
Citation: Cao, K.; Yuan, W.; Hou, C.;

Wang, Z.; Yu, J.; Wang, T. Hypoxic

Signaling Pathways in Carotid Body

Tumors. Cancers 2024, 16, 584.

https://doi.org/10.3390/

cancers16030584

Academic Editors: Gabriella D’Orazi

and Karel Pacak

Received: 10 October 2023

Revised: 6 December 2023

Accepted: 23 January 2024

Published: 30 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Hypoxic Signaling Pathways in Carotid Body Tumors
Kangxi Cao , Wanzhong Yuan, Chaofan Hou, Zhongzheng Wang, Jiazhi Yu and Tao Wang *

Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China;
caokangxi@hsc.pku.edu.cn (K.C.); ywz@stu.pku.edu.cn (W.Y.); 2111210370@stu.pku.edu.cn (C.H.);
2211210432@pku.edu.cn (Z.W.); pkuhscyujiazhi@pku.edu.cn (J.Y.)
* Correspondence: wangtao@bjmu.edu.cn

Simple Summary: Carotid body tumors (CBTs) are rare tumors and only appear in 1–2 individuals
per 100,000. The etiology of CBTs remains unclear; however, SDH mutations and familial inheritance
have been reported to be related to CBTs. SDH complexes play crucial roles in aerobic respiration,
and SDH mutations in CBTs have been reported to be associated with hypoxia. Hypoxic signaling
pathways, specifically hypoxic markers, have attracted more research attention in tumor exploration.
However, the existing literature on these signaling and markers lacks a systematic review. Also,
therapeutic approaches in CBTs based on hypoxic signaling are rarely used in clinics. In this review,
we highlighted the role of hypoxic signaling pathways and markers and their potential implications
in the initiation and progression of CBTs. Our findings underscore the involvement of the SDH family,
the HIF family, VEGFs, and inflammatory cytokines in tumorigenesis and treatment based on them.
Moreover, this review offers valuable insights for future research directions on understanding the
relationship between hypoxia and CBTs.

Abstract: Carotid body tumors (CBTs) are rare tumors with a 1–2 incidence per 100,000 individuals.
CBTs may initially present without apparent symptoms, and symptoms begin to arise since tumors
grow bigger to compress surrounding tissue, such as recurrent laryngeal nerve and esophagus. Also,
the etiology of CBTs remains unclear since it is more likely to occur in those who live in high-altitude
areas or suffer from chronic hypoxic diseases such as COPD. SDH mutations and familial inheritance
have been reported to be related to CBTs. SDH complexes play crucial roles in aerobic respiration,
and SDH mutations in CBTs have been reported to be associated with hypoxia. Hypoxic signaling
pathways, specifically hypoxic markers, have attracted more research attention in tumor exploration.
However, the existing literature on these signaling and markers lacks a systematic review. Also,
therapeutic approaches in CBTs based on hypoxic signaling are rarely used in clinics. In this review,
we concluded the role of hypoxic signaling and markers and their potential implications in the
initiation and progression of CBTs. Our findings underscore the involvement of the SDH family, the
HIF family, VEGFs, and inflammatory cytokines (ICs) in tumorigenesis and treatment. Of particular
interest is the role played by SDHx, which has recently been linked to oxygen sensing through
mutations leading to hereditary CBTs. Among the SDH family, SDHB and SDHD exhibit remarkable
characteristics associated with metastasis and multiple tumors. Besides SDH mutations in CBTs,
the HIF family also plays crucial roles in CBTs via hypoxic signaling pathways. The HIF family
regulates angiogenesis during mammalian development and tumor growth by gene expression in
CBTs. HIF1α could induce the transcription of pyruvate dehydrogenase kinase 1 (PDK1) to inhibit
pyruvate dehydrogenase kinase (PDH) by inhibiting the TCA cycle. Then, carotid body cells begin
to hyperplasia and hypertrophy. At the same time, EPAS1 mutation, an activating mutation, could
decrease the degradation of HIF2α and result in Pacak–Zhuang syndrome, which could result in
paraganglioma. HIFs can also activate VEGF expression, and VEGFs act on Flk-1 to control the
hyperplasia of type I cells and promote neovascularization. ICs also play a pivotal signaling role
within the CB, as their expression is induced under hypoxic conditions to stimulate CB hyperplasia,
ultimately leading to CBTs detecting hypoxic areas in tumors, and improving the hypoxic condition
could enhance photon radiotherapy efficacy. Moreover, this review offers valuable insights for future
research directions on understanding the relationship between hypoxic signaling pathways and CBTs.
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1. Introduction

