Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = PAH biological removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 5571 KiB  
Review
New Advances in Bioelectrochemical Systems in the Degradation of Polycyclic Aromatic Hydrocarbons: Source, Degradation Pathway, and Microbial Community
by Yimeng Feng, Xuya Zhu, Xiulin Huang and Fengxiang Li
Energies 2025, 18(1), 209; https://doi.org/10.3390/en18010209 - 6 Jan 2025
Cited by 1 | Viewed by 1423
Abstract
Because of their high persistence, polycyclic aromatic hydrocarbons (PAHs) are found in a wide range of settings and pose a health risk to both humans and other organisms. Degradation of PAHs is an essential part of environmental management. By combining biological metabolism and [...] Read more.
Because of their high persistence, polycyclic aromatic hydrocarbons (PAHs) are found in a wide range of settings and pose a health risk to both humans and other organisms. Degradation of PAHs is an essential part of environmental management. By combining biological metabolism and electrochemical processes, bioelectrochemical systems (BESs) can degrade PAHs and provide important applications by converting the chemical energy of pollutants into electrical energy for energy conversion and recovery. This review provides a comprehensive introduction to PAH degradation by BESs, including PAH sources, degradation effects of BESs, performance enhancement methods, degradation pathways, and dominant microorganisms. By focusing on the relevant research in recent years, the main innovative research focuses on the optimization of the configuration, the electrode preparation, and the media additions to improve the removal performance of PAHs. It demonstrates the potential of BESs in the field of environmental remediation, especially their effectiveness in treating difficult-to-degrade pollutants such as PAHs, by concentrating on the application and mechanism of BESs in PAH degradation. This review is intended to provide the inexperienced reader with an insight into this research area and to point out directions for future research, especially in the design optimization of BESs and microbial community analysis. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

14 pages, 10874 KiB  
Article
The Combination of Buchloe dactyloides Engelm and Biochar Promotes the Remediation of Soil Contaminated with Polycyclic Aromatic Hydrocarbons
by Yuancheng Wang, Ao Li, Bokun Zou, Yongqiang Qian, Xiaoxia Li and Zhenyuan Sun
Microorganisms 2024, 12(5), 968; https://doi.org/10.3390/microorganisms12050968 - 11 May 2024
Cited by 1 | Viewed by 1568
Abstract
Polycyclic aromatic hydrocarbons (PAHs) cause serious stress to biological health and the soil environment as persistent pollutants. Despite the wide use of biochar in promoting soil improvement, the mechanism of biochar removing soil PAHs through rhizosphere effect in the process of phytoremediation remain [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) cause serious stress to biological health and the soil environment as persistent pollutants. Despite the wide use of biochar in promoting soil improvement, the mechanism of biochar removing soil PAHs through rhizosphere effect in the process of phytoremediation remain uncertain. In this study, the regulation of soil niche and microbial degradation strategies under plants and biochar were explored by analyzing the effects of plants and biochar on microbial community composition, soil metabolism and enzyme activity in the process of PAH degradation. The