Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = PDX-derived cell lines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 15324 KiB  
Article
Curcumin Induces Homologous Recombination Deficiency by BRCA2 Degradation in Breast Cancer and Normal Cells
by Zofia M. Komar, Marjolijn M. Ladan, Nicole S. Verkaik, Ahmed Dahmani, Elodie Montaudon, Elisabetta Marangoni, Roland Kanaar, Julie Nonnekens, Adriaan B. Houtsmuller, Agnes Jager and Dik C. van Gent
Cancers 2025, 17(13), 2109; https://doi.org/10.3390/cancers17132109 - 24 Jun 2025
Viewed by 527
Abstract
Background: Breast cancer (BC) is the most common cancer in women worldwide. Much progress has been made to improve treatment options for patients suffering from the disease, including a novel therapy—Poly (ADP-ribose) polymerase inhibitor (PARPi) that specifically targets tumors with deficiencies in [...] Read more.
Background: Breast cancer (BC) is the most common cancer in women worldwide. Much progress has been made to improve treatment options for patients suffering from the disease, including a novel therapy—Poly (ADP-ribose) polymerase inhibitor (PARPi) that specifically targets tumors with deficiencies in the Homologous Recombination (HR) DNA repair pathway. To benefit better from conventional therapy, many patients seek alternative supplementation, with 20–30% of cancer patients using herbal medication on top of their regular treatment. An example of such easily available over-the-counter supplements is curcumin, a natural compound derived from turmeric (Curcuma longa). Various studies reported the potential HR deficiency (HRD) inducing effect of curcumin in cancer cells. Methods: Eight BrC and three normal cell lines and a BrC PDX model were used to evaluate the effect of curcumin on RAD51 ionizing radiation-induced focus (IRIF) formation. Three breast BrC cell lines underwent further analysis using the BRCA2 Western blot technique. To assess cell survival after treatment with curcumin and/or PARPi, a clonogenic survival assay was performed on both normal and cancerous cell lines. Results: Curcumin treatment led to a reduction in RAD51 IRIF formation capacity across all tested models. A decrease in BRCA2 levels was observed in the tested cell lines. Our findings demonstrate that HRD can be induced in both cancerous and normal cells, suggesting that curcumin treatment may increase the risk of toxicity when combined with PARPi therapy. Conclusions: The use of curcumin in combination with certain anti-cancer treatments should not be implemented without extensive monitoring for deleterious side effects. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

16 pages, 3142 KiB  
Article
Effect of Tasurgratinib as an Orally Available FGFR1–3 Inhibitor on Resistance to a CDK4/6 Inhibitor and Endocrine Therapy in ER+/HER2 Breast Cancer Preclinical Models
by Satoshi Kawano, Sayo Fukushima, Kyoko Nishibata, Ryu Gejima and Saori Watanabe Miyano
Cancers 2025, 17(7), 1084; https://doi.org/10.3390/cancers17071084 - 24 Mar 2025
Viewed by 720
Abstract
Background: Fibroblast growth factor (FGF) signaling plays a crucial role in several cellular functions in cancer cells. Tasurgratinib, formerly known as E7090, is an orally available FGF receptor (FGFR)1–3 selective inhibitor. Here, we present the effects of tasurgratinib on the resistance to CDK4/6 [...] Read more.
Background: Fibroblast growth factor (FGF) signaling plays a crucial role in several cellular functions in cancer cells. Tasurgratinib, formerly known as E7090, is an orally available FGF receptor (FGFR)1–3 selective inhibitor. Here, we present the effects of tasurgratinib on the resistance to CDK4/6 inhibitors and endocrine therapy (ET) in a preclinical model. Methods: Estrogen receptor (ER)+ breast cancer (BC) patient-derived xenograft (PDX) models harboring ESR1 wild-type or ESR1 mutation were used as animal models. An in vitro cell proliferation assay of ER+ BC cell lines treated with fulvestrant or palbociclib + fulvestrant was conducted in the presence of FGF2 and FGF10, with or without tasurgratinib. Results: Among five ER+ BC PDX models, OD-BRE-0438 and OD-BRE-0704 showed higher sensitivities to tasurgratinib with prior palbociclib + fulvestrant than without it. In these models, palbociclib + fulvestrant treatment upregulated the expression of several FGF ligand mRNAs. In vitro, FGF2 and FGF10 decreased the sensitivity to both fulvestrant and palbociclib + fulvestrant, which was restored by co-treatment with tasurgratinib. Consistently, fulvestrant + tasurgratinib and elacestrant + tasurgratinib showed antitumor activity in ER+ BC PDX models harboring ESR1 wild-type and ESR1 mutation, respectively. In these models, fulvestrant or elacestrant upregulated the expression of several FGF ligand mRNAs. Conclusions: FGF signaling plays a role in resistance to CDK4/6 inhibitors and ET in ER+ BC. Tasurgratinib has the potential to exhibit significant antitumor activity in combination with ET against ER+ BC via FGF signaling inhibition. These findings indicate the therapeutic potential of tasurgratinib in treating ER+ BC. Full article
(This article belongs to the Special Issue New Insights into Targeted Drugs for Breast Cancer (Volume II))
Show Figures

