugation methods and molecular targeting have spurred the development of numerous theranostic combinations for other targets. A number of the most promising agents have progressed to clinical trials and are poised to change the landscape of positron emission tomography (PET) imaging. Here, we present recent data on some of the most important emerging molecular targeted agents with their exemplar clinical images, including agents targeting fibroblast activation protein (FAP), hypoxia markers, gastrin-releasing peptide receptors (GRPrs), and integrins. These radiopharmaceuticals share the promising characteristic of being able to image multiple types of cancer. Early clinical trials have already demonstrated superiority to 18F-fluorodeoxyglucose (18F-FDG) for some, suggesting the potential to supplant this longstanding PET radiotracer. Here, we provide a primer for practicing radiologists, particularly nuclear medicine clinicians, to understand novel PET imaging agents and their clinical applications, as well as the availability of companion targeted radiotherapeutics, the status of their regulatory approval, the potential challenges associated with their use, and the future opportunities and perspectives. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

26 pages, 2998 KiB  
Review
PSMA-Directed Theranostics in Prostate Cancer
by Salman Ayub Jajja, Nandini Sodhi, Ephraim E. Parent and Parminder Singh
Biomedicines 2025, 13(8), 1837; https://doi.org/10.3390/biomedicines13081837 - 28 Jul 2025
Viewed by 509
Abstract
Following lung cancer, prostate cancer is the leading cause of cancer death in men. High-risk localized tumor burden or metastatic disease often progresses, refractory to initial treatment regimens. There is ongoing development of technology to appropriately identify high-risk patients, stage them correctly, and [...] Read more.
Following lung cancer, prostate cancer is the leading cause of cancer death in men. High-risk localized tumor burden or metastatic disease often progresses, refractory to initial treatment regimens. There is ongoing development of technology to appropriately identify high-risk patients, stage them correctly, and offer appropriate treatments to obtain the best clinical outcomes. Prostate cancer-specific membrane antigen (PSMA) is a transmembrane glutamate carboxypeptidase, which helps regulate folate absorption, and its overexpression is pathologically directly proportional and associated with prostate cancer. Increased PSMA expression is a known independent risk factor for poorer survival, and most metastatic lesions in CRPC are PSMA positive. Over the last decade, several PSMA-based PET radiopharmaceuticals have demonstrated superior sensitivities and specificities compared to traditional imaging methods. These outcomes have been demonstrated by several large clinical trials. As the data emerges, these diagnostics are being integrated into standard of care protocol to facilitate nuanced identification of malignant lesions. PSMA is also being targeted through several therapeutics, including radioligands and immunotherapies such as CAR-T, BiTEs, and ADCs. This review will discuss the landscape of PSMA-based theranostics in the context of prostate cancer. Full article
(This article belongs to the Special Issue Advanced Research on Genitourinary Cancer)
Show Figures