combination of plants and biochar significantly increased the removal of phenanthrene (6.10%), pyrene (11.50%), benzo[a]pyrene (106.02%) and PAHs (27.10%) when compared with natural attenuation, and significantly increased the removal of benzo[a]pyrene (34.51%) and PAHs (5.96%) when compared with phytoremediation. Compared with phytoremediation, the combination of plants and biochar significantly increased soil nutrient availability, enhanced soil enzyme activity (urease and catalase), improved soil microbial carbon metabolism and amino acid metabolism, thereby benefiting microbial resistance to PAH stress. In addition, the activity of soil enzymes (dehydrogenase, polyphenol oxidase and laccase) and the expression of genes involved in the degradation and microorganisms (streptomyces, curvularia, mortierella and acremonium) were up-regulated through the combined action of plants and biochar. In view of the aforementioned results, the combined application of plants and biochar can enhance the degradation of PAHs and alleviate the stress of PAH on soil microorganisms. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 2989 KiB  
Review
Switch-Independent 3A: An Epigenetic Regulator in Cancer with New Implications for Pulmonary Arterial Hypertension
by Katherine Jankowski, Vineeta Jagana, Malik Bisserier and Lahouaria Hadri
Biomedicines 2024, 12(1), 10; https://doi.org/10.3390/biomedicines12010010 - 20 Dec 2023
Cited by 3 | Viewed by 2858
Abstract
Epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNA, play a crucial role in the regulation of gene expression and are pivotal in biological processes like apoptosis, cell proliferation, and differentiation. SIN3a serves as a scaffold protein and facilitates interactions with transcriptional [...] Read more.
Epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNA, play a crucial role in the regulation of gene expression and are pivotal in biological processes like apoptosis, cell proliferation, and differentiation. SIN3a serves as a scaffold protein and facilitates interactions with transcriptional epigenetic partners and specific DNA-binding transcription factors to modulate gene expression by adding or removing epigenetic marks. However, the activation or repression of gene expression depends on the factors that interact with SIN3a, as it can recruit both transcriptional activators and repressors. The role of SIN3a has been extensively investigated in the context of cancer, including melanoma, lung, and breast cancer. Our group is interested in defining the roles of SIN3a and its partners in pulmonary vascular disease. Pulmonary arterial hypertension (PAH) is a multifactorial disease often described as a cancer-like disease and characterized by disrupted cellular metabolism, sustained vascular cell proliferation, and resistance to apoptosis. Molecularly, PAH shares many common signaling pathways with cancer cells, offering the opportunity to further consider therapeutic strategies used for cancer. As a result, many signaling pathways observed in cancer were studied in PAH and have encouraged new research studying SIN3a’s role in PAH due to its impact on cancer growth. This comparison offers new therapeutic options. In this review, we delineate the SIN3a-associated epigenetic mechanisms in cancer and PAH cells and highlight their impact on cell survival and proliferation. Furthermore, we explore in detail the role of SIN3a in cancer to provide new insights into its emerging role in PAH pathogenesis. Full article
Show Figures

