Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = PDK family

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4684 KiB  
Article
Molecular Network Analysis and Effector Gene Prioritization of Endurance-Training-Influenced Modulation of Cardiac Aging
by Mingrui Wang, Samuhaer Azhati, Hangyu Chen, Yanyan Zhang and Lijun Shi
Genes 2025, 16(7), 814; https://doi.org/10.3390/genes16070814 - 11 Jul 2025
Viewed by 649
Abstract
Background/Objectives: Cardiac aging involves the progressive structural and functional decline of the myocardium. Endurance training is a well-recognized non-pharmacological intervention that counteracts this decline, yet the molecular mechanisms driving exercise-induced cardiac rejuvenation remain inadequately elucidated. This study aimed to identify key effector genes [...] Read more.
Background/Objectives: Cardiac aging involves the progressive structural and functional decline of the myocardium. Endurance training is a well-recognized non-pharmacological intervention that counteracts this decline, yet the molecular mechanisms driving exercise-induced cardiac rejuvenation remain inadequately elucidated. This study aimed to identify key effector genes and regulatory pathways by integrating human cardiac aging transcriptomic data with multi-omic exercise response datasets. Methods: A systems biology framework was developed to integrate age-downregulated genes (n = 243) from the GTEx human heart dataset and endurance-exercise-responsive genes (n = 634) from the MoTrPAC mouse dataset. Thirty-seven overlapping genes were identified and subjected to Enrichr for pathway enrichment, KEA3 for kinase analysis, and ChEA3 for transcription factor prediction. Candidate effector genes were ranked using ToppGene and ToppNet, with integrated prioritization via the FLAMES linear scoring algorithm. Results: Pathway enrichment revealed complementary patterns: aging-associated genes were enriched in mitochondrial dysfunction and sarcomere disassembly, while exercise-responsive genes were linked to protein synthesis and lipid metabolism. TTN, PDK family kinases, and EGFR emerged as major upstream regulators. NKX2-5, MYOG, and YBX3 were identified as shared transcription factors. SMPX ranked highest in integrated scoring, showing both functional relevance and network centrality, implying a pivotal role in mechano-metabolic coupling and cardiac stress adaptation. Conclusions: By integrating cardiac aging and exercise-responsive transcriptomes, 37 effector genes were identified as molecular bridges between aging decline and exercise-induced rejuvenation. Aging involved mitochondrial and sarcomeric deterioration, while exercise promoted metabolic and structural remodeling. SMPX ranked highest for its roles in mechano-metabolic coupling and redox balance, with X-inactivation escape suggesting sex-specific relevance. Other top genes (e.g., KLHL31, MYPN, RYR2) form a regulatory network supporting exercise-mediated cardiac protection, offering targets for future validation and therapy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 4743 KiB  
Article
Uncovering Anti-Melanoma Mechanisms of Bambusa stenostachya Leaf Compounds via Network Pharmacology and Molecular Docking
by Gen Maxxine C. Darilag, Hsuan-Chieh Liu, Cheng-Yang Hsieh, Lemmuel L. Tayo, Nicholas Dale D. Talubo, Shu-Ching Yang, Ching-Hui Chang, Ying-Pin Huang, Shih-Chi Lee, Yung-Chuan Liu and Po-Wei Tsai
Int. J. Mol. Sci. 2025, 26(13), 6120; https://doi.org/10.3390/ijms26136120 - 25 Jun 2025
Viewed by 588
Abstract
Skin cancer, particularly melanoma, remains a major public health concern due to its high mortality rate. Current treatment options, including chemotherapy with dacarbazine and doxorubicin, have shown limited efficacy, achieving only a 20% objective response rate over six months, along with severe side [...] Read more.
Skin cancer, particularly melanoma, remains a major public health concern due to its high mortality rate. Current treatment options, including chemotherapy with dacarbazine and doxorubicin, have shown limited efficacy, achieving only a 20% objective response rate over six months, along with severe side effects such as cardiotoxicity. Given these limitations, there is a growing interest in herbal medicine as a source of novel anticancer compounds. Bambusa stenostachya, a bamboo species native to Taiwan, was investigated for its potential anti-melanoma properties using network pharmacology and molecular docking. LC-MS analysis identified seven bioactive compounds, including quinic acid and isovitexin, which satisfied Lipinski’s drug-likeness criteria. Among the seven bioactive compounds identified, five belong to the flavonoid family, while two are classified as phenolic compounds that modulate signaling pathways related to cancer and exhibit antioxidant activity, respectively. Through pathway enrichment analysis, four key melanoma-associated genes (PIM1, MEK1, CDK2, and PDK1) were identified as potential therapeutic targets. Ensemble docking results demonstrated that naringin-7-rhamnoglucoside exhibited the highest binding affinity (−6.30 kcal/mol) with phosphoinositide-dependent kinase-1, surpassing the affinities of standard chemotherapeutic agents. Additionally, the average docking scores for naringin-7-rhamnoglucoside and the remaining three proteins were as follows: PIM1 (−5.92), MEK1 (−6.07), and CDK2 (−5.26). These findings suggest that the bioactive compounds in B. stenostachya may play a crucial role in inhibiting melanoma progression by modulating metabolic and signaling pathways. Further in vitro and in vivo studies are necessary to validate these computational findings and explore the potential of B. stenostachya as a complementary therapeutic agent for melanoma. Full article
Show Figures