Carotid body tumors (CBTs), or carotid glomus tumors, are rare neuroendocrine
neoplasms with an estimated incidence of 1–2 per 100,000 individuals and constitute
approximately 0.5% of head and neck tumor cases [1–4]. CBTs, a type of paraganglioma,
are situated posterior to the bifurcation of the common carotid artery and present as a slow-
growing, non-functional, and pulsatile cervical mass, usually described as an incidental
finding in middle-aged females [4–6]. As these tumors grow and compress adjacent tissues
and organs, patients may develop symptoms such as dysphonia, dysphagia, and Horner’s
syndrome. The precise pathogenesis of CBTs remains elusive, with hypoxic signaling
being a well-established contributing factor [7]. Chronic hypoxic conditions such as COPD
or prolonged exposure to high altitudes can increase the burden on the carotid body
chemoreceptor cells to compensate for reduced PO2 levels [8]. The glomus cells of the
carotid body depolarize within milliseconds in response to hypoxemia using incompletely
understood mechanisms due to oxygen sensing [9]. In hypoxic conditions, the transcription
of messenger RNAs (mRNAs) under the control of HIFs is decreased in carotid body cells,
inducing a series of hypoxic signaling and possibly resulting in CBTs. To overcome hypoxic
conditions, mammals developed fundamental adaptive mechanisms for hypoxia, including
increased ventilation and cardiac output, enhanced blood vessel growth, and circulating
red blood cell numbers. At the cellular level, ATP-consuming reactions are suppressed, and
metabolism is altered until oxygen homeostasis is restored. During these processes, the
SDHx, HIFs, VEGFs, and inflammatory cytokines play crucial roles in the occurrence of
CBTs; the relations of these factors and CBTs are shown in Figure 1, and this review shows
the progress of hypoxic signaling research in CBTs and its potential pathological process
based on Figure 1.
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Figure 1. The hypoxic signaling pathways in CBTs. SDH and FH participate in the TCA cycle in 
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in mitochondria. Any mutations of SDH or FH can inhibit PHDs and result in the inappropriate
elevation of HIF activity at any given level of PO2, also called pseudohypoxia. The hypoxia condition
can increase the expression of VEGFs and ICs, resulting in angiogenesis in carotid body and the
hyperplasia of carotid body cells. The former processes may finally result in CBTs.
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2. Anatomic and Physiologic Basis of Hypoxic Signaling in the Carotid Body (CB)

The carotid bodies house the peripheral chemoreceptors, essential components of the
ventilatory control system that regulates the chemical composition of arterial blood [10].
In 1743, Albrecht Von Haller first described the anatomy of the carotid body. Carotid bodies
are strategically located at the bifurcation of the common carotid artery, which supplies
blood to the brain. These specialized structures respond to changes in oxygen, carbon
dioxide, and metabolic acidosis, triggering rapid respiratory responses to optimize oxygen
delivery and facilitate carbon dioxide elimination. In addition, CBs can detect low glucose
levels, temperature fluctuations, and changes in osmolarity. Evidence suggests that they
play a role in regulating airway resistance and cerebral blood flow [11].

