Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = PConv

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2759 KB  
Article
Unmanned Airborne Target Detection Method with Multi-Branch Convolution and Attention-Improved C2F Module
by Fangyuan Qin, Weiwei Tang, Haishan Tian and Yuyu Chen
Sensors 2025, 25(19), 6023; https://doi.org/10.3390/s25196023 - 1 Oct 2025
Abstract
In this paper, a target detection network algorithm based on a multi-branch convolution and attention improvement Cross-Stage Partial-Fusion Bottleneck with Two Convolutions (C2F) module is proposed for the difficult task of detecting small targets in unmanned aerial vehicles. A C2F module method consisting [...] Read more.
In this paper, a target detection network algorithm based on a multi-branch convolution and attention improvement Cross-Stage Partial-Fusion Bottleneck with Two Convolutions (C2F) module is proposed for the difficult task of detecting small targets in unmanned aerial vehicles. A C2F module method consisting of fusing partial convolutional (PConv) layers was designed to improve the speed and efficiency of extracting features, and a method consisting of combining multi-scale feature fusion with a channel space attention mechanism was applied in the neck network. An FA-Block module was designed to improve feature fusion and attention to small targets’ features; this design increases the size of the miniscule target layer, allowing richer feature information about the small targets to be retained. Finally, the lightweight up-sampling operator Content-Aware ReAssembly of Features was used to replace the original up-sampling method to expand the network’s sensory field. Experimental tests were conducted on a self-complied mountain pedestrian dataset and the public VisDrone dataset. Compared with the base algorithm, the improved algorithm improved the mAP50, mAP50-95, P-value, and R-value by 2.8%, 3.5%, 2.3%, and 0.2%, respectively, on the Mountain Pedestrian dataset and the mAP50, mAP50-95, P-value, and R-value by 9.2%, 6.4%, 7.7%, and 7.6%, respectively, on the VisDrone dataset. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 11608 KB  
Article
YOLO-MSPM: A Precise and Lightweight Cotton Verticillium Wilt Detection Network
by Xinbo Zhao, Jianan Chi, Fei Wang, Xuan Li, Xingcan Yuwen, Tong Li, Yi Shi and Liujun Xiao
Agriculture 2025, 15(19), 2013; https://doi.org/10.3390/agriculture15192013 - 26 Sep 2025
Abstract
Cotton is one of the world’s most important economic crops, and its yield and quality have a significant impact on the agricultural economy. However, Verticillium wilt of cotton, as a widely spread disease, severely affects the growth and yield of cotton. Due to [...] Read more.
Cotton is one of the world’s most important economic crops, and its yield and quality have a significant impact on the agricultural economy. However, Verticillium wilt of cotton, as a widely spread disease, severely affects the growth and yield of cotton. Due to the typically small and densely distributed characteristics of this disease, its identification poses considerable challenges. In this study, we introduce YOLO-MSPM, a lightweight and accurate detection framework, designed on the YOLOv11 architecture to efficiently identify cotton Verticillium wilt. In order to achieve a lightweight model, MobileNetV4 is introduced into the backbone network. Moreover, a single-head self-attention (SHSA) mechanism is integrated into the C2PSA block, allowing the network to emphasize critical areas of the feature maps and thus enhance its ability to represent features effectively. Furthermore, the PC3k2 module combines pinwheel-shaped convolution (PConv) with C3k2, and the mobile inverted bottleneck convolution (MBConv) module is incorporated into the detection head of YOLOv11. Such adjustments improve multi-scale information integration, enhance small-target recognition, and effectively reduce computation costs. According to the evaluation, YOLO-MSPM achieves precision (0.933), recall (0.920), mAP50 (0.970), and mAP50-95 (0.797), each exceeding the corresponding performance of YOLOv11n. In terms of model lightweighting, the YOLO-MSPM model has 1.773 M parameters, which is a 31.332% reduction compared to YOLOv11n. Its GFLOPs and model size are 5.4 and 4.0 MB, respectively, representing reductions of 14.286% and 27.273%. The study delivers a lightweight yet accurate solution to support the identification and monitoring of cotton Verticillium wilt in environments with limited resources. Full article
Show Figures