Figure 1

16 pages, 769 KiB  
Article
[177Lu]Lu-PSMA-617 in Patients with Progressive PSMA+ mCRPC Treated With or Without Prior Taxane-Based Chemotherapy: A Phase 2, Open-Label, Single-Arm Trial in Japan
by Kouji Izumi, Ryuji Matsumoto, Yusuke Ito, Seiji Hoshi, Nobuaki Matsubara, Toshinari Yamasaki, Takashi Mizowaki, Atsushi Komaru, Satoshi Nomura, Toru Hattori, Hiroya Kambara, Shaheen Alanee, Makoto Hosono and Seigo Kinuya
Cancers 2025, 17(14), 2351; https://doi.org/10.3390/cancers17142351 - 15 Jul 2025
Viewed by 489
Abstract
Background: This Phase 2 trial evaluated the efficacy, tolerability, and safety of [177Lu]Lu-PSMA-617 (177Lu-PSMA-617) in patients with ≥1 measurable lesion and progressive prostate-specific membrane antigen-positive (PSMA+) metastatic castration-resistant prostate cancer (mCRPC) in Japan. Methods: This study comprises four parts; [...] Read more.
Background: This Phase 2 trial evaluated the efficacy, tolerability, and safety of [177Lu]Lu-PSMA-617 (177Lu-PSMA-617) in patients with ≥1 measurable lesion and progressive prostate-specific membrane antigen-positive (PSMA+) metastatic castration-resistant prostate cancer (mCRPC) in Japan. Methods: This study comprises four parts; data from three parts are presented here. Part 1 evaluated safety and tolerability; Parts 2 (post-taxane) and 3 (pre-taxane/taxane-naive) assessed the overall response rate (ORR; primary endpoint), overall survival (OS), radiographic progression-free survival (rPFS), disease control rate (DCR), PFS, and safety; and Part 4 is the expansion part. Patients received 7.4 GBq (±10%) 177Lu-PSMA-617 Q6W for up to six cycles. Results: Of the 35 patients who underwent a [68Ga]Ga-PSMA-11 (68Ga-PSMA-11) PET/CT scan, 30 received 177Lu-PSMA-617 (post-taxane, n = 12; pre-taxane, n = 18). No dose-limiting toxicity was noted in Part 1 (n = 3). Post- and pre-taxane patients had a median of three and five cycles, respectively. The primary endpoint, ORR, met the pre-specified threshold, with the lower limit of the 90% confidence interval (CI) above the threshold of 5% for post-taxane and 12% for pre-taxane. Post- and pre-taxane patients had an ORR of 25.0% (90% CI: 7.2–52.7) and 33.3% (90% CI: 15.6–55.4), respectively. In post- and pre-taxane patients, the DCR was 91.7% and 83.3%, the median rPFS was 3.71 and 12.25 months, and the median PFS was 3.71 and 5.59 months, respectively. The median OS was 14.42 and 12.94 months in post- and pre-taxane patients, respectively. The most common adverse events were constipation, decreased appetite, decreased platelet count, anemia, and nausea. Conclusions: The primary endpoint (ORR) was met. The safety profile of 177Lu-PSMA-617 was consistent with the VISION and PSMAfore studies, with no new safety signals in the Japanese patients with mCRPC. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

14 pages, 330 KiB  
Article
An Innovative Approach with [68Ga]Ga-PSMA PET/CT: The Relationship Between PRIMARY Scores and Clinical and Histopathological Findings
by Gozde Mutevelizade, Bilal Cagri Bozdemir, Nazim Aydin and Elvan Sayit
Diagnostics 2025, 15(14), 1779; https://doi.org/10.3390/diagnostics15141779 - 15 Jul 2025
Viewed by 346
Abstract
Background/Objectives: The aim of this study was to investigate the relationship between the PRIMARY score derived from [68Ga]Ga-PSMA PET/CT and key clinical and pathological parameters of prostate cancer aggressiveness, including the PSA level, ISUP Grade Group, and D’Amico risk classification, [...] Read more.
Background/Objectives: The aim of this study was to investigate the relationship between the PRIMARY score derived from [68Ga]Ga-PSMA PET/CT and key clinical and pathological parameters of prostate cancer aggressiveness, including the PSA level, ISUP Grade Group, and D’Amico risk classification, in patients with biopsy-proven prostate cancer. A secondary aim was to evaluate the interobserver agreement of the PRIMARY score in routine clinical practice. Methods: This retrospective analysis included 51 patients with histopathologically confirmed prostate adenocarcinoma who underwent [68Ga]Ga-PSMA PET/CT imaging for staging. PRIMARY scores were determined based on the intraprostatic uptake pattern, intensity, and zonal localization. These scores were compared with PSA levels, ISUP GG, D’Amico risk classification, and histopathological features such as the cribriform pattern, intraductal carcinoma, perineural invasion, extraprostatic extension, and lymphovascular invasion. The PRIMARY scores were independently assigned by a total of three nuclear medicine physicians, and interobserver agreement was calculated using Fleiss’ kappa analysis. Results: Significant associations were found between the PRIMARY scores and the PSA level, ISUP Grade Group, and D’Amico risk classification. The most prevalent score was PRIMARY 5 (54.9%), which was significantly associated with ISUP GG 5 and the high-risk category in D’Amico classification. Among patients with PRIMARY Score 2, a substantial proportion (64.7%) had ISUP GG ≥ 3, and 58.8% were in the high-risk group, highlighting the limitations of binary PRIMARY classification. No statistically significant correlations were found between the PRIMARY scores and specific histopathologic features. Interobserver agreement was excellent (κ = 0.833). Conclusions: The PRIMARY score demonstrates high reproducibility and clinical relevance in stratifying prostate cancer aggressiveness. However, the findings challenge the reliability of binary classifications, particularly for patients with Score 2, who may still harbor high-grade disease. Integrating imaging-based scores with clinical and histopathological data is essential, particularly for accurate staging and decision-making regarding active surveillance. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