In 1953, Gray et al. found that well-oxygenated tumor cells responded quicker
to radiotherapy than hypoxic cells [12]. Tumor hypoxia was first proposed in 1955 by
Thomlinson et al. in a study on the tumor tissues of patients with lung cancer [13], and,
following 60 years of clinical and experimental research, scientists have confirmed that the
hypoxic state is a widespread trait in a variety of solid tumors. The CBs comprise type I
and type II cells, with the former involved in O2 sensing while the latter serves as glia-like
sustentacular cells [14]. These cells are organized into clusters characterized by a central
core of type I cells surrounded by a shell of type II cells. However, the complete mecha-
nisms underlying O2 sensing remain poorly elucidated. In the study of Crapo et al. [15],
changes in the partial pressure of oxygen in the arteries (PaO2) in healthy people at sea level
and 1400 m above sea level were described in detail. The average PaO2 of a non-smoking
healthy person younger than 65 at sea level is 99.8 mmHg, while the average PaO2 at
1400 m above sea level is 79.2 mmHg. For those older than 65 years, PaO2 decreased from
88.7 mmHg to 70.8 mmHg. This significant change in PaO2 leads to hypertrophy and hy-
perplasia in the carotid body. This was also confirmed in the study of van den Berg, R. [16]
which showed that the average weight of the carotid body at sea level was 20 mg, while the
average weight of the carotid body at high altitude increased to 60 mg, and the incidence
of carotid body tumors also increased by nearly ten times.

It is widely believed that membrane ion channels play a critical role in the process and
that low oxygen levels inhibit K+ currents through the CB glomus cell membrane [17]. This
leads to membrane depolarization which then triggers calcium ion influx and activates a
complex cascade of events within the glomus cell [17]. The activity of oxygen-sensitive
K+ channels may also be modulated by intracellular substances, such as reactive oxygen
species and ATP, as well as organelles, including mitochondria and membrane-bound
heme-containing protein complexes [18], necessitating further investigation.

3. Hypoxic Signaling and Related Functions in CBTs
3.1. The Succinate Dehydrogenase (SDH) Signaling Pathway

In 2000, Baysal et al. [19] used linkage analysis and positional cloning methods to
report for the first time that the defective mutation of the SDHD gene existed in para-
ganglioma. Subsequent investigations revealed mutations in other mitochondrial SDH
subunits, namely SDHA, SDHB, and SDHC genes. SDHx-mutated paragangliomas lack
SDH functions and exhibit metabolic changes, including reductive glutamine carboxylation
and increased pyruvate consumption, to replenish aspartate pools through pyruvate car-
boxylation [20,21]. These metabolic alterations are observed in response to the loss of SDH
function and contribute to the adaptation of tumor cells to hypoxic conditions. Additionally,
SDHx-mutated paragangliomas have lower ATP/ADP/AMP levels, indicating a disruption
in energy metabolism [22,23]. The activities of respiratory chain complexes I, III, and IV
are increased in SDHx-mutated tumors to partially compensate for the SDH or complex
II loss. These changes in respiratory chain activities can increase reactive oxygen species
(ROS) production, which may signal oxygen insufficiency to prolyl hydroxylases (PHDs)
and contribute to activating pathways associated with pseudohypoxia [24,25]. SDHx and
fumarate hydratase (FH) mutations could lead to the persistence of HIFα in normal oxygen
conditions [26]. Then, variants in SDH genes lead to complex II dysfunction, elevated suc-
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cinate levels, the inhibition of prolyl hydroxylase (which typically regulates HIFα, thereby
leading to increased activity of HIFα), and the inhibition of DNA demethylases, leading to
global tumor DNA hypermethylation [27].

The FH gene encodes for fumarate hydratase, a TCA cycle enzyme that catalyzes the
step following the succinate dehydrogenase, allowing the hydration of fumarate to malate.
FH was recently involved in PPGL development. Patients with FH mutation had metastatic
or multiple PPGL in 40% of cases [28]. The inactivation rates of FH and another TCA cycle
component, SDH, have both been associated with abnormalities of cellular metabolism,
responsible for the activation of hypoxic gene response pathways and epigenetic alterations,
such as DNA methylation [29].