Figure 1

20 pages, 7992 KiB  
Article
The Potential of Single-Transcription Factor Gene Expression by RT-qPCR for Subtyping Small Cell Lung Cancer
by Albert Iñañez, Raúl del Rey-Vergara, Fabricio Quimis, Pedro Rocha, Miguel Galindo, Sílvia Menéndez, Laura Masfarré, Ignacio Sánchez, Marina Carpes, Carlos Martínez, Sandra Pérez-Buira, Federico Rojo, Ana Rovira and Edurne Arriola
Int. J. Mol. Sci. 2025, 26(3), 1293; https://doi.org/10.3390/ijms26031293 - 3 Feb 2025
Cited by 2 | Viewed by 2153
Abstract
Complex RNA-seq signatures involving the transcription factors ASCL1, NEUROD1, and POU2F3 classify Small Cell Lung Cancer (SCLC) into four subtypes: SCLC-A, SCLC-N, SCLC-P, and SCLC-I (triple negative or inflamed). Preliminary studies suggest that identifying these subtypes can guide targeted therapies and [...] Read more.
Complex RNA-seq signatures involving the transcription factors ASCL1, NEUROD1, and POU2F3 classify Small Cell Lung Cancer (SCLC) into four subtypes: SCLC-A, SCLC-N, SCLC-P, and SCLC-I (triple negative or inflamed). Preliminary studies suggest that identifying these subtypes can guide targeted therapies and potentially improve outcomes. This study aims to evaluate whether the expression levels of these three key transcription factors can effectively classify SCLC subtypes, comparable to the use of individual antibodies in immunohistochemical (IHC) analysis of formalin-fixed, paraffin-embedded (FFPE) tumor samples. We analyzed preclinical models of increasing complexity, including eleven human and five mouse SCLC cell lines, six patient-derived xenografts (PDXs), and two circulating tumor cell (CTC)-derived xenografts (CDXs) generated in our laboratory. RT-qPCR conditions were established to detect the expression levels of ASCL1, NEUROD1, and POU2F3. Additionally, protein-level analysis was performed using Western blot for cell lines and IHC for FFPE samples of PDX and CDX tumors, following our experience with patient tumor samples from the CANTABRICO trial (NCT04712903). We found that the analyzed SCLC cell line models predominantly expressed ASCL1, NEUROD1, and POU2F3, or showed no expression, as identified by RT-qPCR, consistently matching the previously assigned subtypes for each cell line. The classification of PDX and CDX models demonstrated consistency between RT-qPCR and IHC analyses of the transcription factors. Our results show that single-gene analysis by RT-qPCR from FFPE-extracted RNA simplifies SCLC subtype classification. This approach provides a cost-effective alternative to IHC staining or expensive multi-gene RNA sequencing panels, making SCLC subtyping more accessible for both preclinical research and clinical applications. Full article
(This article belongs to the Special Issue Recent Trends in Experimental Models for Cancer Research)
Show Figures