20 pages, 5080 KiB  
Article
Feasibility of Automated Image-Based Red Bone Marrow Dosimetry for [177Lu]Lu-PSMA Radiopharmaceutical Therapy of Metastatic Castration-Resistant Prostate Cancer
by Mikhail Rumiantcev, Sandra Resch, Grigory Liubchenko, Gabriel Sheikh, Mathias Zacherl, Rudolf A. Werner, Sibylle I. Ziegler, Guido Böning and Astrid Delker
Cancers 2025, 17(14), 2313; https://doi.org/10.3390/cancers17142313 - 11 Jul 2025
Viewed by 430
Abstract
Background/Objectives: Red bone marrow irradiation is a major concern for patients with advanced prostate cancer undergoing [177Lu]Lu-PSMA therapy. However, low uptake in the red bone marrow and the presence of bone lesions complicate image-based red bone marrow dosimetry. This study [...] Read more.
Background/Objectives: Red bone marrow irradiation is a major concern for patients with advanced prostate cancer undergoing [177Lu]Lu-PSMA therapy. However, low uptake in the red bone marrow and the presence of bone lesions complicate image-based red bone marrow dosimetry. This study aimed to investigate the general feasibility of image-based red bone marrow activity estimation for [177Lu]Lu-PSMA treatment and to develop a fully automated workflow for clinical implementation. Methods: In the first part of the study, 175 virtual patient phantoms with realistic 177Lu activity distributions were generated based on 639 pre-therapeutic [18F]F-PSMA-1007 PET/CT scans. The SIMIND Monte Carlo tool was used to simulate the 177Lu SPECT acquisitions (24 h post-injection (p.i.)), which were used to assess the uncertainty of red bone marrow activity estimation. In the second part, red bone marrow self- and cross-absorbed doses were estimated for four therapy cycles of 20 patients. Results: The simulation study shows a significant overestimation of activity in skeletal sites with bone lesions, with median recovery coefficients (RCs) across all phantoms yielding a median of 225% (range: 106–1015%). In contrast, the median RCs were markedly lower in skeletal sites neighboring or distant to lesion-carrying sites (105% [72–163%] and 107% [77–130%], respectively). The median total absorbed dose to the red bone marrow was 20.8 mGy/GBq (range: 5.6–297.9 mGy/GBq). Median blood levels decreased with an increasing median cumulative total absorbed dose. Conclusions: Reliable estimation of activity concentration in skeletal sites without bone lesion infiltration has been shown to be feasible. Based on this finding, an automated workflow for routine image-based red bone marrow dosimetry was developed. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

14 pages, 2707 KiB  
Article
Implantation of an Artificial Intelligence Denoising Algorithm Using SubtlePET™ with Various Radiotracers: 18F-FDG, 68Ga PSMA-11 and 18F-FDOPA, Impact on the Technologist Radiation Doses
by Jules Zhang-Yin, Octavian Dragusin, Paul Jonard, Christian Picard, Justine Grangeret, Christopher Bonnier, Philippe P. Leveque, Joel Aerts and Olivier Schaeffer
J. Imaging 2025, 11(7), 234; https://doi.org/10.3390/jimaging11070234 - 11 Jul 2025
Viewed by 274
Abstract
This study assesses the clinical deployment of SubtlePET™, a commercial AI-based denoising algorithm, across three radiotracers—18F-FDG, 68Ga-PSMA-11, and 18F-FDOPA—with the goal of improving image quality while reducing injected activity, technologist radiation exposure, and scan time. A retrospective analysis on [...] Read more.
This study assesses the clinical deployment of SubtlePET™, a commercial AI-based denoising algorithm, across three radiotracers—18F-FDG, 68Ga-PSMA-11, and 18F-FDOPA—with the goal of improving image quality while reducing injected activity, technologist radiation exposure, and scan time. A retrospective analysis on a digital PET/CT system showed that SubtlePET™ enabled dose reductions exceeding 33% and time savings of over 25%. AI-enhanced images were rated interpretable in 100% of cases versus 65% for standard low-dose reconstructions. Notably, 85% of AI-enhanced scans received the maximum Likert quality score (5/5), indicating excellent diagnostic confidence and noise suppression, compared to only 50% with conventional reconstruction. The quantitative image quality improved significantly across all tracers, with SNR and CNR gains of 50–70%. Radiotracer dose reductions were particularly substantial in low-BMI patients (up to 41% for FDG), and the technologist exposure decreased for high-exposure roles. The daily patient throughput increased by an average of 4.84 cases. These findings support the robust integration of SubtlePET™ into routine clinical PET practice, offering improved efficiency, safety, and image quality without compromising lesion detectability. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