SDH oxidizes succinate into fumarate with the donated electrons and then partici-
pates in the electron transport chain in the TCA cycle [30,31]. If any component of the
mitochondrial complex (that is, SDHA, SDHB, SDHC, SDHD, SDHAF1, or SDHAF2) is
lost, then the entire SDH complex either becomes unstable or does not form. This has
been reported to be associated with CBTs [32], and the mutation rates of SDHx in CBTs in
previous research are shown in Table 1. Carriers of SDHA variants, a flavoprotein in the
mitochondrial matrix, may lead to energy metabolism dysfunction, resulting in conditions
such as Leigh syndrome or exercise intolerance [33]. Although pathogenic variants of
SDHA leading to CBTs are rare due to low penetrance, patients with SDHA-associated
CBTs may have an increased risk of contracting metastatic disease [34–36]. Carriers of
SDHB variants may develop pheochromocytoma, extra-adrenal paraganglioma, and occa-
sionally CBTs, with a metastasis incidence of approximately 23–25%, the highest among
all genes associated with paraganglioma [26,37]. SDHC is a membrane-anchoring protein
containing one heme essential for ubiquinone binding. Carriers of SDHC variants are more
frequently associated with pheochromocytoma and paraganglioma [38–40]. The SDHD
gene, associated with hereditary CBTs when its function is lost due to mutations, has
recently been suggested to be involved in oxygen sensing [26]. SDHD variant carriers may
develop multifocal pheochromocytoma and extra-adrenal paraganglioma, with metastases
occurring in approximately 8% of cases [26]. Piruat et al. [33] generated a SDHD knockout
mouse, a mammalian model lacking a protein from the electron transport chain, and their
experimental findings demonstrated that CB responsiveness to hypoxia remains intact in
heterozygous SDHD +/−mice; however, the loss of an SDHD allele was found to result
in the abnormal enhancement of resting CB activity. This overactivity is associated with
subtle glomus cell hypertrophy and hyperplasia, indicating that the constitutive activation
of SDHD +/− glomus cells precedes CB tumor transformation [33]. Gimenez-Roqueplo’s
study demonstrated that SDHD gene mutation results in the complete loss of complex
II activity in the mitochondrial respiratory chain and is linked to the stimulation of an-
giogenic factors, which may facilitate or trigger tumorigenesis in paraganglia tissues [41].
SDHAF2 functions as a mitochondrial assembly factor for SDHA, which is essential for the
activity of the succinate dehydrogenase complex. Mutations in SDHAF2 have been linked
to paraganglioma [42].

Table 1. Mutations of SDHx in the carotid body.

Gene Chromosome Frequency * Proportion of Attributed Hereditary Paraganglioma Inheritance Pattern

SDHA 5p15 <1% 0.6–3% Autosomal dominant

SDHB 1p36.1 5% 22–38%
12–20% CBT Autosomal dominant

SDHC 1q21 1% 4–8% Autosomal dominant

SDHD 11q23 5% 30%
40–50% CBT

Autosomal dominant
paternal inheritance

SDHAF2 11q13.1 <1% Unknown Autosomal dominant
paternal inheritance

Note: Summarized from Gene Reviews [43] and Galan et al. [44]. * represents mutation frequency in paragangliomas.
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3.2. The Hypoxia-Inducible Factor (HIF) Signaling Pathway

Besides the SDH-FH-HIF pathway discussed above, another HIF-related hypoxic
pathway is the PHD-von Hippel–Lindau (VHL)-HIF pathway. The HIF subunits undergo
degradation in the proteasome under normoxic conditions through a mechanism that
involves active PHD enzymes and the subsequent interaction of HIFs with VHL proteins, a
component of the protein complex possessing ubiquitin ligase E3 activity [45]. A missense
mutation partially impairs the binding of the VHL protein to the hydroxylated HIF-1α
subunits, resulting in an inappropriate elevation in HIF activity at any given level of
PO2 [46]. Hypoxic conditions suppress the activities of PHD enzymes, resulting in the
stabilization and functional activation of the HIF complex [46]. HIFs are transcription
factors that orchestrate various adaptive responses to hypoxia and are critical regulators in
maintaining oxygen homeostasis [47–49]. The PHD-VHL-HIF pathway implicated in the
cellular response to hypoxia plays a pivotal role in tumor initiation and progression [50].
The central convergence point of oxygen-sensing pathways is represented by the hypoxia-
inducible factors, HIF1α and HIF2α, which are encoded by the genes HIF1A and EPAS1,
respectively, and their expressions in the carotid body are shown in Table 2 [51].