Graphical abstract

21 pages, 3118 KiB  
Article
Enrichment of Aerobic and Anaerobic Hydrocarbon-Degrading Bacteria from Multicontaminated Marine Sediment in Mar Piccolo Site (Taranto, Italy)
by Bruna Matturro, Maria Letizia Di Franca, Barbara Tonanzi, Carolina Cruz Viggi, Federico Aulenta, Magda Di Leo, Santina Giandomenico and Simona Rossetti
Microorganisms 2023, 11(11), 2782; https://doi.org/10.3390/microorganisms11112782 - 16 Nov 2023
Cited by 7 | Viewed by 2049
Abstract
Marine sediments act as a sink for the accumulation of various organic contaminants such as polychlorobiphenyls (PCBs). These contaminants affect the composition and activity of microbial communities, particularly favoring those capable of thriving from their biodegradation and biotransformation under favorable conditions. Hence, contaminated [...] Read more.
Marine sediments act as a sink for the accumulation of various organic contaminants such as polychlorobiphenyls (PCBs). These contaminants affect the composition and activity of microbial communities, particularly favoring those capable of thriving from their biodegradation and biotransformation under favorable conditions. Hence, contaminated environments represent a valuable biological resource for the exploration and cultivation of microorganisms with bioremediation potential. In this study, we successfully cultivated microbial consortia with the capacity for PCB removal under both aerobic and anaerobic conditions. The source of these consortia was a multicontaminated marine sediment collected from the Mar Piccolo (Taranto, Italy), one of Europe’s most heavily polluted sites. High-throughput sequencing was employed to investigate the dynamics of the bacterial community of the marine sediment sample, revealing distinct and divergent selection patterns depending on the imposed reductive or oxidative conditions. The aerobic incubation resulted in the rapid selection of bacteria specialized in oxidative pathways for hydrocarbon transformation, leading to the isolation of Marinobacter salinus and Rhodococcus cerastii species, also known for their involvement in aerobic polycyclic aromatic hydrocarbons (PAHs) transformation. On the other hand, anaerobic incubation facilitated the selection of dechlorinating species, including Dehalococcoides mccartyi, involved in PCB reduction. This study significantly contributes to our understanding of the diversity, dynamics, and adaptation of the bacterial community in the hydrocarbon-contaminated marine sediment from one sampling point of the Mar Piccolo basin, particularly in response to stressful conditions. Furthermore, the establishment of consortia with biodegradation and biotransformation capabilities represents a substantial advancement in addressing the challenge of restoring polluted sites, including marine sediments, thus contributing to expanding the toolkit for effective bioremediation strategies. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 2359 KiB  
Article
Assessment of Phenanthrene Degradation Potential by Plant-Growth-Promoting Endophytic Strain Pseudomonas chlororaphis 23aP Isolated from Chamaecytisus albus (Hacq.) Rothm.
by Magdalena Anna Karaś, Sylwia Wdowiak-Wróbel, Monika Marek-Kozaczuk, Wojciech Sokołowski, Krystsina Melianchuk and Iwona Komaniecka
Molecules 2023, 28(22), 7581; https://doi.org/10.3390/molecules28227581 - 14 Nov 2023
Cited by 3 | Viewed by 1887
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common xenobiotics that are detrimental to the environment and human health. Bacterial endophytes, having the capacity to degrade PAHs, and plant growth promotion (PGP) may facilitate their biodegradation. In this study, phenanthrene (PHE) utilization of a newly isolated [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are common xenobiotics that are detrimental to the environment and human health. Bacterial endophytes, having the capacity to degrade PAHs, and plant growth promotion (PGP) may facilitate their biodegradation. In this study, phenanthrene (PHE) utilization of a newly isolated PGP endophytic strain of Pseudomonas chlororaphis 23aP and factors affecting the process were evaluated. The data obtained showed that strain 23aP utilized PHE in a wide range of concentrations (6–100 ppm). Ethyl-acetate-extractable metabolites obtained from the PHE-enriched cultures were analyzed by gas chromatography–mass spectrometry (GC-MS) and thin-layer chromatography (HPTLC). The analysis identified phthalic acid, 3-(1-naphthyl)allyl alcohol, 2-hydroxybenzalpyruvic acid, α-naphthol, and 2-phenylbenzaldehyde, and allowed us to propose that the PHE degradation pathway of strain 23aP is initiated at the 1,2-, 3,4-carbon positions, while the 9,10-C pathway starts with non-enzymatic oxidation and is continued by the downstream phthalic pathway. Moreover, the production of the biosurfactants, mono- (Rha-C8-C8, Rha-C10-C8:1, Rha-C12:2-C10, and Rha-C12:1-C12:1) and dirhamnolipids (Rha-Rha-C8-C10), was confirmed using direct injection–electrospray ionization–mass spectrometry (DI-ESI-MS) technique. Changes in the bacterial surface cell properties in the presence of PHE of increased hydrophobicity were assessed with the microbial adhesion to hydrocarbons (MATH) assay. Altogether, this suggests the strain 23aP might be used in bioaugmentation—a biological method supporting the removal of pollutants from contaminated environments. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