Figure 1

25 pages, 13160 KB  
Article
LWCD-YOLO: A Lightweight Corn Seed Kernel Fast Detection Algorithm Based on YOLOv11n
by Wenbin Sun, Kang Xu, Dongquan Chen, Danyang Lv, Ranbing Yang, Songmei Yang, Rong Wang, Ling Wang and Lu Chen
Agriculture 2025, 15(18), 1968; https://doi.org/10.3390/agriculture15181968 - 18 Sep 2025
Viewed by 290
Abstract
As one of the world’s most important staple crops providing food, feed, and industrial raw materials, corn requires precise kernel detection for seed phenotype analysis and seed quality examination. In order to achieve precise and rapid detection of corn seeds, this study proposes [...] Read more.
As one of the world’s most important staple crops providing food, feed, and industrial raw materials, corn requires precise kernel detection for seed phenotype analysis and seed quality examination. In order to achieve precise and rapid detection of corn seeds, this study proposes a lightweight corn seed kernel rapid detection model based on YOLOv11n (LWCD-YOLO). Firstly, a lightweight backbone feature extraction module is designed based on Partial Convolution (PConv) and an efficient multi-scale attention module (EMA), which reduces model complexity while maintaining model detection performance. Secondly, a cross layer multi-scale feature fusion module (MSFFM) is proposed to facilitate deep feature fusion of low-, medium-, and high-level features. Finally, we optimized the model using the WIOU bounding box loss function. Experiments were conducted on the collected Corn seed kernel detection dataset, and LWCD-YOLO only required 1.27 million (M) parameters and 3.5 G of FLOPs. Its precision (P), mean Average Precision at 0.50 (mAP0.50), and mean Average Precision at 0.50:0.95 (mAP0.50:0.95) reached 99.978%, 99.491%, and 99.262%, respectively. Compared to the original YOLOv11n, the model size, parameter count, and computational complexity were reduced by 50%, 51%, and 44%, respectively, and the FPS was improved by 94%. The detection performance, model complexity, and detection efficiency of LWCD-YOLO are superior to current mainstream object detection models, making it suitable for fast and precise detection of corn seeds. It can provide guarantees for achieving seed phenotype analysis and seed quality examination. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

25 pages, 4319 KB  
Article
Classroom Behavior Detection Method Based on PLA-YOLO11n
by Hongshuo Zhang, Guohui Zhou, Wei He and Hanlin Deng
Sensors 2025, 25(17), 5386; https://doi.org/10.3390/s25175386 - 1 Sep 2025
Viewed by 464
Abstract
Accurate detection of student behavior in the classroom helps analyze students’ learning states and contributes to improving teaching effectiveness. We propose the PLA-YOLO11n classroom behavior detection model. We design a novel C3K2_PConv module that integrates partial convolution with modules from the YOLO11 network [...] Read more.
Accurate detection of student behavior in the classroom helps analyze students’ learning states and contributes to improving teaching effectiveness. We propose the PLA-YOLO11n classroom behavior detection model. We design a novel C3K2_PConv module that integrates partial convolution with modules from the YOLO11 network and apply it to the backbone and neck feature fusion layers. To enhance small-target feature representation, we incorporate a large-kernel self-attention (LSKA) mechanism and replace the SPPF at the end of the backbone with the attention feature integration module (AIFI). We also add a high-resolution detection head. Experimental results on the SCB2 dataset demonstrate that the improved model outperforms the original YOLO11, achieving an increase of 3.8% in mean average precision (mAP@0.5). Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 2498 KB  
Article
FPH-DEIM: A Lightweight Underwater Biological Object Detection Algorithm Based on Improved DEIM
by Qiang Li and Wenguang Song
Appl. Syst. Innov. 2025, 8(5), 123; https://doi.org/10.3390/asi8050123 - 26 Aug 2025
Viewed by 1043
Abstract
Underwater biological object detection plays a critical role in intelligent ocean monitoring and underwater robotic perception systems. However, challenges such as image blurring, complex lighting conditions, and significant variations in object scale severely limit the performance of mainstream detection algorithms like the YOLO [...] Read more.
Underwater biological object detection plays a critical role in intelligent ocean monitoring and underwater robotic perception systems. However, challenges such as image blurring, complex lighting conditions, and significant variations in object scale severely limit the performance of mainstream detection algorithms like the YOLO series and Transformer-based models. Although these methods offer real-time inference, they often suffer from unstable accuracy, slow convergence, and insufficient small object detection in underwater environments. To address these challenges, we propose FPH-DEIM, a lightweight underwater object detection algorithm based on an improved DEIM framework. It integrates three tailored modules for perception enhancement and efficiency optimization: a Fine-grained Channel Attention (FCA) mechanism that dynamically balances global and local channel responses to suppress background noise and enhance target features; a Partial Convolution (PConv) operator that reduces redundant computation while maintaining semantic fidelity; and a Haar Wavelet Downsampling (HWDown) module that preserves high-frequency spatial information critical for detecting small underwater organisms. Extensive experiments on the URPC 2021 dataset show that FPH-DEIM achieves a mAP@0.5 of 89.4%, outperforming DEIM (86.2%), YOLOv5-n (86.1%), YOLOv8-n (86.2%), and YOLOv10-n (84.6%) by 3.2–4.8 percentage points. Furthermore, FPH-DEIM significantly reduces the number of model parameters to 7.2 M and the computational complexity to 7.1 GFLOPs, offering reductions of over 13% in parameters and 5% in FLOPs compared to DEIM, and outperforming YOLO models by margins exceeding 2 M parameters and 14.5 GFLOPs in some cases. These results demonstrate that FPH-DEIM achieves an excellent balance between detection accuracy and lightweight deployment, making it well-suited for practical use in real-world underwater environments. Full article
Show Figures