Figure 1

20 pages, 6548 KiB  
Article
Genome-Wide Analysis of AGC Genes Related to Salt Stress in Soybeans (Glycine max)
by Wenmin Liu, Shuichan Yang, Yi Chen, Sujun Ye, Wenmin Lin, Xiaoya Lin, Yang Tang and Baohui Liu
Int. J. Mol. Sci. 2025, 26(6), 2588; https://doi.org/10.3390/ijms26062588 - 13 Mar 2025
Viewed by 699
Abstract
The AGC protein kinase family plays a crucial role in regulating plant growth, immunity, and cell death, as well as responses to abiotic stresses such as salt-induced stress, which impact plant development and productivity. While the functions of AGC kinases have been thoroughly [...] Read more.
The AGC protein kinase family plays a crucial role in regulating plant growth, immunity, and cell death, as well as responses to abiotic stresses such as salt-induced stress, which impact plant development and productivity. While the functions of AGC kinases have been thoroughly studied in model plants such as Arabidopsis thaliana, their roles in soybeans (Glycine max) remain poorly understood. In this study, we identified 69 AGC kinase genes in soybeans, which are unevenly distributed across 19 chromosomes and classified into five subfamilies: PDK1, AGCVI, AGCVII, AGCVIII, and AGC (other). Each subfamily shares similar exon–intron structures and specific motifs. Gene duplication and selection pressure analyses revealed that the GmAGC gene family is primarily expanded through segmental or whole-genome duplication, with all genes undergoing purifying selection during evolution. Promoter analysis identified numerous cis-regulatory elements associated with light, hormonal, and abiotic stress responses, including salt stress. The gene expression analysis demonstrated tissue-specific patterns, with the highest expression levels found in roots (19.7%). Among the 54 GmAGC genes analyzed using RT-qPCR, significant changes in expression were observed in the roots and leaves treated with sodium chloride, with most genes showing increased expression. These results illustrate the critical role of the soybean AGC kinase gene family in regulating responses to salinity stress. Our findings suggest that targeting specific GmAGC genes may enhance soybean resistance to salt toxicity, offering valuable insights for future crop improvement strategies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 1307 KiB  
Review
Hypoxic Signaling Pathways in Carotid Body Tumors
by Kangxi Cao, Wanzhong Yuan, Chaofan Hou, Zhongzheng Wang, Jiazhi Yu and Tao Wang
Cancers 2024, 16(3), 584; https://doi.org/10.3390/cancers16030584 - 30 Jan 2024
Cited by 4 | Viewed by 2636
Abstract
Carotid body tumors (CBTs) are rare tumors with a 1–2 incidence per 100,000 individuals. CBTs may initially present without apparent symptoms, and symptoms begin to arise since tumors grow bigger to compress surrounding tissue, such as recurrent laryngeal nerve and esophagus. Also, the [...] Read more.
Carotid body tumors (CBTs) are rare tumors with a 1–2 incidence per 100,000 individuals. CBTs may initially present without apparent symptoms, and symptoms begin to arise since tumors grow bigger to compress surrounding tissue, such as recurrent laryngeal nerve and esophagus. Also, the etiology of CBTs remains unclear since it is more likely to occur in those who live in high-altitude areas or suffer from chronic hypoxic diseases such as COPD. SDH mutations and familial inheritance have been reported to be related to CBTs. SDH complexes play crucial roles in aerobic respiration, and SDH mutations in CBTs have been reported to be associated with hypoxia. Hypoxic signaling pathways, specifically hypoxic markers, have attracted more research attention in tumor exploration. However, the existing literature on these signaling and markers lacks a systematic review. Also, therapeutic approaches in CBTs based on hypoxic signaling are rarely used in clinics. In this review, we concluded the role of hypoxic signaling and markers and their potential implications in the initiation and progression of CBTs. Our findings underscore the involvement of the SDH family, the HIF family, VEGFs, and inflammatory cytokines (ICs) in tumorigenesis and treatment. Of particular interest is the role played by SDHx, which has recently been linked to oxygen sensing through mutations leading to hereditary CBTs. Among the SDH family, SDHB and SDHD exhibit remarkable characteristics associated with metastasis and multiple tumors. Besides SDH mutations in CBTs, the HIF family also plays crucial roles in CBTs via hypoxic signaling pathways. The HIF family regulates angiogenesis during mammalian development and tumor growth by gene expression in CBTs. HIF1α could induce the transcription of pyruvate dehydrogenase kinase 1 (PDK1) to inhibit pyruvate dehydrogenase kinase (PDH) by inhibiting the TCA cycle. Then, carotid body cells begin to hyperplasia and hypertrophy. At the same time, EPAS1 mutation, an activating mutation, could decrease the degradation of HIF2α and result in Pacak–Zhuang syndrome, which could result in paraganglioma. HIFs can also activate VEGF expression, and VEGFs act on Flk-1 to control the hyperplasia of type I cells and promote neovascularization. ICs also play a pivotal signaling role within the CB, as their expression is induced under hypoxic conditions to stimulate CB hyperplasia, ultimately leading to CBTs detecting hypoxic areas in tumors, and improving the hypoxic condition could enhance photon radiotherapy efficacy. Moreover, this review offers valuable insights for future research directions on understanding the relationship between hypoxic signaling pathways and CBTs. Full article
(This article belongs to the Section Systematic Review or Meta-Analysis in Cancer Research)
Show Figures