18 pages, 1760 KiB  
Article
Integrating 68Ga-PSMA-11 PET/CT with Clinical Risk Factors for Enhanced Prostate Cancer Progression Prediction
by Joanna M. Wybranska, Lorenz Pieper, Christian Wybranski, Philipp Genseke, Jan Wuestemann, Julian Varghese, Michael C. Kreissl and Jakub Mitura
Cancers 2025, 17(14), 2285; https://doi.org/10.3390/cancers17142285 - 9 Jul 2025
Viewed by 398
Abstract
Background/Objectives: This study evaluates whether combining 68Ga-PSMA-11-PET/CT derived imaging biomarkers with clinical risk factors improves the prediction of early biochemical recurrence (eBCR) or clinical progress in patients with high-risk prostate cancer (PCa) after primary treatment, using machine learning (ML) models. Methods: We [...] Read more.
Background/Objectives: This study evaluates whether combining 68Ga-PSMA-11-PET/CT derived imaging biomarkers with clinical risk factors improves the prediction of early biochemical recurrence (eBCR) or clinical progress in patients with high-risk prostate cancer (PCa) after primary treatment, using machine learning (ML) models. Methods: We analyzed data from 93 high-risk PCa patients who underwent 68Ga-PSMA-11 PET/CT and received primary treatment at a single center. Two predictive models were developed: a logistic regression (LR) model and an ML derived probabilistic graphical model (PGM) based on a naïve Bayes framework. Both models were compared against each other and against the CAPRA risk score. The models’ input variables were selected based on statistical analysis and domain expertise including a literature review and expert input. A decision tree was derived from the PGM to translate its probabilistic reasoning into a transparent classifier. Results: The five key input variables were as follows: binarized CAPRA score, maximal intraprostatic PSMA uptake intensity (SUVmax), presence of bone metastases, nodal involvement at common iliac bifurcation, and seminal vesicle infiltration. The PGM achieved superior predictive performance with a balanced accuracy of 0.73, sensitivity of 0.60, and specificity of 0.86, substantially outperforming both the LR (balanced accuracy: 0.50, sensitivity: 0.00, specificity: 1.00) and CAPRA (balanced accuracy: 0.59, sensitivity: 0.20, specificity: 0.99). The decision tree provided an explainable classifier with CAPRA as a primary branch node, followed by SUVmax and specific PET-detected tumor sites. Conclusions: Integrating 68Ga-PSMA-11 imaging biomarkers with clinical parameters, such as CAPRA, significantly improves models to predict progression in patients with high-risk PCa undergoing primary treatment. The PGM offers superior balanced accuracy and enables risk stratification that may guide personalized treatment decisions. Full article
Show Figures