Figure 1

19 pages, 2306 KB  
Article
Optimized Adaptive Multi-Scale Architecture for Surface Defect Recognition
by Xueli Chang, Yue Wang, Heping Zhang, Bogdan Adamyk and Lingyu Yan
Algorithms 2025, 18(8), 529; https://doi.org/10.3390/a18080529 - 20 Aug 2025
Viewed by 602
Abstract
Detection of defects on steel surface is crucial for industrial quality control. To address the issues of structural complexity, high parameter volume, and poor real-time performance in current detection models, this study proposes a lightweight model based on an improved YOLOv11. The model [...] Read more.
Detection of defects on steel surface is crucial for industrial quality control. To address the issues of structural complexity, high parameter volume, and poor real-time performance in current detection models, this study proposes a lightweight model based on an improved YOLOv11. The model first reconstructs the backbone network by introducing a Reversible Connected Multi-Column Network (RevCol) to effectively preserve multi-level feature information. Second, the lightweight FasterNet is embedded into the C3k2 module, utilizing Partial Convolution (PConv) to reduce computational overhead. Additionally, a Group Convolution-driven EfficientDetect head is designed to maintain high-performance feature extraction while minimizing consumption of computational resources. Finally, a novel WISEPIoU loss function is developed by integrating WISE-IoU and POWERFUL-IoU to accelerate the model convergence and optimize the accuracy of bounding box regression. The experiments on the NEU-DET dataset demonstrate that the improved model achieves a parameter reduction of 39.1% from the baseline and computational complexity of 49.2% reduction in comparison with the baseline, with an mAP@0.5 of 0.758 and real-time performance of 91 FPS. On the DeepPCB dataset, the model exhibits reduction of parameters and computations by 39.1% and 49.2%, respectively, with mAP@0.5 = 0.985 and real-time performance of 64 FPS. The study validates that the proposed lightweight framework effectively balances accuracy and efficiency, and proves to be a practical solution for real-time defect detection in resource-constrained environments. Full article
(This article belongs to the Special Issue Visual Attributes in Computer Vision Applications)
Show Figures