Figure 1

21 pages, 12584 KiB  
Article
Circadian Rhythm Alteration of the Core Clock Genes and the Lipid Metabolism Genes Induced by High-Fat Diet (HFD) in the Liver Tissue of the Chinese Soft-Shelled Turtle (Trionyx sinensis)
by Li Liu, Lingli Liu, Shiming Deng, Li Zou, Yong He, Xin Zhu, Honghui Li, Yazhou Hu, Wuying Chu and Xiaoqing Wang
Genes 2024, 15(2), 157; https://doi.org/10.3390/genes15020157 - 25 Jan 2024
Cited by 5 | Viewed by 3219
Abstract
Physiology disorders of the liver, as it is an important tissue in lipid metabolism, can cause fatty liver disease. The mechanism might be regulated by 17 circadian clock genes and 18 fat metabolism genes, together with a high-fat diet (HFD). Due to their [...] Read more.
Physiology disorders of the liver, as it is an important tissue in lipid metabolism, can cause fatty liver disease. The mechanism might be regulated by 17 circadian clock genes and 18 fat metabolism genes, together with a high-fat diet (HFD). Due to their rich nutritional and medicinal value, Chinese soft-shelled turtles (Trionyx sinensis) are very popular among the Chinese people. In the study, we aimed to investigate the influence of an HFD on the daily expression of both the core clock genes and the lipid metabolism genes in the liver tissue of the turtles. The two diets were formulated with 7.98% lipid (the CON group) and 13.86% lipid (the HFD group) to feed 180 juvenile turtles, which were randomly divided into two groups with three replicates per group and 30 turtles in each replicate for six weeks, and the diet experiment was administrated with a photophase regimen of a 24 h light/dark (12L:12D) cycle. At the end of the experiment, the liver tissue samples were collected from nine turtles per group every 3 h (zeitgeber time: ZT 0, 3, 6, 9, 12, 15, 18, 21 and 24) for 24 h to investigate the daily expression and correlation analysis of these genes. The results showed that 11 core clock genes [i.e., circadian locomotor output cycles kaput (Clock), brain and muscle arnt-like protein 1 and 2 (Bmal1/2), timeless (Tim), cryptochrome 1 (Cry2), period2 (Per2), nuclear factor IL-3 gene (Nfil3), nuclear receptor subfamily 1, treatment D, member 1 and 2 (Nr1d1/2) and retinoic acid related orphan receptor α/β/γ β and γ (Rorβ/γ)] exhibited circadian oscillation, but 6 genes did not, including neuronal PAS domain protein 2 (Npas2), Per1, Cry1, basic helix-loop-helix family, member E40 (Bhlhe40), Rorα and D-binding protein (Dbp), and 16 lipid metabolism genes including fatty acid synthase (Fas), diacylglycerol acyltransferase 1 (Dgat1), 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr), Low-density lipoprotein receptor-related protein 1-like (Ldlr1), Lipin 1 (Lipin1), Carnitine palmitoyltransferase 1A (Cpt1a), Peroxisome proliferator activation receptor α, β and γ (Pparα/β/γ), Sirtuin 1 (Sirt1), Apoa (Apoa1), Apolipoprotein B (Apob), Pyruvate Dehydrogenase kinase 4 (Pdk4), Acyl-CoA synthase long-chain1 (Acsl1), Liver X receptors α (Lxrα) and Retinoid X receptor, α (Rxra) also demonstrated circadian oscillations, but 2 genes did not, Scd and Acaca, in the liver tissues of the CON group. However, in the HFD group, the circadian rhythms’ expressional patterns were disrupted for the eight core clock genes, Clock, Cry2, Per2, Nfil3, Nr1d1/2 and Rorβ/γ, and the peak expression of Bmal1/2 and Tim showed delayed or advanced phases. Furthermore, four genes (Cry1, Per1, Dbp and Rorα) displayed no diurnal rhythm in the CON group; instead, significant circadian rhythms appeared in the HFD group. Meanwhile, the HFD disrupted the circadian rhythm expressions of seven fat metabolism genes (Fas, Cpt1a, Sirt1, Apoa1, Apob, Pdk4 and Acsl1). Meanwhile, the other nine genes in the HFD group also showed advanced or delayed expression peaks compared to the CON group. Most importantly of all, there were remarkably positive or negative correlations between the core clock genes and the lipid metabolism genes, and their correlation relationships were altered by the HFD. To sum up, circadian rhythm alterations of the core clock genes and the lipid metabolism genes were induced by the high-fat diet (HFD) in the liver tissues of T. sinensis. This result provides experimental and theoretical data for the mass breeding and production of T. sinensis in our country. Full article
(This article belongs to the Special Issue Fisheries and Aquaculture Gene Expression)
Show Figures