Figure 1

17 pages, 1787 KiB  
Article
Tumor Segmentation on PSMA PET/CT Predicts Survival in Biochemical Recurrence of Prostate Cancer: A Retrospective Study Using [68Ga]Ga-PSMA-11 and [18F]-PSMA-1007
by Ken Kudura, Yves Schaulin, Arnoud J. Templeton, Tobias Zellweger, Wolfgang Harms, Raphael Georis, Michael C. Kreissl and Robert Foerster
Cancers 2025, 17(13), 2249; https://doi.org/10.3390/cancers17132249 - 4 Jul 2025
Viewed by 557
Abstract
Background: PSMA PET/CT imaging has become a cornerstone in the management of prostate cancer, particularly in the setting of biochemical recurrence (BCR). While semi-quantitative parameters such as SUVmean have been evaluated as prognostic biomarkers in metastatic castration-resistant prostate cancer (mCRPC), particularly after [...] Read more.
Background: PSMA PET/CT imaging has become a cornerstone in the management of prostate cancer, particularly in the setting of biochemical recurrence (BCR). While semi-quantitative parameters such as SUVmean have been evaluated as prognostic biomarkers in metastatic castration-resistant prostate cancer (mCRPC), particularly after the VISION trial, the prognostic role of volumetric measures such as Total Molecular Volume (TMV) remain largely unexplored, especially in earlier stages of the disease such as in biochemical recurrence following primary treatment. Methods: This retrospective monocentric study included 84 patients with BCR who underwent PSMA PET/CT imaging between 2020 and 2021 using either [68Ga]Ga-PSMA-11(Ga-PSMA) or [18F]-PSMA-1007 (F-PSMA) as tracers. Total tumor burden was assessed through manual 3D segmentation to derive whole-body Total Molecular Volume (wb TMV) and Total Lesion PSMA (wb TL-PSMA). Clinical and imaging variables were correlated with overall survival (OS) and progression-free survival (PFS) using Cox regression models. Kaplan–Meier analyses were performed based on wb TMV and thresholds determined by the Youden index. Results: A PSMA PET/CT correlation for BCR was identified in 69% of patients, with comparable detection rates between tracers (Ga-PSMA 67% vs. F-PSMA 63%, p = 0.7). A higher wb TMV was significantly associated with worse OS (HR 2.20, p < 0.001) and PFS (HR 2.01, p < 0.001) in univariable analyses. In multivariable models, log2(wb TMV) remained an independent prognostic factor for PFS (HR 1.78, p = 0.005). Patients with log2(wb TMV) > 2.87 exhibited significantly poorer survival outcomes. A PSA at diagnosis > 17 ng/mL also predicted shorter PFS. Conclusions: Tumor segmentation from PSMA PET/CT imaging provides powerful prognostic information in patients with biochemical recurrence of prostate cancer, independently of the tracer used. The wb TMV represents a promising volumetric biomarker for future risk stratification and therapeutic decision-making, particularly in earlier stages of prostate cancer progression, where predictive imaging biomarkers remain largely undefined. Full article
Show Figures

Figure 1

15 pages, 529 KiB  
Review
Advances in Techniques in Radical Prostatectomy
by Hui Miin Lau, Liang G. Qu and Dixon T. S. Woon
Medicina 2025, 61(7), 1222; https://doi.org/10.3390/medicina61071222 - 4 Jul 2025
Viewed by 514
Abstract
Since its development in 1904, radical prostatectomy (RP) has remained a fundamental surgical option in the management of localised prostate cancer. Over time, continuous advancements in surgical techniques have improved oncological outcomes while reducing functional complications. This narrative review explores the evolution of [...] Read more.
Since its development in 1904, radical prostatectomy (RP) has remained a fundamental surgical option in the management of localised prostate cancer. Over time, continuous advancements in surgical techniques have improved oncological outcomes while reducing functional complications. This narrative review explores the evolution of RP, depicting its progression from the traditional open approach to minimally invasive laparoscopic and robotic-assisted techniques. Key developments in RP techniques, including nerve-sparing, bladder neck-sparing and Retzius-sparing techniques as well as enhanced perioperative management, have contributed to reduced postoperative complications, namely incontinence and erectile dysfunction. Additionally, technological innovations such as augmented reality, utilising indocyanine green for improved visualisation of prostatic boundaries and illuminare-1 to easily identify nerves intraoperatively, artificial intelligence, and novel molecular imaging technologies such as PSMA PETs for improved margin assessment are shaping the future of RPs. Despite these advancements, challenges persist, including a steep learning curve associated with newer techniques, disparities in access due to cost considerations, and a lack of standardised outcome measures across different surgical approaches. This review provides insight into current trends, ongoing challenges, and future directions that may further refine surgical precision, enhance patient safety, and improve long-term treatment success in prostate cancer management. Full article
(This article belongs to the Special Issue Advances in Radical Prostatectomy)
Show Figures