The transcription factor HIF1α and HIF1α-targeted genes play a pivotal role in the
metabolic adaptation associated with both hypoxia and pseudohypoxia. They could
participate in cellular processes, encompassing metabolic adaptation to oxygen and nu-
trient deprivation, angiogenesis, cell proliferation, apoptosis, adhesion, migration, and
survival [52]. HIF1α can induce the transcription of pyruvate dehydrogenase kinase 1
(PDK1), an inhibitor of pyruvate dehydrogenase (PDH), resulting in the inhibition of the
TCA cycle when carotid body cells are exposed to hypoxic conditions [53]. In this manner,
HIF1α coordinates the metabolic adaptations that enable cells to acclimate to hypoxia [52].
CB cells undergo hyperplasia and hypertrophy to cope with hypoxia, particularly the type
I CB cells [54], which may serve as a potential mechanism underlying CBTs.

Unlike HIF1α, HIF2α exhibits more restricted expression and is exclusively observed
in vertebrates [49]. Pacak–Zhuang syndrome is a syndrome resulting from somatic gain-of-
function mutations in HIF2α encoded by the EPAS1 gene, which occurs early in embryogen-
esis, and paraganglioma is one of the characteristics of Pacak–Zhang syndrome [55]. Based
on HIF2α mutation, drugs can be used, which will be discussed in the following sections.
Although both HIF1α and HIF2α interact with the same partner, HIF1β, and respond to
similar elements, there might exist some selectivity in target gene activation between the
two isoforms of HIFαs due to chromatin context-dependent regulation of gene expression
in distinct cell types [47,49,56]. Both HIF isoforms can be stabilized and activated in cancer
cells where they induce the expression of genes, such as VEGFs [57,58], which facilitates
angiogenesis in solid tumors. Moreover, they directly or indirectly activate genes involved
in cell proliferation, the epithelial-to-mesenchymal transition (EMT), apoptosis, metasta-
sis, or tumor invasion [56]. Celeda et al. reported that while noncancerous human CB
expresses HIF2α—a finding relevant for understanding its role in tumorigenesis—high
levels of HIF2α accumulate specifically within the cells of human CB under physiological
conditions; however, no such accumulation is observed for HIF1α [59].

Consequently, the HIF is a pivotal pathway supporting tumor growth by facilitating
angiogenesis and promoting various tumor-associated phenotypes [47–49,60]. In CBTs, it
has been suggested that the activation of HIFs stimulates carotid body growth, propels
its progression, and regulates the expression of VEGFs, which will be discussed in the
next section.

Table 2. Expression of HIFs in the carotid body.

Genes Localization Species Detection Methods Reference

HIF1A Type I cells, Type II cells Rats Immunohistochemistry Roux JC et al., 2005 [51]
EPAS1 Type I cells Rats Immunohistochemistry Roux JC et al., 2005 [51]

Carotid body Human Immunohistochemistry Celada L et al., 2022 [59]
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3.3. Vascular Endothelial Growth Factor (VEGF)

Over two decades ago, VEGFs were identified, isolated, and cloned as an essential
factor in vasculogenesis and angiogenesis [61]. Although its primary target is endothelial
cells, it has been shown to have multiple effects on other cell types [62]. VEGFs play a
crucial role in maintaining vascular homeostasis across diverse tissues and cells; however,
it also contributes to the molecular pathogenesis of tumor growth and metastasis. Increased
VEGF expression is a characteristic feature of all VHL tumor types, and HIF dysregulation
has been implicated in this phenomenon [63–65]. It has been proved that whether oxygen
is plentiful or not, lacking VHL overproduces hypoxia-inducible mRNAs, including VEGF
mRNA, and many hypoxia-inducible mRNAs, including the VEGFs mentioned above, are
transcriptionally regulated by HIFs [66].