39 pages, 2640 KiB  
Review
Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties
by Polina Kuryntseva, Kamalya Karamova, Polina Galitskaya, Svetlana Selivanovskaya and Gennady Evtugyn
Agriculture 2023, 13(10), 2003; https://doi.org/10.3390/agriculture13102003 - 15 Oct 2023
Cited by 13 | Viewed by 5275
Abstract
Biochar effects are strongly dependent on its properties. Biochar improves physical soil properties by decreasing bulk density and increasing medium and large aggregates, leading to faster and deeper water infiltration and root growth. Improvement of the chemical properties of soil is connected with [...] Read more.
Biochar effects are strongly dependent on its properties. Biochar improves physical soil properties by decreasing bulk density and increasing medium and large aggregates, leading to faster and deeper water infiltration and root growth. Improvement of the chemical properties of soil is connected with pH neutralization of acidic soils, increase of cation exchange capacity and base saturation, providing a larger surface for sorption of toxicants and exchange of cations. Biochar increases the stocks of macro- and micronutrients in soil and remains sufficient for decades. Biochar effects on (micro)biological properties are mainly indirect, based on the improvements of habitat conditions for organisms, deeper root growth providing available C for larger soil volume, higher crop yield leading to more residues on and in the topsoil, better and deeper soil moisture, supply of all nutrients, and better aeration. Along with positive, negative effects of biochar while used as a soil conditioner are discussed in the review: presence of PAH, excessive amounts of K, Ca and Mg, declination of soil pH. In conclusion, despite the removal of C from the biological cycle by feedstock pyrolysis, the subsequent application of biochar into soil increases fertility and improves physical and chemical properties for root and microbial growth is a good amendment for low fertility soils. Proper use of biochar leads not only to an increase in crop yield but also to effective sequestration of carbon in the soil, which is important to consider when economically assessing its production. Further research should be aimed at assessing and developing methods for increasing the sequestration potential of biochar as fertilizer. Full article
(This article belongs to the Special Issue Ecological Environment and Microbial Community of Agricultural Soils)
Show Figures

Figure 1

26 pages, 11246 KiB  
Article
Oil-Contaminated Soil Remediation with Biodegradation by Autochthonous Microorganisms and Phytoremediation by Maize (Zea mays)
by Katarzyna Wojtowicz, Teresa Steliga, Piotr Kapusta and Joanna Brzeszcz
Molecules 2023, 28(16), 6104; https://doi.org/10.3390/molecules28166104 - 17 Aug 2023
Cited by 11 | Viewed by 2929
Abstract
Biological methods are currently the most commonly used methods for removing hazardous substances from land. This research work focuses on the remediation of oil-contaminated land. The biodegradation of aliphatic hydrocarbons and PAHs as a result of inoculation with biopreparations B1 and B2 was [...] Read more.
Biological methods are currently the most commonly used methods for removing hazardous substances from land. This research work focuses on the remediation of oil-contaminated land. The biodegradation of aliphatic hydrocarbons and PAHs as a result of inoculation with biopreparations B1 and B2 was investigated. Biopreparation B1 was developed on the basis of autochthonous bacteria, consisting of strains Dietzia sp. IN118, Gordonia sp. IN101, Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus globerulus IN113 and Raoultella sp. IN109, whereas biopreparation B2 was enriched with fungi, such as Aspergillus sydowii, Aspergillus versicolor, Candida sp., Cladosporium halotolerans, Penicillium chrysogenum. As a result of biodegradation tests conducted under ex situ conditions for soil inoculated with biopreparation B1, the concentrations of TPH and PAH were reduced by 31.85% and 27.41%, respectively. Soil inoculation with biopreparation B2 turned out to be more effective, as a result of which the concentration of TPH was reduced by 41.67% and PAH by 34.73%. Another issue was the phytoremediation of the pre-treated G6-3B2 soil with the use of Zea mays. The tests were carried out in three systems (system 1—soil G6-3B2 + Zea mays; system 2—soil G6-3B2 + biopreparation B2 + Zea mays; system 3—soil G6-3B2 + biopreparation B2 with γ-PGA + Zea mays) for 6 months. The highest degree of TPH and PAH reduction was obtained in system 3, amounting to 65.35% and 60.80%, respectively. The lowest phytoremediation efficiency was recorded in the non-inoculated system 1, where the concentration of TPH was reduced by 22.80% and PAH by 18.48%. Toxicological tests carried out using PhytotoxkitTM, OstracodtoxkitTM and Microtox® Solid Phase tests confirmed the effectiveness of remediation procedures and showed a correlation between the concentration of petroleum hydrocarbons in the soil and its toxicity. The results obtained during the research indicate the great potential of bioremediation practices with the use of microbial biopreparations and Zea mays in the treatment of soils contaminated with petroleum hydrocarbons. Full article
(This article belongs to the Special Issue Power of Microbes in Pollutant Degradation)
Show Figures