Figure 1

16 pages, 2388 KiB  
Article
Polo-like Kinase 1 Inhibitors Demonstrate In Vitro and In Vivo Efficacy in Preclinical Models of Small Cell Lung Cancer
by Guojing Zhang, Abbe Pannucci, Andrey A. Ivanov, Jeffrey Switchenko, Shi-Yong Sun, Gabriel L. Sica, Zhentao Liu, Yufei Huang, John C. Schmitz and Taofeek K. Owonikoko
Cancers 2025, 17(3), 446; https://doi.org/10.3390/cancers17030446 - 28 Jan 2025
Viewed by 1831
Abstract
Objective: To investigate the preclinical efficacy and identify predictive biomarkers of polo-like kinase 1 (PLK1) inhibitors in small cell lung cancer (SCLC) models. Methods: We tested the cytotoxicity of selective PLK1 inhibitors (rigosertib, volasertib, and onvansertib) in a panel of SCLC cell lines. [...] Read more.
Objective: To investigate the preclinical efficacy and identify predictive biomarkers of polo-like kinase 1 (PLK1) inhibitors in small cell lung cancer (SCLC) models. Methods: We tested the cytotoxicity of selective PLK1 inhibitors (rigosertib, volasertib, and onvansertib) in a panel of SCLC cell lines. We confirmed the therapeutic efficacy of subcutaneous xenografts of representative cell lines and in four patient-derived xenograft models generated from patients with platinum-sensitive and platinum-resistant SCLC. We employed an integrated analysis of genomic and transcriptomic sequencing data to identify potential biomarkers of the activity and mechanisms of resistance in laboratory-derived resistance models. Results: Volasertib, rigosertib, and onvansertib showed strong in vitro cytotoxicity at nanomolar concentrations in human SCLC cell lines. Rigosertib, volasertib, and onvansertib showed equivalent efficacy to that of standard care agents (irinotecan and cisplatin) in vivo with significant growth inhibition superior to cisplatin in PDX models of platinum-sensitive and platinum-resistant SCLC. There was an association between YAP1 expression and disruptive or inactivation TP53 gene mutations, with greater efficacy of PLK1 inhibitors. Comparison of lab-derived onvansertib-resistant H526 cells to parental cells revealed differential gene expression with upregulation of NAP1L3, CYP7B1, AKAP7, and FOXG1 and downregulation of RPS4Y1, KDM5D, USP9Y, and EIF1AY highlighting the potential mechanisms of resistance in the clinical setting. Conclusions: We established the efficacy of PLK1 inhibitors in vitro and in vivo using PDX models of platinum-sensitive and resistant relapsed SCLC. An ongoing phase II trial is currently testing the efficacy of onvansertib in patients with SCLC (NCT05450965). Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

21 pages, 13070 KiB  
Article
MK-8776 and Olaparib Combination Acts Synergistically in Hepatocellular Carcinoma Cells, Demonstrating Lack of Adverse Effects on Liver Tissues in Ovarian Cancer PDX Model
by Wiktoria Bębenek, Arkadiusz Gajek, Agnieszka Marczak, Jan Malý, Jiří Smejkal, Małgorzata Statkiewicz, Natalia Rusetska, Magdalena Bryś and Aneta Rogalska
Int. J. Mol. Sci. 2025, 26(2), 834; https://doi.org/10.3390/ijms26020834 - 20 Jan 2025
Viewed by 3285
Abstract
Hepatocellular carcinoma (HCC) cells critically depend on PARP1 and CHK1 activation for survival. Combining the PARP inhibitor (PARPi) olaparib with a CHK1 inhibitor (MK-8776, CHK1i) produced a synergistic effect, reducing cell viability and inducing marked oxidative stress and DNA damage, particularly in the [...] Read more.
Hepatocellular carcinoma (HCC) cells critically depend on PARP1 and CHK1 activation for survival. Combining the PARP inhibitor (PARPi) olaparib with a CHK1 inhibitor (MK-8776, CHK1i) produced a synergistic effect, reducing cell viability and inducing marked oxidative stress and DNA damage, particularly in the HepG2 cells. This dual treatment significantly increased apoptosis markers, including γH2AX and caspase-3/7 activity. Both HCC cell lines exhibited heightened sensitivity to the combined treatment. The effect of drugs on the expression of proliferation markers in an olaparib-resistant patient-derived xenograft (PDX) model of ovarian cancer was also investigated. Ovarian tumors displayed reduced tissue growth, as reflected by a drop in proliferation marker Ki-67 levels in response to PARPi combined with CHK1i. No changes were observed in corresponding liver tissues using Ki-67 and pCHK staining, which indicates the absence of metastases and a hepatotoxic effect. Thus, our results indicate that the dual inhibition of PARP and CHK1 may prove to be a promising therapeutic approach in the treatment of primary HCC as well as OC tumors without the risk of liver metastases, especially in patients with olaparib-resistant tumor profiles. Full article
Show Figures