Figure 1

19 pages, 9284 KB  
Article
UAV-YOLO12: A Multi-Scale Road Segmentation Model for UAV Remote Sensing Imagery
by Bingyan Cui, Zhen Liu and Qifeng Yang
Drones 2025, 9(8), 533; https://doi.org/10.3390/drones9080533 - 29 Jul 2025
Viewed by 1208
Abstract
Unmanned aerial vehicles (UAVs) are increasingly used for road infrastructure inspection and monitoring. However, challenges such as scale variation, complex background interference, and the scarcity of annotated UAV datasets limit the performance of traditional segmentation models. To address these challenges, this study proposes [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly used for road infrastructure inspection and monitoring. However, challenges such as scale variation, complex background interference, and the scarcity of annotated UAV datasets limit the performance of traditional segmentation models. To address these challenges, this study proposes UAV-YOLOv12, a multi-scale segmentation model specifically designed for UAV-based road imagery analysis. The proposed model builds on the YOLOv12 architecture by adding two key modules. It uses a Selective Kernel Network (SKNet) to adjust receptive fields dynamically and a Partial Convolution (PConv) module to improve spatial focus and robustness in occluded regions. These enhancements help the model better detect small and irregular road features in complex aerial scenes. Experimental results on a custom UAV dataset collected from national highways in Wuxi, China, show that UAV-YOLOv12 achieves F1-scores of 0.902 for highways (road-H) and 0.825 for paths (road-P), outperforming the original YOLOv12 by 5% and 3.2%, respectively. Inference speed is maintained at 11.1 ms per image, supporting near real-time performance. Moreover, comparative evaluations with U-Net show that UAV-YOLOv12 improves by 7.1% and 9.5%. The model also exhibits strong generalization ability, achieving F1-scores above 0.87 on public datasets such as VHR-10 and the Drone Vehicle dataset. These results demonstrate that the proposed UAV-YOLOv12 can achieve high accuracy and robustness in diverse road environments and object scales. Full article
Show Figures

Figure 1

25 pages, 9119 KB  
Article
An Improved YOLOv8n-Based Method for Detecting Rice Shelling Rate and Brown Rice Breakage Rate
by Zhaoyun Wu, Yehao Zhang, Zhongwei Zhang, Fasheng Shen, Li Li, Xuewu He, Hongyu Zhong and Yufei Zhou
Agriculture 2025, 15(15), 1595; https://doi.org/10.3390/agriculture15151595 - 24 Jul 2025
Viewed by 481
Abstract
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. [...] Read more.
Accurate and real-time detection of rice shelling rate (SR) and brown rice breakage rate (BR) is crucial for intelligent hulling sorting but remains challenging because of small grain size, dense adhesion, and uneven illumination causing missed detections and blurred boundaries in traditional YOLOv8n. This paper proposes a high-precision, lightweight solution based on an enhanced YOLOv8n with improvements in network architecture, feature fusion, and attention mechanism. The backbone’s C2f module is replaced with C2f-Faster-CGLU, integrating partial convolution (PConv) local convolution and convolutional gated linear unit (CGLU) gating to reduce computational redundancy via sparse interaction and enhance small-target feature extraction. A bidirectional feature pyramid network (BiFPN) weights multiscale feature fusion to improve edge positioning accuracy of dense grains. Attention mechanism for fine-grained classification (AFGC) is embedded to focus on texture and damage details, enhancing adaptability to light fluctuations. The Detect_Rice lightweight head compresses parameters via group normalization and dynamic convolution sharing, optimizing small-target response. The improved model achieved 96.8% precision and 96.2% mAP. Combined with a quantity–mass model, SR/BR detection errors reduced to 1.11% and 1.24%, meeting national standard (GB/T 29898-2013) requirements, providing an effective real-time solution for intelligent hulling sorting. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 47324 KB  
Article
A Real-Time Cotton Boll Disease Detection Model Based on Enhanced YOLOv11n
by Lei Yang, Wenhao Cui, Jingqian Li, Guotao Han, Qi Zhou, Yubin Lan, Jing Zhao and Yongliang Qiao
Appl. Sci. 2025, 15(14), 8085; https://doi.org/10.3390/app15148085 - 21 Jul 2025
Viewed by 602
Abstract
Existing methods for detecting cotton boll diseases frequently exhibit high rates of both false negatives and false positives under complex field conditions (e.g., lighting variations, shadows, and occlusions) and struggle to achieve real-time performance on edge devices. To address these limitations, this study [...] Read more.
Existing methods for detecting cotton boll diseases frequently exhibit high rates of both false negatives and false positives under complex field conditions (e.g., lighting variations, shadows, and occlusions) and struggle to achieve real-time performance on edge devices. To address these limitations, this study proposes an enhanced YOLOv11n model (YOLOv11n-ECS) for improved detection accuracy. A dataset of cotton boll diseases under different lighting conditions and shooting angles in the field was constructed. To mitigate false negatives and false positives encountered by the original YOLOv11n model during detection, the EMA (efficient multi-scale attention) mechanism is introduced to enhance the weights of important features and suppress irrelevant regions, thereby improving the detection accuracy of the model. Partial Convolution (PConv) is incorporated into the C3k2 module to reduce computational redundancy and lower the model’s computational complexity while maintaining high recognition accuracy. Furthermore, to enhance the localization accuracy of diseased bolls, the original CIoU loss is replaced with Shape-IoU. The improved model achieves floating point operations (FLOPs), parameter count, and model size at 96.8%, 96%, and 96.3% of the original YOLOv11n model, respectively. The improved model achieves an mAP@0.5 of 85.6% and an mAP@0.5:0.95 of 62.7%, representing improvements of 2.3 and 1.9 percentage points, respectively, over the baseline YOLOv11n model. Compared with CenterNet, Faster R-CNN, YOLOv8-LSW, MSA-DETR, DMN-YOLO, and YOLOv11n, the improved model shows mAP@0.5 improvements of 25.7, 21.2, 5.5, 4.0, 4.5, and 2.3 percentage points, respectively, along with corresponding mAP@0.5:0.95 increases of 25.6, 25.3, 8.3, 2.8, 1.8, and 1.9 percentage points. Deployed on a Jetson TX2 development board, the model achieves a recognition speed of 56 frames per second (FPS) and an mAP of 84.2%, confirming its suitability for real-time detection. Furthermore, the improved model effectively reduces instances of both false negatives and false positives for diseased cotton bolls while yielding higher detection confidence, thus providing robust technical support for intelligent cotton boll disease detection. Full article
Show Figures