Figure 1

28 pages, 2340 KiB  
Article
White Clover (Trifolium repens L.) Cultivation as a Means of Soil Regeneration and Pursuit of a Sustainable Food System Model
by Barbara Sawicka, Barbara Krochmal-Marczak, Józef Sawicki, Dominika Skiba, Piotr Pszczółkowski, Piotr Barbaś, Viola Vambol, Mohammed Messaoudi and Alaa K. Farhan
Land 2023, 12(4), 838; https://doi.org/10.3390/land12040838 - 6 Apr 2023
Cited by 13 | Viewed by 4354
Abstract
Background: Currently, in the face of constant climate change and the development of the mining industry, recovering soils degraded by industry for agricultural production and ensuring more food security for the world has become more difficult. Soil contamination is of particular concern as [...] Read more.
Background: Currently, in the face of constant climate change and the development of the mining industry, recovering soils degraded by industry for agricultural production and ensuring more food security for the world has become more difficult. Soil contamination is of particular concern as it affects not only human health but also vegetation growth and the biological environment. The aim: The aim of our research is to develop an appropriate cultivation technology in the area of former and present oil extraction areas and monitor their recovery for agricultural purposes and, thus, for food production. Methods: Experimental, descriptive, laboratory, and comparative methods were used. Results: A significantly decreased content of PAHs in the tested soil under the influence of the “Green technology” was observed just in the third year of the research. Eight years after the introduction of “green technology”, the sum of PAHs in the soil degraded by the oil extraction industry was more than 2-fold reduced. Therefore, there is a need to develop a nature-friendly and cost-effective method of removing and minimizing the effects of soil contamination by oil and its products. Conclusions: T. repens turned out to be a species that significantly prevents the degradation of the agricultural environment and restores soil for agricultural use, consequently encouraging the production of food safe for humans. The immeasurable effect of the use of “Green technology” was to ensure the biodiversity of the grasslands and to return the sources of natural nitrogen bound by bacteria of the genus Rhizobium in coexistence with plants from the Fabaceae family. Full article
(This article belongs to the Special Issue Agricultural Land Use and Food Security)
Show Figures

Figure 1

22 pages, 4304 KiB  
Review
Review of Techniques for the Removal of Polycyclic Aromatic Hydrocarbons from Produced Water
by Sadaf Sher, Muhammad Waseem and Megersa Kebede Leta
Environments 2023, 10(3), 40; https://doi.org/10.3390/environments10030040 - 26 Feb 2023
Cited by 28 | Viewed by 12533
Abstract
Polycyclic aromatic hydrocarbons (PAHs), due to their mutagenic, carcinogenic, and teratogenic potential, can lead to numerous chronic and fatal diseases. PAHs have been found in several wastewater streams, including “produced water,” which is wastewater generated during the extraction of oil and gas. The [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs), due to their mutagenic, carcinogenic, and teratogenic potential, can lead to numerous chronic and fatal diseases. PAHs have been found in several wastewater streams, including “produced water,” which is wastewater generated during the extraction of oil and gas. The PAHs’ removal from produced water using physical, chemical, biological, and combined methods is crucial. Water is a vital ecosystem component and is extremely vulnerable to PAHs. This article reviews the current PAH situation, including their physical and chemical properties, types, characteristics, and removal methods from produced water. The mechanism of each method of removal of PAHs has been discussed. The current study results show that adsorption by nanoparticles and integrated methods are promising methods to meet the strict authoritarian limit with advanced increase potential in the direction of commercialization for the removal of PAHs and provide opportunities to use produced water as a source of water. The current study results can help the policy/decision makers in the efficient management of water resources. Full article
(This article belongs to the Special Issue Recent Advances in Technologies for Water and Wastewater Treatment)
Show Figures