Moreover, studies have confirmed that under hypoxia conditions, HIF-1α is acti-
vated and regulates VEGFs and other transcription factors to participate in tumor new
angiogenesis [67]. The mechanism may be that in hypoxia-driven angiogenesis, hypoxia
activates the PI3K/AKT pathway, prevents post-translational hydroxylation of HIF-1α
and subsequent degradation of HIF-1α, allowing it to accumulate, then transfer to the
nucleus, and form a transcription initiation complex, initiating target gene transcription,
leading to an increase in corresponding protein products, including enhanced expression
of VEGFs [68]. Moreover, the PI3K pathway regulates the synthesis of VEGF proteins and
the hypoxia-activated PI3K/Akt/mTOR pathway [69]. It is also reported that HIF2α can
activate various genes encoding molecules, including VEGFs. When low oxygen levels are
present, there is a loss of PHD activity, which limits VHL binding to HIF2α. Without VHL
binding and marking for proteasomal degradation, HIF2α stabilizes, accumulates, and
translocates into the nucleus [70]. Once in the nucleus, HIF2α heterodimerizes with HIF-1β
and recruits p300/CBP co-activators to form an active HIF transcription complex [70]. The
HIF transcription complex then binds to hypoxia response elements (HREs), resulting in
up-regulated transcription of hypoxia-inducible genes such as VEGFs [70].

As CBTs is a kind of hypervascular tumor, VEGFs and its receptors are researched in
CB cells of humans and rats (its expression in CB cells is shown in Table 3 [71–78]). Based on
the above statements, researchers have become increasingly interested in its involvement
in CBTs related to hypoxia.

Table 3. The expression of VEGFs in the carotid body.

Genes Localization Species Detection Methods Reference

VEGF Type I cells Rat Immunohistochemistry Lam et al., 2008 [71]
Type I cells Rat Immunohistochemistry Chen et al., 2003 [72]

Carotid body Rat Immunohistochemistry Di Giulio et al., 2009 [73]
Carotid body Rabbit ELISA Feng et al., 2008 [74]
Type I cells Rat Double immunofluorescence Belzunegui et al., 2008 [75]
Type I cells Rat Immunohistochemistry Felix et al., 2012 [76]

Carotid body Human Immunohistochemistry Zara et al., 2013 [77]
Carotid body Rat qRT-PCR Salman et al., 2017 [78]

Flk-1 Type I cells Rat Immunohistochemistry Chen et al., 2003 [72]

In the carotid body (CB), type I cells have been demonstrated to express VEGFs, as
well as its receptors Flt-1 (VEGFR1) and Flk-1 (VEGFR2) [79]. VEGFs exert their effects on
Flk-1, regulating the hyperplasia of type I cells and promoting neovascularization through
interaction with Fit-1 in endothelial cells [80]. Given that exposure to hypoxia is known to
enhance CB microvascularization and the number and size of glomus cells [80], extensive
research has focused on investigating the regulation of VEGF expression under this stim-
ulus [74,78,81,82]. Extensive research has focused on regulating VEGF expression under
this stimulus [74]. Additionally, HIFs can activate VEGF expression as well [57,58]. These
findings underscore the crucial role played by VEGFs in hypoxic responses within CBTs.



Cancers 2024, 16, 584 7 of 13

3.4. Functions of Inflammatory Cytokines (ICs) in Carotid Body Concerning Hypoxia

Inflammatory factors have been shown to play a significant role in the physiology
and plasticity of the carotid body (CB). Glomus cells produce proinflammatory cytokines,
including interleukin (IL)-1β, IL-6, and tumor necrosis factors (TNFs), along with corre-
sponding receptors that regulate CB excitability, catecholamine release, and chemoreceptor
discharge [79,83]. Notably, inflammatory cytokines, such as IL-1α/β, IL-6, and TNFs, are
expressed in type I cells of the rat CB [84]. Additionally, in situ hybridization has localized
IL-6 expression in type II cells, while ELISA measurements have detected elevated IL-6
concentrations within the CB lysate (Table 4) [74,85–87].

Table 4. The expression of inflammatory cytokines in the carotid body.