Figure 1

30 pages, 1346 KiB  
Review
Preclinical Models for Functional Precision Lung Cancer Research
by Jie-Zeng Yu, Zsofia Kiss, Weijie Ma, Ruqiang Liang and Tianhong Li
Cancers 2025, 17(1), 22; https://doi.org/10.3390/cancers17010022 - 25 Dec 2024
Cited by 1 | Viewed by 3278
Abstract
Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted [...] Read more.
Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted therapies, immunotherapies, antibody–drug conjugates, and emerging investigational treatments. While traditional human lung cancer cell lines offer a basic framework for cancer research, they often lack the tumor heterogeneity and intricate tumor–stromal interactions necessary to accurately predict patient-specific clinical outcomes. Patient-derived xenografts (PDXs), however, retain the original tumor’s histopathology and genetic features, providing a more reliable model for predicting responses to systemic therapeutics, especially molecularly targeted therapies. For studying immunotherapies and antibody–drug conjugates, humanized PDX mouse models, syngeneic mouse models, and genetically engineered mouse models (GEMMs) are increasingly utilized. Despite their value, these in vivo models are costly, labor-intensive, and time-consuming. Recently, patient-derived lung cancer organoids (LCOs) have emerged as a promising in vitro tool for functional precision oncology studies. These LCOs demonstrate high success rates in growth and maintenance, accurately represent the histology and genomics of the original tumors and exhibit strong correlations with clinical treatment responses. Further supported by advancements in imaging, spatial and single-cell transcriptomics, proteomics, and artificial intelligence, these preclinical models are reshaping the landscape of drug development and functional precision lung cancer research. This integrated approach holds the potential to deliver increasingly accurate, personalized treatment strategies, ultimately enhancing patient outcomes in lung cancer. Full article
Show Figures

Figure 1

16 pages, 1150 KiB  
Review
Familial Pancreatic Cancer Research: Bridging Gaps in Basic Research and Clinical Application
by Suyakarn Archasappawat, Fatimah Al-Musawi, Peiyi Liu, EunJung Lee and Chang-il Hwang
Biomolecules 2024, 14(11), 1381; https://doi.org/10.3390/biom14111381 - 30 Oct 2024
Viewed by 1886
Abstract
Familial pancreatic cancer (FPC) represents a significant yet underexplored area in pancreatic cancer research. Basic research efforts are notably limited, and when present, they are predominantly centered on the BRCA1 and BRCA2 mutations due to the scarcity of other genetic variants associated with [...] Read more.
Familial pancreatic cancer (FPC) represents a significant yet underexplored area in pancreatic cancer research. Basic research efforts are notably limited, and when present, they are predominantly centered on the BRCA1 and BRCA2 mutations due to the scarcity of other genetic variants associated with FPC, leading to a limited understanding of the broader genetic landscape of FPC. This review examines the current state of FPC research, focusing on the molecular mechanisms driving pancreatic ductal adenocarcinoma (PDAC) progression. It highlights the role of homologous recombination (HR) and its therapeutic exploitation via synthetic lethality with PARP inhibitors in BRCA1/2-deficient tumors. The review discusses various pre-clinical models of FPC, including conventional two-dimensional (2D) cell lines, patient-derived organoids (PDOs), patient-derived xenografts (PDXs), and genetically engineered mouse models (GEMMs), as well as new advancements in FPC research. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 2628 KiB  
Article
Enhancing Intrapleural Hyperthermic Chemotherapy for Lung Cancer: Insights from 3D and PDX Models
by Jung Young Shin, Mi Ran Lee, Kyung Ah Choi, Seok Whan Moon and Mi Hyoung Moon
Cancers 2024, 16(20), 3448; https://doi.org/10.3390/cancers16203448 - 11 Oct 2024
Cited by 2 | Viewed by 1612
Abstract
Background/Objectives: Malignant pleural effusion (MPE) in lung cancer indicates systemically disseminated advanced lung cancer and is associated with poor survival. Intrapleural hyperthermic chemotherapy (IPHC) is a promising treatment for MPE; however, its biological basis is not fully understood. IPHC can enhance anticancer [...] Read more.
Background/Objectives: Malignant pleural effusion (MPE) in lung cancer indicates systemically disseminated advanced lung cancer and is associated with poor survival. Intrapleural hyperthermic chemotherapy (IPHC) is a promising treatment for MPE; however, its biological basis is not fully understood. IPHC can enhance anticancer drug efficacy, particularly in drug-resistant cancers. This study investigated the effects of hyperthermia on cisplatin cytotoxicity in lung cancer cell lines, patient-derived tumor cells, and a patient-derived xenograft (PDX) model. Methods: Lung cancer cell lines (A549 and H2170) and patient-derived tumor cells were cultured in 2D/3D systems and treated with cisplatin under varying temperatures (37 °C, 43 °C, and 45 °C) and exposure times (5, 15, and 30 min). Antiproliferative effects were evaluated using LDH and CCK-8 assays. Optimal conditions identified in cell culture experiments were validated using a PDX model; tumor growth inhibition, delay, and protein expression were analyzed post-treatment. Results: Hyperthermia significantly enhanced the antitumor efficacy of cisplatin at 43 °C and 45 °C, with comparable effects under 15 and 30 min exposure. In the PDX model, IPHC showed increased tumor inhibition and necrosis and delayed tumor regrowth, particularly at higher cisplatin doses. Protein expression analysis revealed that hyperthermia decreased EGFR expression and increased levels of apoptosis-related proteins, including cleaved PARP and caspase-3. Conclusions: IPHC with cisplatin demonstrated enhanced antitumor efficacy in vitro models, particularly in drug-resistant lung cancer, indicating its potential as a valuable adjunct to existing treatment regimens for lung cancer and for improving patient outcomes in advanced lung cancer with MPE or pleural metastasis. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