Figure 1

24 pages, 20337 KB  
Article
MEAC: A Multi-Scale Edge-Aware Convolution Module for Robust Infrared Small-Target Detection
by Jinlong Hu, Tian Zhang and Ming Zhao
Sensors 2025, 25(14), 4442; https://doi.org/10.3390/s25144442 - 16 Jul 2025
Viewed by 624
Abstract
Infrared small-target detection remains a critical challenge in military reconnaissance, environmental monitoring, forest-fire prevention, and search-and-rescue operations, owing to the targets’ extremely small size, sparse texture, low signal-to-noise ratio, and complex background interference. Traditional convolutional neural networks (CNNs) struggle to detect such weak, [...] Read more.
Infrared small-target detection remains a critical challenge in military reconnaissance, environmental monitoring, forest-fire prevention, and search-and-rescue operations, owing to the targets’ extremely small size, sparse texture, low signal-to-noise ratio, and complex background interference. Traditional convolutional neural networks (CNNs) struggle to detect such weak, low-contrast objects due to their limited receptive fields and insufficient feature extraction capabilities. To overcome these limitations, we propose a Multi-Scale Edge-Aware Convolution (MEAC) module that enhances feature representation for small infrared targets without increasing parameter count or computational cost. Specifically, MEAC fuses (1) original local features, (2) multi-scale context captured via dilated convolutions, and (3) high-contrast edge cues derived from differential Gaussian filters. After fusing these branches, channel and spatial attention mechanisms are applied to adaptively emphasize critical regions, further improving feature discrimination. The MEAC module is fully compatible with standard convolutional layers and can be seamlessly embedded into various network architectures. Extensive experiments on three public infrared small-target datasets (SIRSTD-UAVB, IRSTDv1, and IRSTD-1K) demonstrate that networks augmented with MEAC significantly outperform baseline models using standard convolutions. When compared to eleven mainstream convolution modules (ACmix, AKConv, DRConv, DSConv, LSKConv, MixConv, PConv, ODConv, GConv, and Involution), our method consistently achieves the highest detection accuracy and robustness. Experiments conducted across multiple versions, including YOLOv10, YOLOv11, and YOLOv12, as well as various network levels, demonstrate that the MEAC module achieves stable improvements in performance metrics while slightly increasing computational and parameter complexity. These results validate the MEAC module’s significant advantages in enhancing the detection of small and weak objects and suppressing interference from complex backgrounds. These results validate MEAC’s effectiveness in enhancing weak small-target detection and suppressing complex background noise, highlighting its strong generalization ability and practical application potential. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