Figure 1

22 pages, 567 KiB  
Article
Residue Number System (RNS) and Power Distribution Network Topology-Based Mitigation of Power Side-Channel Attacks
by Ravikumar Selvam and Akhilesh Tyagi
Cryptography 2024, 8(1), 1; https://doi.org/10.3390/cryptography8010001 - 21 Dec 2023
Cited by 1 | Viewed by 2741
Abstract
Over the past decade, significant research has been performed on power side-channel mitigation techniques. Logic families based on secret sharing schemes, such as t-private logic, that serve to secure cryptographic implementations against power side-channel attacks represent one such countermeasure. These mitigation techniques [...] Read more.
Over the past decade, significant research has been performed on power side-channel mitigation techniques. Logic families based on secret sharing schemes, such as t-private logic, that serve to secure cryptographic implementations against power side-channel attacks represent one such countermeasure. These mitigation techniques are applicable at various design abstraction levels—algorithm, architecture, logic, physical, and gate levels. One research question is when can the two mitigation techniques from different design abstraction levels be employed together gainfully? We explore this notion of the orthogonality of two mitigation techniques with respect to the RNS secure logic, a logic level power side-channel mitigation technique, and power distribution network (PDN), with the decoupling capacitance, a mitigation technique at physical level. Machine learning (ML) algorithms are employed to measure the effectiveness of power side-channel attacks in terms of the success rate of the adversary. The RNS protected LED block cipher round function is implemented as the test circuit in both tree-style and grid-style PDN using the FreePDK 45 nm technology library. The results show that the success rate of an unsecured base design 68.96% for naive Bayes, 67.44% with linear discriminant analysis, 67.51% for quadratic discriminant analysis, and 66.58% for support vector machine. It is reduced to a success rate of 19.68% for naive Bayes, 19.62% with linear discriminant analysis, 19.10% for quadratic discriminant analysis, and 10.54% in support vector machine. Grid-type PDN shows a slightly better reduction in success rate compared to the tree-style PDN. Full article
(This article belongs to the Special Issue Feature Papers in Hardware Security II)
Show Figures

Figure 1

13 pages, 2405 KiB  
Article
Pyruvate Dehydrogenase Kinase 4 Deficiency Increases Tumorigenesis in a Murine Model of Bladder Cancer
by Benjamin L. Woolbright, Ganeshkumar Rajendran, Erika Abbott, Austin Martin, Ryan Didde, Katie Dennis, Robert A. Harris and John A. Taylor
Cancers 2023, 15(6), 1654; https://doi.org/10.3390/cancers15061654 - 8 Mar 2023
Cited by 5 | Viewed by 2380
Abstract
Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial isozyme in the PDK family (PDK1-4) partially responsible for phosphorylation of pyruvate dehydrogenase (PDH). Phosphorylation of PDH is thought to result in a pro-proliferative shift in metabolism that sustains growth of cancer cells. Previous data [...] Read more.
Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial isozyme in the PDK family (PDK1-4) partially responsible for phosphorylation of pyruvate dehydrogenase (PDH). Phosphorylation of PDH is thought to result in a pro-proliferative shift in metabolism that sustains growth of cancer cells. Previous data from our lab indicate the pan-PDK inhibitor dichloroacetate (DCA) or acute genetic knockdown of PDK4 blocks proliferation of bladder cancer (BCa) cells. The goal of this study was to determine the role of PDK4 in an in vivo BCa model, with the hypothesis that genetic depletion of PDK4 would impair formation of BCa. PDK4−/− or WT animals were exposed to N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN) for 16 weeks, and tumors were allowed to develop for up to 7 additional weeks. PDK4−/− mice had significantly larger tumors at later time points. When animals were treated with cisplatin, PDK4−/− animals still had larger tumors than WT mice. PDK4 expression was assessed in human tissue and in mice. WT mice lost expression of PDK4 as tumors became muscle-invasive. Similar results were observed in human samples, wherein tumors had less expression of PDK4 than benign tissue. In summary, PDK4 has a complex, multifunctional role in BCa and may represent an underrecognized tumor suppressor. Full article
(This article belongs to the Special Issue Targeting Tumor Niches for Cancer Chemoprevention and Treatment)
Show Figures