15 pages, 3971 KiB  
Article
PLK1 Inhibitor Onvansertib Enhances the Efficacy of Alpelisib in PIK3CA-Mutated HR-Positive Breast Cancer Resistant to Palbociclib and Endocrine Therapy: Preclinical Insights
by Sreeja Sreekumar, Elodie Montaudon, Davis Klein, Migdalia E. Gonzalez, Pierre Painsec, Héloise Derrien, Laura Sourd, Tod Smeal, Elisabetta Marangoni and Maya Ridinger
Cancers 2024, 16(19), 3259; https://doi.org/10.3390/cancers16193259 - 25 Sep 2024
Cited by 3 | Viewed by 3518
Abstract
Background: Endocrine therapy (ET) combined with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) is the preferred first-line treatment for hormone receptor-positive (HR+)/HER2- metastatic breast cancer. Although this is beneficial, acquired resistance leads to disease progression, and patients harboring PIK3CA mutations are treated with targeted therapies [...] Read more.
Background: Endocrine therapy (ET) combined with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) is the preferred first-line treatment for hormone receptor-positive (HR+)/HER2- metastatic breast cancer. Although this is beneficial, acquired resistance leads to disease progression, and patients harboring PIK3CA mutations are treated with targeted therapies such as the PI3Kα inhibitor, alpelisib, alongside ET. Drug-associated resistance mechanisms limit the efficacy of alpelisib, highlighting the need for better combination therapies. This study aimed to evaluate the efficacy of combining alpelisib with a highly specific PLK1 inhibitor, onvansertib, in PIK3CA-mutant HR+ breast cancer preclinical models. Methods: We assessed the effect of the alpelisib and onvansertib combination on cell viability, PI3K signaling pathway, cell cycle phase distribution and apoptosis in PI3K-activated HR+ breast cancer cell lines. The antitumor activity of the combination was evaluated in three PIK3CA-mutant HR+ breast cancer patient-derived xenograft (PDX) models, resistant to ET and CDK4/6 inhibitor palbociclib. Pharmacodynamics studies were performed using immunohistochemistry and Simple Western analyses in tumor tissues. Results: The combination synergistically inhibited cell viability, suppressed PI3K signaling, induced G2/M arrest and apoptosis in PI3K-activated cell lines. In the three PDX models, the combination demonstrated superior anti-tumor activity compared to the single agents. Pharmacodynamic studies confirmed the inhibition of both PLK1 and PI3K activity and pronounced apoptosis in the combination-treated tumors. Conclusions: Our findings support that targeting PLK1 and PI3Kα with onvansertib and alpelisib, respectively, may be a promising strategy for patients with PIK3CA-mutant HR+ breast cancer failing ET + CDK4/6i therapies and warrant clinical evaluation. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