16 pages, 3274 KB  
Article
FPFS-YOLO: An Insulator Defect Detection Model Integrating FasterNet and an Attention Mechanism
by Yujiao Chai, Xiaomin Yao, Manlong Chen and Sirui Shan
Sensors 2025, 25(13), 4165; https://doi.org/10.3390/s25134165 - 4 Jul 2025
Cited by 1 | Viewed by 618
Abstract
The timely detection of insulator defects in transmission lines is vital for ensuring social production and people’s livelihoods. Aiming to solve the problem of the low accuracy of insulator defect detection in current detection models, this study improves the YOLO11n model and proposes [...] Read more.
The timely detection of insulator defects in transmission lines is vital for ensuring social production and people’s livelihoods. Aiming to solve the problem of the low accuracy of insulator defect detection in current detection models, this study improves the YOLO11n model and proposes an insulator defect detection model, FPFS-YOLO, that integrates FasterNet and an attention mechanism. In this study, to mitigate parameter redundancy in the backbone of the YOLO11n model, the FasterNet lightweight network was introduced, and some convolution was embedded into the shallow network to enhance its feature extraction ability. To solve problems such as insufficient attention to important features and the low detection ability of small defects in the YOLO11n model network, the ParNet attention mechanism was added, along with a small-defect detection layer, which improved the detection accuracy of the model. Finally, in order to alleviate the computational redundancy caused by these additions, the C3k2_faster module and the PSP-Head detection head were introduced. These amendments further improved the accuracy of the model network in detecting insulator defects while simultaneously reducing its computational redundancy. The experimental results show that the improved FPFS-YOLO model achieved a 91.5% mAP@50 and a 56.6% mAP@0.5-0.95, increases of 3.1% and 1.2%, respectively, while the precision and recall reached 93.2% and 86.4%, increases of 1.5% and 4.2%, respectively. The FPFS-YOLO model achieved a higher detection accuracy than the YOLO11n model and thus could be widely applied in the detection of insulator defects. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 7851 KB  
Article
Ship Plate Detection Algorithm Based on Improved RT-DETR
by Lei Zhang and Liuyi Huang
J. Mar. Sci. Eng. 2025, 13(7), 1277; https://doi.org/10.3390/jmse13071277 - 30 Jun 2025
Cited by 1 | Viewed by 680
Abstract
To address the challenges in ship plate detection under complex maritime scenarios—such as small target size, extreme aspect ratios, dense arrangements, and multi-angle rotations—this paper proposes a multi-module collaborative detection algorithm, RT-DETR-HPA, based on an enhanced RT-DETR framework. The proposed model integrates three [...] Read more.
To address the challenges in ship plate detection under complex maritime scenarios—such as small target size, extreme aspect ratios, dense arrangements, and multi-angle rotations—this paper proposes a multi-module collaborative detection algorithm, RT-DETR-HPA, based on an enhanced RT-DETR framework. The proposed model integrates three core components: an improved High-Frequency Enhanced Residual Block (HFERB) embedded in the backbone to strengthen multi-scale high-frequency feature fusion, with deformable convolution added to handle occlusion and deformation; a Pinwheel-shaped Convolution (PConv) module employing multi-directional convolution kernels to achieve rotation-adaptive local detail extraction and accurately capture plate edges and character features; and an Adaptive Sparse Self-Attention (ASSA) mechanism incorporated into the encoder to automatically focus on key regions while suppressing complex background interference, thereby enhancing