Figure 1

19 pages, 588 KiB  
Review
Targeting Glypican-3 in Liver Cancer: Groundbreaking Preclinical and Clinical Insights
by Luca Filippi, Viviana Frantellizzi, Luca Urso, Giuseppe De Vincentis and Nicoletta Urbano
Biomedicines 2025, 13(7), 1570; https://doi.org/10.3390/biomedicines13071570 - 26 Jun 2025
Viewed by 783
Abstract
Positron emission tomography (PET) imaging targeting glypican-3 (GPC3) holds promise for improving the detection and characterization of hepatocellular carcinoma (HCC). Preclinical and early clinical studies have largely utilized high-molecular-weight antibodies radiolabeled with isotopes such as 89Zr and 124I, demonstrating high affinity [...] Read more.
Positron emission tomography (PET) imaging targeting glypican-3 (GPC3) holds promise for improving the detection and characterization of hepatocellular carcinoma (HCC). Preclinical and early clinical studies have largely utilized high-molecular-weight antibodies radiolabeled with isotopes such as 89Zr and 124I, demonstrating high affinity and tumor uptake but suffering from prolonged circulation times and suboptimal signal-to-background ratios. To address these limitations, interest has shifted toward low-molecular-weight vectors—synthetic peptides and small antibody fragments—labeled with shorter-lived radionuclides (e.g., 68Ga and 18F) to enable rapid pharmacokinetics and same-day imaging protocols. Emerging platforms such as affibodies and aptamers offer further advantages in target affinity and reduced immunogenicity. However, clinical translation requires rigorous validation: larger, histologically confirmed cohorts, head-to-head comparison with CT/MRI, and correlation with hard clinical endpoints. Moreover, leveraging GPC3 expression as a biomarker could guarantee a deeper knowledge of tumor biology—differentiation grade and vascular invasion risk—and guide theranostic strategies. While β-emitters (90Y, 177Lu) have been explored for GPC3-directed therapy, their efficacy is influenced by oxygenation and cell-cycle status, whereas α-emitters (225Ac) may overcome these constraints, albeit with challenges in radionuclide selection and daughter nuclide management. Finally, dual-targeting probes combining GPC3 and prostate-specific membrane antigen (PSMA) have demonstrated superior uptake and retention in murine models, suggesting a versatile approach for future clinical diagnostics and therapy planning. Full article
Show Figures