24 pages, 4495 KiB  
Article
Maintenance Therapy for Pancreatic Cancer, a New Approach Based on the Synergy between the Novel Agent GP-2250 (Misetionamide) and Gemcitabine
by Marie Buchholz, Britta Majchrzak-Stiller, Ilka Peters, Stephan Hahn, Lea Skrzypczyk, Lena Beule, Waldemar Uhl, Chris Braumann, Johanna Strotmann and Philipp Höhn
Cancers 2024, 16(14), 2612; https://doi.org/10.3390/cancers16142612 - 22 Jul 2024
Viewed by 1823
Abstract
The novel Oxathiazinane derivative GP-2250 (Misetionamide) displays antineoplastic activity in vitro and in vivo, as previously shown in pancreatic cancer cells and in patient-derived mouse xenografts (PDX). Currently, GP 2250 is under phase I clinical trial in pancreatic ductal adenocarcinoma (PDAC). GP-2250 in [...] Read more.
The novel Oxathiazinane derivative GP-2250 (Misetionamide) displays antineoplastic activity in vitro and in vivo, as previously shown in pancreatic cancer cells and in patient-derived mouse xenografts (PDX). Currently, GP 2250 is under phase I clinical trial in pancreatic ductal adenocarcinoma (PDAC). GP-2250 in combination with Gemcitabine displays a high synergistic capacity in various primary and established pancreatic cancer cell lines. Additionally, in the eight PDX models tested, the drug combination was superior in reducing tumor volume with an aggregate tumor regression (ATR) of 74% compared to Gemcitabine alone (ATR: 10%). Similarly, in a PDX maintenance setting following two weeks of treatment with nab-Paclitaxel plus Gemcitabine, the combination of GP-2250 plus Gemcitabine resulted in outstanding tumor control (ATR: 79%) compared to treatment with Gemcitabine alone (ATR: 60%). Furthermore, GP-2250 reduced the ratio of tumor-initiating CD133+ markers on the surface of PDAC cells in spheroid cultures, indicating a possible mechanism for the synergistic effect of both substances. Considering the high tolerability of GP 2250, these results may open up a new approach to maintenance therapy with GP-2250/Gemcitabine combination following nab-Paclitaxel plus Gemcitabine as first-line treatment. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

20 pages, 38114 KiB  
Article
Efficient Generation of Pancreatic Progenitor Cells from Induced Pluripotent Stem Cells Derived from a Non-Invasive and Accessible Tissue Source—The Plucked Hair Follicle
by Amatullah Fatehi, Marwa Sadat, Muneera Fayyad, Jean Tang, Duhyun Han, Ian M. Rogers and Drew Taylor
Cells 2024, 13(12), 1010; https://doi.org/10.3390/cells13121010 - 10 Jun 2024
Cited by 2 | Viewed by 2843
Abstract
The advent of induced pluripotent stem cell (iPSC) technology has brought about transformative advancements in regenerative medicine, offering novel avenues for disease modeling, drug testing, and cell-based therapies. Patient-specific iPSC-based treatments hold the promise of mitigating immune rejection risks. However, the intricacies and [...] Read more.
The advent of induced pluripotent stem cell (iPSC) technology has brought about transformative advancements in regenerative medicine, offering novel avenues for disease modeling, drug testing, and cell-based therapies. Patient-specific iPSC-based treatments hold the promise of mitigating immune rejection risks. However, the intricacies and costs of producing autologous therapies present commercial challenges. The hair follicle is a multi-germ layered versatile cell source that can be harvested at any age. It is a rich source of keratinocytes, fibroblasts, multipotent stromal cells, and the newly defined Hair Follicle-Associated Pluripotent Stem Cells (HAP). It can also be obtained non-invasively and transported via regular mail channels, making it the ideal starting material for an autologous biobank. In this study, cryopreserved hair follicle-derived iPSC lines (HF-iPS) were established through integration-free vectors, encompassing a diverse cohort. These genetically stable lines exhibited robust expression of pluripotency markers, and showcased tri-lineage differentiation potential. The HF-iPSCs effectively differentiated into double-positive cKIT+/CXCR4+ definitive endoderm cells and NKX6.1+/PDX1+ pancreatic progenitor cells, affirming their pluripotent attributes. We anticipate that the use of plucked hair follicles as an accessible, non-invasive cell source to obtain patient cells, in conjunction with the use of episomal vectors for reprogramming, will improve the future generation of clinically applicable pancreatic progenitor cells for the treatment of Type I Diabetes. Full article
(This article belongs to the Collection Stem Cells in Tissue Engineering and Regeneration)
Show Figures