Genes Localization Species Detection Methods Reference

IL1B Type I cells Rat Immunohistochemistry Del Rio et al., 2012 [87]
Carotid body Human ELISA Kåhlin et al., 2014 [86]

IL6 Type I cells Rat Immunohistochemistry Del Rio et al., 2012 [87]
Carotid body Human ELISA Kåhlin et al., 2014 [86]
Carotid body Human ELISA Kåhlin et al., 2014 [86]

TNFA Type I cells Rat Immunohistochemistry Del Rio et al., 2012 [87]

Xue and his colleagues first investigated the effects of proinflammatory cytokines on
CB neurogenesis [88]. Exposure to intermittent hypobaric hypoxia (IHH) promoted extra-
cellular signal-regulated kinase (ERK) 1/2 phosphorylation, which determines neuronal
progenitor cell fate, as well as the increased expression of tyrosine hydroxylase (TH) and
nestin, a specific neuronal stem cell marker in rat CB. Additionally, the intraperitoneal
administration of IL-1 had an additive effect on IHH. These results suggest that treatment
with IL-1 may increase CB plasticity, while ERK1/2 appears to play a role in neurogenic
signaling in CB [88].

The effect of exogenous cytokine administration on dissociated glomus cells was
examined in CIH-exposed CB [74] and unstimulated chemoreceptor organs. A study
conducted by Fan and his colleagues [89] investigated the impact of IL-6 on Ca2+ levels
and catecholamine (CA) secretion in rat CB cell cultures. Following IL-6 administration,
treated cells exhibited increased Ca2+ levels, as determined by fluorometric measurements.
Furthermore, amperometric analysis revealed that IL-6 induced catecholamine release
using glomus cells, abolishing this response by the calcium channel blocker Cd2+. These
data confirm the carotid body (CB)’s ability to respond to proinflammatory cytokines,
highlighting its role in sensing inflammation and transmitting this information to the
brain [89]. The expression of proinflammatory cytokines using CB was also investigated in
human samples obtained from surgical patients undergoing elective head and neck cancer
surgery. CB slices exposed to sustained hypoxia for 1 h exhibited an increased release of
IL-1 [84].

4. Treatment Based on Hypoxic Signaling Pathways in CBTs

The current treatment strategy for CBTs primarily focuses on active surveillance, exter-
nal beam radiation, and surgery [90]. The hypoxic condition of carotid tissue is a common
occurrence in CBTs and results in cellular changes that contribute to aggressive behavior
and therapeutic resistance. While hypoxia induces resistance to various treatments, it
mainly affects photon radiotherapy as it relies on generating free radicals for its cytotoxic
effect [91]. PET imaging has demonstrated significant levels of hypoxia in a wide range
of tumors, and detecting and modifying the hypoxic environment are crucial approaches
in CNT treatment. Fluoromisonidazole (FMISO), a nitroimidazole compound, has been
extensively studied and found to possess the most comprehensive experience among vari-
ous hypoxia imaging agents [92]. Recently, Lu et al. [93] used reduced nanographene oxide
(rNGO) sheets with MnO2 nanoparticles, doxorubicin, and methyl blue as photothermal
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agents to trigger further photodynamic therapy and chemotherapy. In their study, MnO2
acted as a catalyst for hydrogen peroxide and generated oxygen as an essential compo-
nent for photodynamic therapy. This innovative approach opens up new possibilities for
implementing multiple treatment strategies in CBTs.

As we discussed above, there are several hypoxic signaling pathways in CBTs, so
some drugs based on these targets have been designed for treatment. Several treatment
methods targeting VEGFs have been studied or applied in paraganglioma. One approach
uses receptor tyrosine kinase inhibitors, such as sunitinib [94], which inhibit the signaling
pathways involved in VEGF-mediated angiogenesis. Studies have shown that sunitinib
can lead to tumor regression and improved progression-free survival in patients with
progressive malignant paragangliomas [95,96]. Another approach is the inhibition of HIF2α,
a transcription factor that regulates VEGF expression. Belzutifan, a specific inhibitor of
HIF2α, disrupts its binding to its partner protein HIF1β and may show benefits in patients
with paragangliomas caused by mutations in genes like EPAS1 [55,97]. It is important to
note that these treatment methods targeting VEGFs are still being evaluated and may not
be effective for all patients [98]. Further research and clinical trials are needed to determine
their efficacy and safety in treating paragangliomas.