Figure 1

15 pages, 294 KiB  
Review
The Role of [18F]FDG PET Imaging for the Assessment of Pulmonary Lymphangitic Carcinomatosis: A Comprehensive Narrative Literature Review
by Francesco Dondi, Pietro Bellini, Michela Cossandi, Luca Camoni, Roberto Rinaldi, Gian Luca Viganò and Francesco Bertagna
Diagnostics 2025, 15(13), 1626; https://doi.org/10.3390/diagnostics15131626 - 26 Jun 2025
Viewed by 423
Abstract
Background/Objectives: Pulmonary lymphangitic carcinomatosis (PLC) is a rare, aggressive manifestation of metastatic cancer characterized by lymphatic infiltration of the lungs, typically indicating advanced disease and poor prognosis. Methods: This comprehensive narrative review evaluates the role of [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography [...] Read more.
Background/Objectives: Pulmonary lymphangitic carcinomatosis (PLC) is a rare, aggressive manifestation of metastatic cancer characterized by lymphatic infiltration of the lungs, typically indicating advanced disease and poor prognosis. Methods: This comprehensive narrative review evaluates the role of [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) imaging in assessing PLC. Results: Current evidence demonstrates that [18F]FDG PET/CT achieves high diagnostic accuracy, with sensitivity and specificity ranging from 86 to 97% and 84 to 100%, respectively, particularly when employing semiquantitative metrics such as peritumoral standardized uptake value (SUVmax) thresholds (e.g., ≥2.1). PET/CT surpasses high-resolution computed tomography (HRCT) in distinguishing PLC from mimics like pulmonary sarcoidosis by identifying distinct metabolic patterns: bronchovascular hypermetabolism in PLC versus subpleural nodular uptake in sarcoidosis. Prognostically, metabolic tumor burden (e.g., SUVmax × involved lobes) and novel cPLC classifications (localized to the ipsilateral or contralateral lung) independently predict progression-free survival. However, challenges persist, including non-specific tracer uptake in inflammatory conditions and variability in SUV measurements due to technical factors. Emerging digital PET/CT systems, with enhanced spatial resolution, may improve the detection of focal PLC and reduce false negatives. While [18F]FDG PET/CT is invaluable for whole-body staging, therapeutic monitoring and biopsy guidance, the standardization of protocols and multicenter validation of prognostic models are critical for clinical integration. Future research should explore novel tracers (e.g., PSMA for prostate cancer-related PLC) and machine learning approaches to refine diagnostic and prognostic accuracy. Conclusions: This review underscores the role and the transformative potential of [18F]FDG PET/CT in PLC management while advocating for rigorous standardization to maximize its clinical utility. Full article
(This article belongs to the Special Issue Recent Advances in Radiomics in Medical Imaging)
11 pages, 225 KiB  
Article
Interpretation of PSMA-PET Among Urologists: A Prospective Multicentric Evaluation
by Guglielmo Mantica, Francesco Chierigo, Francesca Ambrosini, Francesca D’Amico, Greta Celesti, Arianna Ferrari, Fabrizio Gallo, Maurizio Schenone, Andrea Benelli, Carlo Introini, Rosario Leonardi, Alessandro Calarco, Francesco Esperto, Andrea Pacchetti, Rocco Papalia, Giorgio Bozzini, Armando Serao, Valentina Pau, Gianmario Sambuceti, Carlo Terrone, Giuseppe Fornarini and Matteo Baucknehtadd Show full author list remove Hide full author list
Cancers 2025, 17(13), 2122; https://doi.org/10.3390/cancers17132122 - 24 Jun 2025
Viewed by 386
Abstract
Background: Prostate-specific membrane antigen (PSMA)-PET imaging has significantly improved prostate cancer (PCa) staging, yet its interpretation remains challenging, even for experienced specialists. No prior study has assessed urologists’ ability to interpret PSMA-PET. Methods: We conducted a multicenter prospective study involving 63 urologists from [...] Read more.
Background: Prostate-specific membrane antigen (PSMA)-PET imaging has significantly improved prostate cancer (PCa) staging, yet its interpretation remains challenging, even for experienced specialists. No prior study has assessed urologists’ ability to interpret PSMA-PET. Methods: We conducted a multicenter prospective study involving 63 urologists from eight Italian institutions. Participants evaluated 20 PSMA-PET scans of high-risk PCa cases, with no clinical information provided. Proficiency was defined as correctly identifying at least two of three staging components (T, N, M) in ≥75% of cases. Associations between performance and factors such as hierarchy (resident vs. consultant), institution type, surgical volume, and multidisciplinary team (MDT) presence were analyzed using univariable and multivariable logistic regression. Results: Only one participant achieved full staging proficiency, while 44% reached the ≥75% threshold for partial (almost correct) staging. Urologists from centers with ≥300 PCa diagnoses per year demonstrated better T and M stage identification. Institutions with ≥150 robot-assisted radical prostatectomies (RARPs) per year and those with MDTs showed higher accuracy in M staging. No significant predictors of proficiency emerged in the multivariable analysis, although hierarchy and surgical volume approached significance for nodal metastasis detection. Conclusion: PSMA-PET interpretation is complex for urologists, with particular challenges in T and M staging. High institutional case volumes and MDT involvement may enhance interpretation skills. Structured training programs and increased exposure to multidisciplinary imaging discussions are essential to optimize urologists’ diagnostic proficiency and ultimately improve patient care. Full article
(This article belongs to the Special Issue Advances in the Use of PET/CT and MRI in Prostate Cancer)
12 pages, 810 KiB  
Article
Stereotactic Salvage Radiotherapy for Macroscopic Prostate Bed Recurrence After Prostatectomy: STARR (NCT05455736): An Early Analysis from the STARR Trial
by Niccolo’ Bertini, Giulio Francolini, Vanessa Di Cataldo, Pietro Garlatti, Michele Aquilano, Giulio Frosini, Olga Ruggieri, Laura Masi, Raffaela Doro, Mauro Loi, Pierluigi Bonomo, Daniela Greto, Isacco Desideri, Gabriele Simontacchi, Icro Meattini, Riccardo Campi, Lorenzo Masieri and Lorenzo Livi
Cancers 2025, 17(13), 2092; https://doi.org/10.3390/cancers17132092 - 23 Jun 2025
Viewed by 384
Abstract
Purpose/Objectives: Salvage radiotherapy (SRT) after a radical prostatectomy is a curative approach for patients with biochemical recurrence (BR). However, outcomes are often less favorable when imaging reveals macroscopic local recurrence. In such cases, dose escalation through stereotactic salvage radiotherapy (SSRT) may offer improved [...] Read more.
Purpose/Objectives: Salvage radiotherapy (SRT) after a radical prostatectomy is a curative approach for patients with biochemical recurrence (BR). However, outcomes are often less favorable when imaging reveals macroscopic local recurrence. In such cases, dose escalation through stereotactic salvage radiotherapy (SSRT) may offer improved disease control. The STARR trial (NCT05455736) is a prospective, multicenter study evaluating the efficacy and safety of SSRT in patients with macroscopic prostate bed recurrence. This interim analysis reports early findings from the initial patient cohort. Materials and Methods: Patients with BR (PSA > 0.2 ng/mL) post-prostatectomy and PET-confirmed macroscopic recurrence (PSMA or Choline PET, confirmed by MRI) were eligible. Treatment involved CyberKnife®-based SSRT delivering 35 Gy in five fractions to the visible lesion. Androgen deprivation therapy (ADT) was not permitted. Complete biochemical response (CBR) was defined as PSA < 0.2 ng/mL, and biochemical response (BR) as a ≥50% PSA reduction. Additional outcomes included biochemical, radiological, and ADT-free survival (bPFS, rPFS, aPFS). Results: As of analysis, 51 patients were enrolled, with a median follow-up of 16 months (95% CI: 16–22). CBR and BR were achieved in 45.1% and 80.4% of patients, respectively. Events affecting bPFS, rPFS, and aPFS occurred in 12, 5, and 6 patients, with median values not yet reached. Toxicity was minimal, with two cases each of acute grade 2 GI and GU events, and one late grade 2 GI event. No grade ≥ 3 toxicities were reported. Conclusion: Early data support SSRT as a safe and a promising option for macroscopic local recurrence, with encouraging response rates and minimal toxicity. Full article
(This article belongs to the Special Issue The Role of Robot‐Assisted Radical Prostatectomy in Prostate Cancer)
Show Figures