Graphical abstract

21 pages, 2090 KiB  
Article
Deep Water PAH Cycling in the Japan Basin (the Sea of Japan)
by Yuliya Koudryashova, Tatiana Chizhova, Mutsuo Inoue, Kazuichi Hayakawa, Seiya Nagao, Evgeniya Marina and Rodrigo Mundo
J. Mar. Sci. Eng. 2022, 10(12), 2015; https://doi.org/10.3390/jmse10122015 - 16 Dec 2022
Cited by 6 | Viewed by 2415
Abstract
A vertical pattern of fractionated polycyclic aromatic hydrocarbons (PAH) was studied in the Japan Basin in the Sea of Japan. The highest PAH concentration was found in the mesopelagic realm, possibly resulting from deep convection and/or subduction of intermediate water and its biogeochemical [...] Read more.
A vertical pattern of fractionated polycyclic aromatic hydrocarbons (PAH) was studied in the Japan Basin in the Sea of Japan. The highest PAH concentration was found in the mesopelagic realm, possibly resulting from deep convection and/or subduction of intermediate water and its biogeochemical setting in the western Japan Basin. Using 226Ra and 228Ra as tracers revealed the PAH load in the open sea from the coastal polluted water. Dissolved PAHs (DPAH, fraction < 0.5 µm) were significantly prevalent particulate PAHs (PPAH, fraction > 0.5 µm) at all depths, associated with a predominance of dissolved organic carbon (DOC) over particulate organic carbon (POC). Hydrophobicity was more important for higher-molecular-weight PAHs to be distributed between particles and the solution, while the high Koc of low-molecular-weight PAHs indicated that their partitioning was driven by other factors, such as adsorbing of soot particles. PPAH and DPAH profiles differed from the POC and DOC profiles; nevertheless, a positive moderate correlation was found for DPAH and DOC for depths below the epipelagic, suggesting the similarity of the mechanisms of input of dissolved organic matter and DPAH into the deep interior of the Sea of Japan. The PAH flux calculations showed that biological pumps and overturning circulation contribute almost equally to removing PAHs from the bathypelagic waters of the Japan Basin. Full article
(This article belongs to the Section Marine Pollution)
Show Figures

Figure 1

20 pages, 3453 KiB  
Review
Bioremediation Treatment of Polyaromatic Hydrocarbons for Environmental Sustainability
by Marjan Salari, Vahid Rahmanian, Seyyed Alireza Hashemi, Wei-Hung Chiang, Chin Wei Lai, Seyyed Mojtaba Mousavi and Ahmad Gholami
Water 2022, 14(23), 3980; https://doi.org/10.3390/w14233980 - 6 Dec 2022
Cited by 27 | Viewed by 6006
Abstract
Polycyclic aromatic hydrocarbons (PAHs) distributed in air and soil are harmful because of their carcinogenicity, mutagenicity, and teratogenicity. Biodegradation is an environmentally friendly and economical approach to control these types of contaminants and has become an essential method for remediating environments contaminated with [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) distributed in air and soil are harmful because of their carcinogenicity, mutagenicity, and teratogenicity. Biodegradation is an environmentally friendly and economical approach to control these types of contaminants and has become an essential method for remediating environments contaminated with petroleum hydrocarbons. The bacteria are isolated and identified using a mineral nutrient medium containing PAHs as the sole source of carbon and energy and biochemical differential tests. Thus, this study focuses on some bacteria and fungi that degrade oil and hydrocarbons. This study provides a comprehensive, up-to-date, and efficient overview of petroleum hydrocarbon contaminant bioremediation considering hydrocarbon modification by microorganisms, emphasizing the new knowledge gained in recent years. The study shows that petroleum hydrocarbon contaminants are acceptably biodegradable by some microorganisms, and their removal by this method is cost-effective. Moreover, microbial biodegradation of petroleum hydrocarbon contaminants utilizes the enzymatic catalytic activities of microorganisms and increases the degradation of pollutants several times compared to conventional methods. Biological treatment is carried out in two ways: microbial stimulation and microbial propagation. In the first method, the growth of indigenous microorganisms in the area increases, and the pollution is eliminated. In the second method, on the other hand, there are no effective microorganisms in the area, so these microorganisms are added to the environment. Full article
Show Figures