Figure 1

14 pages, 2595 KiB  
Article
Anti-Metastatic Effect of Pyruvate Dehydrogenase Kinase 4 Inhibition in Bladder Cancer via the ERK, SRC, and JNK Pathways
by Eun Hye Lee, Jae-Wook Chung, Eunji Sung, Bo Hyun Yoon, Minji Jeon, Song Park, So Young Chun, Jun Nyung Lee, Bum Soo Kim, Hyun Tae Kim, Tae Hwan Kim, Seock Hwan Choi, Eun Sang Yoo, Tae Gyun Kwon, Ho Won Kang, Wun-Jae Kim, Seok Joong Yun, Sangkyu Lee and Yun-Sok Ha
Int. J. Mol. Sci. 2022, 23(21), 13240; https://doi.org/10.3390/ijms232113240 - 31 Oct 2022
Cited by 11 | Viewed by 3028
Abstract
Bladder cancer is a common global cancer with a high percentage of metastases and high mortality rate. Thus, it is necessary to identify new biomarkers that can be helpful in diagnosis. Pyruvate dehydrogenase kinase 4 (PDK4) belongs to the PDK family and plays [...] Read more.
Bladder cancer is a common global cancer with a high percentage of metastases and high mortality rate. Thus, it is necessary to identify new biomarkers that can be helpful in diagnosis. Pyruvate dehydrogenase kinase 4 (PDK4) belongs to the PDK family and plays an important role in glucose utilization in living organisms. In the present study, we evaluated the role of PDK4 in bladder cancer and its related protein changes. First, we observed elevated PDK4 expression in high-grade bladder cancers. To screen for changes in PDK4-related proteins in bladder cancer, we performed a comparative proteomic analysis using PDK4 knockdown cells. In bladder cancer cell lines, PDK4 silencing resulted in a lower rate of cell migration and invasion. In addition, a PDK4 knockdown xenograft model showed reduced bladder cancer growth in nude mice. Based on our results, PDK4 plays a critical role in the metastasis and growth of bladder cancer cells through changes in ERK, SRC, and JNK. Full article
(This article belongs to the Special Issue Signaling Transduction in Cancer Metabolism)
Show Figures

Figure 1

20 pages, 7506 KiB  
Article
PDK4 Constitutes a Novel Prognostic Biomarker and Therapeutic Target in Gastric Cancer
by Zimu Zhang, Shiyuan Han, Siwen Ouyang, Ziyang Zeng, Zhen Liu, Juan Sun and Weiming Kang
Diagnostics 2022, 12(5), 1101; https://doi.org/10.3390/diagnostics12051101 - 27 Apr 2022
Cited by 9 | Viewed by 3137
Abstract
Gastric cancer (GC) is one of the most prevalent and deadly malignancies worldwide. We aimed to assess the functional role and clinical significance of pyruvate dehydrogenase kinase (PDK) in GC and explored the underlying mechanisms. The bioinformatics method was used to investigate the [...] Read more.
Gastric cancer (GC) is one of the most prevalent and deadly malignancies worldwide. We aimed to assess the functional role and clinical significance of pyruvate dehydrogenase kinase (PDK) in GC and explored the underlying mechanisms. The bioinformatics method was used to investigate the expression of PDKs in GC, the effect on clinical outcomes, enriched pathways, interactive network, and the correlation between PDK4 and immune infiltration. Next, PDK expression in the GC cells and tissues were verified by qRT-PCR and western blotting. A Cell Counting Kit-8 (CCK8), colony-formation, Flow cytometry, Transwell and wound healing assays were carried out to evaluate the influence of PDK4 on cell proliferation, invasion and migration. Among PDKs, PDK4 expression was aberrant in GC and identified as an independent prognostic factor. GO analysis, GSEA, and PPI showed that PDK4 expression may regulate cell adhesion, metal ion transport, synaptic activity, and cancer cell metabolism in GC. Analyses of immune infiltration showed that PDK4 correlated with the abundant expression of various immunocytes. Finally, we verified that upregulation of PDK4 expression enhanced the ability of GC cells to proliferate, migrate, and invade. In conclusion, PDK4 was identified as a potential candidate diagnostic biomarker and therapeutic target for GC patients. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