Tetraazacyclododecane tetraacetic acid octreotate (DOTATATE) is a radiopharmaceuti-
cal agent used to treat certain tumors, including paragangliomas and pheochromocytomas.
It targets somatostatin receptors, specifically somatostatin receptor type 2 (SSTR2), often
overexpressed in these tumors [26]. By binding to SSTR2, DOTATATE delivers a radioactive
substance (usually lutetium-177 or yttrium-90) directly to the tumor cells, causing localized
radiation therapy. The high affinity of DOTATATE for SSTR2 allows targeted radiation
to be delivered to tumor cells while minimizing damage to surrounding healthy tissues.
This makes it an effective treatment option for patients with metastatic or inoperable para-
gangliomas and pheochromocytomas. In addition to its therapeutic role, DOTATATE can
also be used for diagnostic purposes [26]. It is commonly used in somatostatin receptor
imaging, known as somatostatin receptor scintigraphy, to detect and localize tumors that
express SSTR2 [26]. Overall, DOTATATE plays a crucial role in managing paragangliomas
and pheochromocytomas by providing targeted radiation therapy and aiding in tumor
detection and localization.

5. Future Expectations of CBTs

The pathogenesis of CBTs remains elusive despite the wide acceptance of pseudohy-
poxia as a primary factor. However, it is worth noting that not all CBT patients exhibit
SDH mutations or reside in high-altitude regions. Other pathogenic factors, such as kinase
signaling and Wnt-altered clusters, are also reported to be associated with paragangliomas.
The mechanism of the two hypotheses in paraganglioma and CBTs still needs exploration
and may have a vital function in the treatment of CBTs. Molecular diagnosis may be a future
topic of CBT research. We can find new markers through omics studies, and based on these
markers, more molecular functions can be explored. CBTs may be divided into different
phenotypes and benefit treatment based on distinctive markers. Also, new materials and
drugs for CBTs may be a focus issue for CBTs have different types. Examples of this, such
as Belzutifan, an inhibitor of HIF2α, were discussed in the main text. We firmly believe
that more markers like SDH and HIFs will be found in the future and play crucial roles in
CBTs. Therefore, further investigations should be directed toward elucidating alternative
etiological factors and developing corresponding therapeutic strategies.

6. Conclusions

The specific metabolic pathways underlying CBTs are not yet fully understood; how-
ever, there has been increasing focus on investigating hypoxic signaling pathways as a
possible explanation for their high prevalence among individuals living at higher altitudes.
Despite more than twenty years of research on hypoxic signaling, there remains a lack of
comprehensive understanding regarding these signaling and markers. This review aims
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to clarify the functions associated with SDH, HIFs, VEGFs, and inflammatory cytokines
related to hypoxic signaling in CBTs while exploring their potential roles in its development.

SDH is the most significant factor in hypoxic signaling pathways. SDH and FH muta-
tions could lead to the persistence of HIFα in normal oxygen conditions, and SDH mutation
could also signal PHDs via increasing ROS. Then, HIF subunits undergo degradation in
the proteasome under normoxic conditions through a mechanism that involves active
PHD enzymes and the subsequent interaction of HIFs with VHL protein, though a VHL
mutation can interrupt this process and result in pseudohypoxia. The HIF is a core of
hypoxic signaling pathways in CBTs, and HIFs can activate VEGF expression. Up-regulated
VEGFs and hypoxia conditions can promote the neovascularization and hyperplasia of
the CB. The hypoxia conditions also induce the expression of ICs to stimulate CB hyper-
plasia, ultimately leading to CBTs. Detecting hypoxic areas in tumors and improving the
hypoxic area could enhance photon radiotherapy efficacy. In conclusion, markers related to
hypoxia have substantial implications for CBT research; however, further exploration is
still warranted.
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