feature discriminability. Comparative experiments conducted on a self-constructed dataset of 20,000 ship plate images show that, compared to the original RT-DETR, RT-DETR-HPA achieves a 3.36% improvement in mAP@50 (up to 97.12%), a 3.23% increase in recall (reaching 94.88%), and maintains real-time detection speed at 40.1 FPS. Compared with mainstream object detection models such as the YOLO series and Faster R-CNN, RT-DETR-HPA demonstrates significant advantages in high-precision localization, adaptability to complex scenarios, and real-time performance. It effectively reduces missed and false detections caused by low resolution, poor lighting, and dense occlusion, providing a robust and high-accuracy solution for intelligent ship supervision. Future work will focus on lightweight model design and dynamic resolution adaptation to enhance its applicability on mobile maritime surveillance platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 8232 KB  
Article
Intelligent Identification of Tea Plant Seedlings Under High-Temperature Conditions via YOLOv11-MEIP Model Based on Chlorophyll Fluorescence Imaging
by Chun Wang, Zejun Wang, Lijiao Chen, Weihao Liu, Xinghua Wang, Zhiyong Cao, Jinyan Zhao, Man Zou, Hongxu Li, Wenxia Yuan and Baijuan Wang
Plants 2025, 14(13), 1965; https://doi.org/10.3390/plants14131965 - 27 Jun 2025
Cited by 1 | Viewed by 626
Abstract
To achieve an efficient, non-destructive, and intelligent identification of tea plant seedlings under high-temperature stress, this study proposes an improved YOLOv11 model based on chlorophyll fluorescence imaging technology for intelligent identification. Using tea plant seedlings under varying degrees of high temperature as the [...] Read more.
To achieve an efficient, non-destructive, and intelligent identification of tea plant seedlings under high-temperature stress, this study proposes an improved YOLOv11 model based on chlorophyll fluorescence imaging technology for intelligent identification. Using tea plant seedlings under varying degrees of high temperature as the research objects, raw fluorescence images were acquired through a chlorophyll fluorescence image acquisition device. The fluorescence parameters obtained by Spearman correlation analysis were found to be the maximum photochemical efficiency (Fv/Fm), and the fluorescence image of this parameter is used to construct the dataset. The YOLOv11 model was improved in the following ways. First, to reduce the number of network parameters and maintain a low computational cost, the lightweight MobileNetV4 network was introduced into the YOLOv11 model as a new backbone network. Second, to achieve efficient feature upsampling, enhance the efficiency and accuracy of feature extraction, and reduce computational redundancy and memory access volume, the EUCB (Efficient Up Convolution Block), iRMB (Inverted Residual Mobile Block), and PConv (Partial Convolution) modules were introduced into the YOLOv11 model. The research results show that the improved YOLOv11-MEIP model has the best performance, with precision, recall, and mAP50 reaching 99.25%, 99.19%, and 99.46%, respectively. Compared with the YOLOv11 model, the improved YOLOv11-MEIP model achieved increases of 4.05%, 7.86%, and 3.42% in precision, recall, and mAP50, respectively. Additionally, the number of model parameters was reduced by 29.45%. This study provides a new intelligent method for the classification of high-temperature stress levels of tea seedlings, as well as state detection and identification, and provides new theoretical support and technical reference for the monitoring and prevention of tea plants and other crops in tea gardens under high temperatures. Full article
(This article belongs to the Special Issue Practical Applications of Chlorophyll Fluorescence Measurements)
Show Figures