23 pages, 3364 KiB  
Article
Bactericidal Activity of Non-Cytotoxic Cationic Nanoparticles against Clinically and Environmentally Relevant Pseudomonas spp. Isolates
by Anna Maria Schito, Gabriella Piatti, Debora Caviglia, Guendalina Zuccari, Alessia Zorzoli, Danilo Marimpietri and Silvana Alfei
Pharmaceutics 2021, 13(9), 1411; https://doi.org/10.3390/pharmaceutics13091411 - 6 Sep 2021
Cited by 18 | Viewed by 3344
Abstract
Difficult-to-treat bacterial infections caused by resistant human and plant pathogens severely afflict hospitals, and concern the agri-food sectors. Bacteria from the Pseudomonadaceae family, such as P. aeruginosa, P. putida, P. fluorescens, and P. straminea, can be responsible for severe nosocomial infections in humans. [...] Read more.
Difficult-to-treat bacterial infections caused by resistant human and plant pathogens severely afflict hospitals, and concern the agri-food sectors. Bacteria from the Pseudomonadaceae family, such as P. aeruginosa, P. putida, P. fluorescens, and P. straminea, can be responsible for severe nosocomial infections in humans. P. fragi is the major cause of dairy and meat spoilage, while P. syringae can infect a wide range of economically important plant species, including tobacco, kiwi, and tomato. Therefore, a cationic water-soluble lysine dendrimer (G5-PDK) was tested on several species of Pseudomonas genus. Interestingly, G5-PDK demonstrated variable minimum inhibitory concentrations (MICs), depending on their pigment production, on Pseudomonas aeruginosa (1.6-> 6.4 µM), MICs = 3.2–6.4 µM on P. putida clinical isolates producing pyoverdine, and very low MICs (0.2–1.6 µM) on strains that produced non-pigmented colonies. Time-kill experiments established the rapid bactericidal activity of G5-PDK. In the cytotoxicity experiments on human keratinocytes, after 4 h of treatment with G5-PDK at concentrations 16–500 × MIC, more than 80% of viable cells were observed, and after 24 h, the selectivity indices were maintained above the maximum value reported as acceptable. Due to its proven bactericidal potency and low cytotoxicity, G5-PDK should be seriously considered to counteract clinically and environmentally relevant Pseudomonas isolates. Full article
(This article belongs to the Collection Women in Pharmaceutics)
Show Figures

Graphical abstract

12 pages, 814 KiB  
Article
Rare Germline Variants in Chordoma-Related Genes and Chordoma Susceptibility
by Sally Yepes, Nirav N. Shah, Jiwei Bai, Hela Koka, Chuzhong Li, Songbai Gui, Mary Lou McMaster, Yanzi Xiao, Kristine Jones, Mingyi Wang, Aurelie Vogt, Bin Zhu, Bin Zhu, Amy Hutchinson, Meredith Yeager, Belynda Hicks, Brian Carter, Neal D. Freedman, Laura Beane-Freeman, Stephen J. Chanock, Yazhuo Zhang, Dilys M. Parry, Xiaohong R. Yang and Alisa M. Goldsteinadd Show full author list remove Hide full author list
Cancers 2021, 13(11), 2704; https://doi.org/10.3390/cancers13112704 - 30 May 2021
Cited by 11 | Viewed by 3894
Abstract
Background: Chordoma is a rare bone cancer with an unknown etiology. TBXT is the only chordoma susceptibility gene identified to date; germline single nucleotide variants and copy number variants in TBXT have been associated with chordoma susceptibility in familial and sporadic chordoma. However, [...] Read more.
Background: Chordoma is a rare bone cancer with an unknown etiology. TBXT is the only chordoma susceptibility gene identified to date; germline single nucleotide variants and copy number variants in TBXT have been associated with chordoma susceptibility in familial and sporadic chordoma. However, the genetic susceptibility of chordoma remains largely unknown. In this study, we investigated rare germline genetic variants in genes involved in TBXT/chordoma-related signaling pathways and other biological processes in chordoma patients from North America and China. Methods: We identified variants that were very rare in general population and internal control datasets and showed evidence for pathogenicity in 265 genes in a whole exome sequencing (WES) dataset of 138 chordoma patients of European ancestry and in a whole genome sequencing (WGS) dataset of 80 Chinese patients with skull base chordoma. Results: Rare and likely pathogenic variants were identified in 32 of 138 European ancestry patients (23%), including genes that are part of notochord development, PI3K/AKT/mTOR, Sonic Hedgehog, SWI/SNF complex and mesoderm development pathways. Rare pathogenic variants in COL2A1, EXT1, PDK1, LRP2, TBXT and TSC2, among others, were also observed in Chinese patients. Conclusion: We identified several rare loss-of-function and predicted deleterious missense variants in germline DNA from patients with chordoma, which may influence chordoma predisposition and reflect a complex susceptibility, warranting further investigation in large studies. Full article
(This article belongs to the Special Issue Familial Cancer and Germline Genetics)
Show Figures