Figure 1

30 pages, 1334 KiB  
Review
Revolutionizing Prostate Cancer Detection: The Role of Approved PSMA-PET Imaging Agents
by Ute Hennrich, Laurène Wagner, Harun Taş, Luciana Kovacs and Martina Benešová-Schäfer
Pharmaceuticals 2025, 18(6), 906; https://doi.org/10.3390/ph18060906 - 17 Jun 2025
Viewed by 1352
Abstract
Locametz®/Illuccix®/GozellixTM (Novartis AG (Basel, Switzerland) and Telix Pharmaceuticals, Ltd. (Melbourne, Australia), all three [68Ga]Ga-PSMA-11), Pylarify®/Pylclari® (Progenics Pharmaceuticals, Inc. (New York, USA) and Curium PET France SA (Paris, France), both [18F]DCFPyL), Radelumin [...] Read more.
Locametz®/Illuccix®/GozellixTM (Novartis AG (Basel, Switzerland) and Telix Pharmaceuticals, Ltd. (Melbourne, Australia), all three [68Ga]Ga-PSMA-11), Pylarify®/Pylclari® (Progenics Pharmaceuticals, Inc. (New York, USA) and Curium PET France SA (Paris, France), both [18F]DCFPyL), Radelumin® (ABX GmbH (Radeberg, Germany), [18F]PSMA-1007), and Posluma® (Blue Earth Diagnostics, Ltd. (Oxford, UK), [18F]rhPSMA-7.3) are four approved PSMA-PET imaging agents that have significantly advanced the diagnosis and management of prostate cancer. These agents offer a new level of precision and accuracy, enabling clinicians to detect prostate cancer with enhanced sensitivity. As a result, they play a critical role in improving detection, staging, and management, ultimately enhancing clinical outcomes for patients. Their use in routine clinical practice is expected to increase diagnostic precision and provide clearer pathways for personalized therapy. This review offers a comprehensive chemical, pharmaceutical, and medicinal overview, discusses comparative studies, and highlights additional highly relevant candidates for prostate cancer detection. Full article
Show Figures

Graphical abstract

Back to TopTop