Figure 1

21 pages, 1029 KiB  
Review
Patient-Derived Conditionally Reprogrammed Cells in Prostate Cancer Research
by Abdalla Elbialy, Deepthi Kappala, Dhruv Desai, Peng Wang, Ahmed Fadiel, Shang-Jui Wang, Mina S. Makary, Scott Lenobel, Akshay Sood, Michael Gong, Shawn Dason, Ahmad Shabsigh, Steven Clinton, Anil V. Parwani, Nagireddy Putluri, Gennady Shvets, Jenny Li and Xuefeng Liu
Cells 2024, 13(12), 1005; https://doi.org/10.3390/cells13121005 - 8 Jun 2024
Cited by 2 | Viewed by 2892
Abstract
Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell [...] Read more.
Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives). Full article
(This article belongs to the Special Issue Reprogrammed Cells in Disease Modeling and Drug Discovery II)
Show Figures

Figure 1

21 pages, 10277 KiB  
Article
Reprogramming Glioblastoma Cells into Non-Cancerous Neuronal Cells as a Novel Anti-Cancer Strategy
by Michael Q. Jiang, Shan Ping Yu, Takira Estaba, Emily Choi, Ken Berglund, Xiaohuan Gu and Ling Wei
Cells 2024, 13(11), 897; https://doi.org/10.3390/cells13110897 - 23 May 2024
Cited by 4 | Viewed by 3367
Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain tumor with a high mortality rate. Direct reprogramming of glial cells to different cell lineages, such as induced neural stem cells (iNSCs) and induced neurons (iNeurons), provides genetic tools to manipulate a cell’s fate as a [...] Read more.
Glioblastoma Multiforme (GBM) is an aggressive brain tumor with a high mortality rate. Direct reprogramming of glial cells to different cell lineages, such as induced neural stem cells (iNSCs) and induced neurons (iNeurons), provides genetic tools to manipulate a cell’s fate as a potential therapy for neurological diseases. NeuroD1 (ND1) is a master transcriptional factor for neurogenesis and it promotes neuronal differentiation. In the present study, we tested the hypothesis that the expression of ND1 in GBM cells can force them to differentiate toward post-mitotic neurons and halt GBM tumor progression. In cultured human GBM cell lines, including LN229, U87, and U373 as temozolomide (TMZ)-sensitive and T98G as TMZ-resistant cells, the neuronal lineage conversion was induced by an adeno-associated virus (AAV) package carrying ND1. Twenty-one days after AAV-ND1 transduction, ND1-expressing cells displayed neuronal markers MAP2, TUJ1, and NeuN. The ND1-induced transdifferentiation was regulated by Wnt signaling and markedly enhanced under a hypoxic condition (2% O2 vs. 21% O2). ND1-expressing GBM cultures had fewer BrdU-positive proliferating cells compared to vector control cultures. Increased cell death was visualized by TUNEL staining, and reduced migrative activity was demonstrated in the wound-healing test after ND1 reprogramming in both TMZ-sensitive and -resistant GBM cells. In a striking contrast to cancer cells, converted cells expressed the anti-tumor gene p53. In an orthotopical GBM mouse model, AAV-ND1-reprogrammed U373 cells were transplanted into the fornix of the cyclosporine-immunocompromised C57BL/6 mouse brain. Compared to control GBM cell-formed tumors, cells from ND1-reprogrammed cultures formed smaller tumors and expressed neuronal markers such as TUJ1 in the brain. Thus, reprogramming using a single-factor ND1 overcame drug resistance, converting malignant cells of heterogeneous GBM cells to normal neuron-like cells in vitro and in vivo. These novel observations warrant further research using patient-derived GBM cells and patient-derived xenograft (PDX) models as a potentially effective treatment for a deadly brain cancer and likely other astrocytoma tumors. Full article
(This article belongs to the Special Issue Glioblastoma: What Do We Know?)
Show Figures