Figure 1

23 pages, 3899 KB  
Article
YOLO-PWSL-Enhanced Robotic Fish: An Integrated Object Detection System for Underwater Monitoring
by Lingrui Lei, Ying Tang, Weidong Zhang, Quan Tang and Haichi Hao
Appl. Sci. 2025, 15(13), 7052; https://doi.org/10.3390/app15137052 - 23 Jun 2025
Cited by 1 | Viewed by 740
Abstract
In recent years, China has been promoting aquaculture, but extensive water pollution caused by production activities and climate changes has resulted in losses exceeding 4.6 × 107 kg of aquatic products. Widespread water pollution from production activities is a key issue that [...] Read more.
In recent years, China has been promoting aquaculture, but extensive water pollution caused by production activities and climate changes has resulted in losses exceeding 4.6 × 107 kg of aquatic products. Widespread water pollution from production activities is a key issue that needs to be addressed in the aquaculture industry. Therefore, dynamic monitoring of water quality and fish-specific solutions are critical to the growth of fry. Here, a low-cost, small, and real-time monitorable bionic robotic fish based on YOLO-PWSL (PConv, Wise-ShapeIoU, and LGFB) is proposed to achieve intelligent control of aquaculture. The bionic robotic fish incorporates a caudal fin for propulsion and adaptive buoyancy control for precise depth regulation. It is equipped with various types of sensors and wireless transmission equipment, which enables managers to monitor water parameters in real time. It is also equipped with YOLO-PWSL, an improved underwater fish identification model based on YOLOv5s. YOLO-PWSL integrates three key enhancements. In fact, we designed a multilevel attention fusion block (LGFB) that enhances perception in complex scenarios, to optimize the accuracy of the detected frames, the Wise-ShapeIoU loss function was used, and in order to reduce the parameters and FLOPs of the model, a lightweight convolution method called PConv was introduced. The experimental results show that it exhibits excellent performance compared with the original model: the mAP@0.5 (mean average precision at the 0.5 IoU threshold) of the improved model reached 96.1%, the number of parameters and the amount of calculation were reduced by 1.8 M and 3.1 G, respectively, and the detected leakage was effectively reduced. In the future, the system will facilitate the monitoring of water quality and fish species and their behavior, thereby improving the efficiency of aquaculture. Full article
Show Figures

Figure 1

21 pages, 29272 KB  
Article
Multi-Strategy Enhancement of YOLOv8n Monitoring Method for Personnel and Vehicles in Mine Air Door Scenarios
by Lei Zhang, Hongjing Tao, Zhipeng Sun and Weixun Yi
Sensors 2025, 25(10), 3128; https://doi.org/10.3390/s25103128 - 15 May 2025
Viewed by 727
Abstract
The mine air door is the primary facility for regulating airflow and controlling the passage of personnel and vehicles. Intelligent monitoring of personnel and vehicles within the mine air door system is a crucial measure to ensure the safety of mine operations. To [...] Read more.
The mine air door is the primary facility for regulating airflow and controlling the passage of personnel and vehicles. Intelligent monitoring of personnel and vehicles within the mine air door system is a crucial measure to ensure the safety of mine operations. To address the issues of slow speed and low efficiency associated with traditional detection methods in mine air door scenarios, this study proposes a CGSW-YOLO man-vehicle monitoring model based on YOLOv8n. Firstly, the Faster Block module, which incorporates partial convolution (PConv), is integrated with the C2f module of the backbone network. This combination aims to minimize redundant calculations during the convolution process and expedite the model’s aggregation of multi-scale information. Secondly, standard convolution is replaced with GhostConv in the backbone network to further reduce the number of model parameters. Additionally, the Slim-neck module is integrated into the neck feature fusion network to enhance the information fusion capability of various feature maps while maintaining detection accuracy. Finally, WIoUv3 is utilized as the loss function, and a dynamic non-monotonic focusing mechanism is implemented to adjust the quality of the anchor frame dynamically. The experimental results indicate that the CGSW-YOLO model exhibits strong performance in monitoring man-vehicle interactions in mine air door scenarios. The Precision (P), Recall (R), and the map@0.5 are recorded at 88.2%, 93.9%, and 98.0%, respectively, representing improvements of 0.2%, 1.5%, and 1.7% over the original model. The Frames Per Second (FPS) has increased to 135.14 f·s−1, reflecting a rise of 35.14%. Additionally, the parameters, the floating point operations per second (FLOPS), and model size are 2.36 M, 6.2 G, and 5.0 MB, respectively. These values indicate reductions of 21.6%, 23.5%, and 20.6% compared to the original model. Through the verification of on-site surveillance video, the CGSW-YOLO model demonstrates its effectiveness in monitoring both individuals and vehicles in scenarios involving mine air doors. Full article
(This article belongs to the Special Issue Recent Advances in Optical Sensor for Mining)
Show Figures

Figure 1

Back to TopTop