Figure 1

7 pages, 1600 KiB  
Article
Bio-Fenton-Assisted Biological Process for Efficient Mineralization of Polycyclic Aromatic Hydrocarbons from the Environment
by Xiaohui Wang, Chunyan Song, Xiao Liu, Jing Zhang, Yanbo Zhang, Xueqing Shi and Dogun Kim
Processes 2022, 10(7), 1316; https://doi.org/10.3390/pr10071316 - 5 Jul 2022
Cited by 5 | Viewed by 2424
Abstract
The intensive production of fossil fuels has led to serious polycyclic aromatic hydrocarbon (PAH) contamination in water and soil environments (as PAHs are typical types of emerging contaminants). Bio-Fenton, an alternative to Fenton oxidation, which generates hydrogen peroxide at a nearly neutral pH [...] Read more.
The intensive production of fossil fuels has led to serious polycyclic aromatic hydrocarbon (PAH) contamination in water and soil environments (as PAHs are typical types of emerging contaminants). Bio-Fenton, an alternative to Fenton oxidation, which generates hydrogen peroxide at a nearly neutral pH condition, could ideally work as a pretreatment to recalcitrant organics, which could be combined with the subsequent biological treatment without any need for pH adjustment. The present study investigated the performance of a Bio-Fenton-assisted biological process for mineralization of three typical types of PAHs. The hydrogen peroxide production, PAH removal, overall organic mineralization, and microbial community structure were comprehensively studied. The results showed that the combined process could achieve efficient chemical oxygen demand (COD) removal (88.1%) of mixed PAHs as compared to activated sludge (33.1%), where individual PAH removal efficiencies of 99.6%, 83.8%, and 91.3% were observed for naphthalene (NAP), anthracene (ANT), and pyrene (PYR), respectively, with the combined process. Full article
(This article belongs to the Special Issue Recent Advances in Wastewater Treatment and Transport)
Show Figures

Figure 1

12 pages, 1557 KiB  
Article
Pyrolytic Remediation and Ecotoxicity Assessment of Fuel-Oil-Contaminated Soil
by Byeongwook Choi, Jin-Seo Yu, Gu-Young Kang, Tae-Yong Jeong, Eun Hea Jho and Sung-Jong Lee
Toxics 2022, 10(5), 245; https://doi.org/10.3390/toxics10050245 - 12 May 2022
Cited by 1 | Viewed by 3023
Abstract
Oil-contaminated soil is a major societal problem for humans and the environment. In this study, the pyrolysis method was applied to oil-contaminated soil used as a landfill and gas station site in Korea. The removal efficiency of the main components of oil-contaminated soils, [...] Read more.
Oil-contaminated soil is a major societal problem for humans and the environment. In this study, the pyrolysis method was applied to oil-contaminated soil used as a landfill and gas station site in Korea. The removal efficiency of the main components of oil-contaminated soils, such as total petroleum hydrocarbons (TPH), polyaromatic hydrocarbons (PAHs), unresolved complex mixture (UCM), and alkylated PAHs (Alk-PAHs) were measured, and the effect of temperature, treatment time, and moisture content on pyrolysis efficiency was studied. In order to evaluate the risk of soil from which pollutants were removed through pyrolysis, integrated ecotoxicity was evaluated using Daphnia magna and Allivibrio fischeri. The chemical and biological measurements in this study include contaminants of emerging concerns (CECs). Results showed that the pyrolysis was more efficient with higher treatment temperatures, moisture content, and treatment times. In addition, toxicity was reduced by 99% after pyrolysis, and the degree of toxicity was evaluated more sensitively in Allivibrio fischeri than in Daphnia magna. This study shows that weathered oil-contaminated soil can be effectively treated in a relatively short time through pyrolysis, as well as provides information on efficient conditions and the assessment of ecotoxicity. Full article
Show Figures