Figure 1

16 pages, 840 KiB  
Review
PDK2: An Underappreciated Regulator of Liver Metabolism
by Benjamin L. Woolbright and Robert A. Harris
Livers 2021, 1(2), 82-97; https://doi.org/10.3390/livers1020008 - 11 May 2021
Cited by 2 | Viewed by 6511
Abstract
Pyruvate metabolism is critical for all mammalian cells. The pyruvate dehydrogenase complex couples the pyruvate formed as the primary product of glycolysis to the formation of acetyl-CoA required as the primary substrate of the citric acid cycle. Dysregulation of this coupling contributes to [...] Read more.
Pyruvate metabolism is critical for all mammalian cells. The pyruvate dehydrogenase complex couples the pyruvate formed as the primary product of glycolysis to the formation of acetyl-CoA required as the primary substrate of the citric acid cycle. Dysregulation of this coupling contributes to alterations in metabolic flexibility in obesity, diabetes, cancer, and more. The pyruvate dehydrogenase kinase family of isozymes phosphorylate and inactive the pyruvate dehydrogenase complex in the mitochondria. This function makes them critical mediators of mitochondrial metabolism and drug targets in a number of disease states. The liver expresses multiple PDKs, predominantly PDK1 and PDK2 in the fed state and PDK1, PDK2, and PDK4 in the starved and diabetic states. PDK4 undergoes substantial transcriptional regulation in response to a diverse array of stimuli in most tissues. PDK2 has received less attention than PDK4 potentially due to the dramatic changes in transcriptional gene regulation. However, PDK2 is more responsive than the other PDKs to feedforward and feedback regulation by substrates and products of the pyruvate dehydrogenase complex. Although underappreciated, this makes PDK2 particularly important for the minute-to-minute fine control of the pyruvate dehydrogenase complex and a major contributor to metabolic flexibility. The purpose of this review is to characterize the underappreciated role of PDK2 in liver metabolism. We will focus on known biological actions and physiological roles as well as what roles PDK2 may play in disease states. We will also define current inhibitors and address their potential as therapeutic agents in the future. Full article
Show Figures

Figure 1

18 pages, 6518 KiB  
Article
CAIX-Mediated Control of LIN28/let-7 Axis Contributes to Metabolic Adaptation of Breast Cancer Cells to Hypoxia
by Adriana Gibadulinova, Petra Bullova, Hynek Strnad, Kamil Pohlodek, Dana Jurkovicova, Martina Takacova, Silvia Pastorekova and Eliska Svastova
Int. J. Mol. Sci. 2020, 21(12), 4299; https://doi.org/10.3390/ijms21124299 - 16 Jun 2020
Cited by 38 | Viewed by 5118
Abstract
Solid tumors, including breast cancer, are characterized by the hypoxic microenvironment, extracellular acidosis, and chemoresistance. Hypoxia marker, carbonic anhydrase IX (CAIX), is a pH regulator providing a selective survival advantage to cancer cells through intracellular neutralization while facilitating tumor invasion by extracellular acidification. [...] Read more.
Solid tumors, including breast cancer, are characterized by the hypoxic microenvironment, extracellular acidosis, and chemoresistance. Hypoxia marker, carbonic anhydrase IX (CAIX), is a pH regulator providing a selective survival advantage to cancer cells through intracellular neutralization while facilitating tumor invasion by extracellular acidification. The expression of CAIX in breast cancer patients is associated with poor prognosis and metastases. Importantly, CAIX-positive hypoxic tumor regions are enriched in cancer stem cells (CSCs). Here we investigated the biological effects of CA9-silencing in breast cancer cell lines. We found that CAIX-downregulation in hypoxia led to increased levels of let-7 (lethal-7) family members. Simultaneously with the increase of let-7 miRNAs in CAIX-suppressed cells, LIN28 protein levels decreased, along with downstream metabolic pathways: pyruvate dehydrogenase kinase 1 (PDK1) and phosphorylation of its substrate, pyruvate dehydrogenase (PDH) at Ser-232, causing attenuation of glycolysis. In addition to perturbed glycolysis, CAIX-knockouts, in correlation with decreased LIN28 (as CSC reprogramming factor), also exhibit reduction of the further CSC-associated markers NANOG (Homeobox protein NANOG) and ALDH1 (Aldehyde dehydrogenase isoform 1). Oppositely, overexpression of CAIX leads to the enhancement of LIN28, ALDH1, and NANOG. In conclusion, CAIX-driven regulation of the LIN28/let-7 axis augments glycolytic metabolism and enhances stem cell markers expression during CAIX-mediated adaptation to hypoxia and acidosis in carcinogenesis. Full article
(This article belongs to the Special Issue Carbonic Anhydrase and Biomarker Research 2020)
Show Figures