Figure 1

19 pages, 7511 KiB  
Article
Effects of Garlic on Breast Tumor Cells with a Triple Negative Phenotype: Peculiar Subtype-Dependent Down-Modulation of Akt Signaling
by Federica Brugnoli, Marcello Dell’Aira, Paola Tedeschi, Silvia Grassilli, Marina Pierantoni, Rebecca Foschi and Valeria Bertagnolo
Cells 2024, 13(10), 822; https://doi.org/10.3390/cells13100822 - 11 May 2024
Cited by 2 | Viewed by 3575
Abstract
Breast cancer includes tumor subgroups with morphological, molecular, and clinical differences. Intrinsic heterogeneity especially characterizes breast tumors with a triple negative phenotype, often leading to the failure of even the most advanced therapeutic strategies. To improve breast cancer treatment, the use of natural [...] Read more.
Breast cancer includes tumor subgroups with morphological, molecular, and clinical differences. Intrinsic heterogeneity especially characterizes breast tumors with a triple negative phenotype, often leading to the failure of even the most advanced therapeutic strategies. To improve breast cancer treatment, the use of natural agents to integrate conventional therapies is the subject of ever-increasing attention. In this context, garlic (Allium sativum) shows anti-cancerous potential, interfering with the proliferation, motility, and malignant progression of both non-invasive and invasive breast tumor cells. As heterogeneity could be at the basis of variable effects, the main objective of our study was to evaluate the anti-tumoral activity of a garlic extract in breast cancer cells with a triple negative phenotype. Established triple negative breast cancer (TNBC) cell lines from patient-derived xenografts (PDXs) were used, revealing subtype-dependent effects on morphology, cell cycle, and invasive potential, correlated with the peculiar down-modulation of Akt signaling, a crucial regulator in solid tumors. Our results first demonstrate that the effects of garlic on TNBC breast cancer are not unique and suggest that only more precise knowledge of the mechanisms activated by this natural compound in each tumor will allow for the inclusion of garlic in personalized therapeutic approaches to breast cancer. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

13 pages, 1132 KiB  
Article
Zebrafish Avatars: Toward Functional Precision Medicine in Low-Grade Serous Ovarian Cancer
by Charlotte Fieuws, Jan Willem Bek, Bram Parton, Elyne De Neef, Olivier De Wever, Milena Hoorne, Marta F. Estrada, Jo Van Dorpe, Hannelore Denys, Koen Van de Vijver and Kathleen B. M. Claes
Cancers 2024, 16(10), 1812; https://doi.org/10.3390/cancers16101812 - 9 May 2024
Cited by 3 | Viewed by 2313
Abstract
Ovarian cancer (OC) is an umbrella term for cancerous malignancies affecting the ovaries, yet treatment options for all subtypes are predominantly derived from high-grade serous ovarian cancer, the largest subgroup. The concept of "functional precision medicine" involves gaining personalized insights on therapy choice, [...] Read more.
Ovarian cancer (OC) is an umbrella term for cancerous malignancies affecting the ovaries, yet treatment options for all subtypes are predominantly derived from high-grade serous ovarian cancer, the largest subgroup. The concept of "functional precision medicine" involves gaining personalized insights on therapy choice, based on direct exposure of patient tissues to drugs. This especially holds promise for rare subtypes like low-grade serous ovarian cancer (LGSOC). This study aims to establish an in vivo model for LGSOC using zebrafish embryos, comparing treatment responses previously observed in mouse PDX models, cell lines and 3D tumor models. To address this goal, a well-characterized patient-derived LGSOC cell line with the KRAS mutation c.35 G>T (p.(Gly12Val)) was used. Fluorescently labeled tumor cells were injected into the perivitelline space of 2 days’ post-fertilization zebrafish embryos. At 1 day post-injection, xenografts were assessed for tumor size, followed by random allocation into treatment groups with trametinib, luminespib and trametinib + luminespib. Subsequently, xenografts were euthanized and analyzed for apoptosis and proliferation by confocal microscopy. Tumor cells formed compact tumor masses (n = 84) in vivo, with clear Ki67 staining, indicating proliferation. Zebrafish xenografts exhibited sensitivity to trametinib and luminespib, individually or combined, within a two-week period, establishing them as a rapid and complementary tool to existing in vitro and in vivo models for evaluating targeted therapies in LGSOC. Full article
(This article belongs to the Special Issue Advances in Ovarian Cancer Research and Treatment)
Show Figures

Graphical abstract

Back to TopTop