Figure 1

11 pages, 1823 KiB  
Article
Metabolic Gene Expression in the Muscle and Blood Parameters of Broiler Chickens Stimulated In Ovo with Synbiotics
by Aleksandra Dunislawska, Maria Siwek, Anna Slawinska, Adam Lepczynski, Agnieszka Herosimczyk, Pawel A. Kolodziejski and Marek Bednarczyk
Animals 2020, 10(4), 687; https://doi.org/10.3390/ani10040687 - 15 Apr 2020
Cited by 12 | Viewed by 3145
Abstract
To better understand the effects of synbiotics administered at early stages of embryonic development in poultry, it is necessary to analyze direct effects (meat quality) and the molecular background. The molecular interpretation of poultry meat properties after in ovo administration of synbiotics remains [...] Read more.
To better understand the effects of synbiotics administered at early stages of embryonic development in poultry, it is necessary to analyze direct effects (meat quality) and the molecular background. The molecular interpretation of poultry meat properties after in ovo administration of synbiotics remains to be reported. The purpose of the present study was to analyze the molecular background of meat quality based on gene expression and basic physiological parameters. Eggs were injected with (S1) Lactobacillus salivarius with galacto-oligosaccharides or (S2) Lactobacillus plantarum with raffinose family oligosaccharides. The pectoral muscle was collected at two time points (day 7 and day 42) and subjected to RNA isolation. Gene expression analysis was performed by RT-qPCR for a panel of eight genes associated with metabolism. The concentration of glucose and hormones (insulin, glucagon, and leptin (S1 p = 0.04)) was also increased. The obtained results showed that metabolic gene expression in the muscle was more differential due to synbiotic stimulation on day 7 (FST in S1 p = 0.03; PDK4 in S1 p = 0.02 and S2 p = 0.01; CEBPB in S1 p = 0.01 and S2 p = 0.008; PHKB in S1 p = 0.01; PRKAG3 in S1 p = 0.02) than on day 42 (PDK4 in S1 p = 0.04). On the basis of the results obtained, it can be concluded that in ovo stimulation with S1 triggered the most potent and favorable changes in the pectoral muscle gene expression in broiler chickens. Full article
Show Figures

Figure 1

24 pages, 4544 KiB  
Article
FLT3-ITD Activates RSK1 to Enhance Proliferation and Survival of AML Cells by Activating mTORC1 and eIF4B Cooperatively with PIM or PI3K and by Inhibiting Bad and BIM
by Daisuke Watanabe, Ayako Nogami, Keigo Okada, Hiroki Akiyama, Yoshihiro Umezawa and Osamu Miura
Cancers 2019, 11(12), 1827; https://doi.org/10.3390/cancers11121827 - 20 Nov 2019
Cited by 42 | Viewed by 5865
Abstract
FLT3-ITD is the most frequent tyrosine kinase mutation in acute myeloid leukemia (AML) associated with poor prognosis. We previously found that FLT3-ITD activates the mTORC1/S6K/4EBP1 pathway cooperatively through the STAT5/PIM and PI3K/AKT pathways to promote proliferation and survival by enhancing the eIF4F complex [...] Read more.
FLT3-ITD is the most frequent tyrosine kinase mutation in acute myeloid leukemia (AML) associated with poor prognosis. We previously found that FLT3-ITD activates the mTORC1/S6K/4EBP1 pathway cooperatively through the STAT5/PIM and PI3K/AKT pathways to promote proliferation and survival by enhancing the eIF4F complex formation required for cap-dependent translation. Here, we show that, in contrast to BCR/ABL causing Ph-positive leukemias, FLT3-ITD distinctively activates the serine/threonine kinases RSK1/2 through activation of the MEK/ERK pathway and PDK1 to transduce signals required for FLT3-ITD-dependent, but not BCR/ABL-dependent, proliferation and survival of various cells, including MV4-11. Activation of the MEK/ERK pathway by FLT3-ITD and its negative feedback regulation by RSK were mediated by Gab2/SHP2 interaction. RSK1 phosphorylated S6RP on S235/S236, TSC2 on S1798, and eIF4B on S422 and, in cooperation with PIM, on S406, thus activating the mTORC1/S6K/4EBP1 pathway and eIF4B cooperatively with PIM. RSK1 also phosphorylated Bad on S75 and downregulated BIM-EL in cooperation with ERK. Furthermore, inhibition of RSK1 increased sensitivities to BH3 mimetics inhibiting Mcl-1 or Bcl-2 and induced activation of Bax, leading to apoptosis, as well as inhibition of proliferation synergistically with inhibition of PIM or PI3K. Thus, RSK1 represents a promising target, particularly in combination with PIM or PI3K, as well as anti-apoptotic Bcl-2 family members, for novel therapeutic strategies against therapy-resistant FLT3-ITD-positive AML. Full article
Show Figures

Figure 1

Back to TopTop