Figure 1

16 pages, 2945 KiB  
Article
Bioremediation of Polycyclic Aromatic Hydrocarbons from Industry Contaminated Soil Using Indigenous Bacillus spp.
by Prisha Mandree, Wendy Masika, Justin Naicker, Ghaneshree Moonsamy, Santosh Ramchuran and Rajesh Lalloo
Processes 2021, 9(9), 1606; https://doi.org/10.3390/pr9091606 - 8 Sep 2021
Cited by 34 | Viewed by 5785
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are reportedly toxic, ubiquitous and organic compounds that can persist in the environment and are released largely due to the incomplete combustion of fossil fuel. There is a range of microorganisms that are capable of degrading low molecular weight [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) are reportedly toxic, ubiquitous and organic compounds that can persist in the environment and are released largely due to the incomplete combustion of fossil fuel. There is a range of microorganisms that are capable of degrading low molecular weight PAHs, such as naphthalene; however, fewer were reported to degrade higher molecular weight PAHs. Bacillus spp. has shown to be effective in neutralizing polluted streams containing hydrocarbons. Following the growing regulatory requirement to meet the PAH specification upon disposal of contaminated soil, the following study aimed to identify potential Bacillus strains that could effectively remediate low and high molecular weight PAHs from the soil. Six potential hydrocarbon-degrading strains were formulated into two prototypes and tested for the ability to remove PAHs from industry-contaminated soil. Following the dosing of each respective soil system with prototypes 1 and 2, the samples were analyzed for PAH concentration over 11 weeks against an un-augmented control system. After 11 weeks, the control system indicated the presence of naphthalene (3.11 µg·kg−1), phenanthrene (24.47 µg·kg−1), fluoranthene (17.80 µg·kg−1) and pyrene (28.92 µg·kg−1), which illustrated the recalcitrant nature of aromatic hydrocarbons. The soil system dosed with prototype 2 was capable of completely degrading (100%) naphthalene, phenanthrene and pyrene over the experimental period. However, the accumulation of PAHs, namely phenanthrene, fluoranthene and pyrene, were observed using prototype 1. The results showed that prototype 2, consisting of a combination of Bacillus cereus and Bacillus subtilis strains, was more effective in the biodegradation of PAHs and intermediate products. Furthermore, the bio-augmented system dosed with prototype 2 showed an improvement in the overall degradation (10–50%) of PAHs, naphthalene, phenanthrene and pyrene, over the un-augmented control system. The following study demonstrates the potential of using Bacillus spp. in a bioremediation solution for sites contaminated with PAHs and informs the use of biological additives for large-scale environmental remediation. Full article
(This article belongs to the Special Issue Microbial Bioremediation of Environmental Pollution)
Show Figures

Figure 1

17 pages, 2845 KiB  
Article
Treatment of Bio-Treated Coking Wastewater by Catalytic Ozonation with Semi-Batch and Continuous Flow Reactors
by Can He, Jianbing Wang, Heng Xu, Xiangyu Ji, Weiyi Wang and Xieyang Xu
Water 2020, 12(9), 2532; https://doi.org/10.3390/w12092532 - 10 Sep 2020
Cited by 4 | Viewed by 3360
Abstract
In this work, the treatment of bio-treated coking wastewater (BCW) by catalytic ozonation was conducted in semi-batch and continuous flow reactors. The kinetics of chemical oxygen demand (COD) removal were analyzed using BCWs from five coking plants. An integral reactor with catalytic ozonation [...] Read more.
In this work, the treatment of bio-treated coking wastewater (BCW) by catalytic ozonation was conducted in semi-batch and continuous flow reactors. The kinetics of chemical oxygen demand (COD) removal were analyzed using BCWs from five coking plants. An integral reactor with catalytic ozonation stacked by ozone absorption (IR) was developed, and its efficiency was studied. The catalyst of MnxCe1-xO2/γ-Al2O3 was efficient in the catalytic ozonation process for the treatment of various BCWs. The chemical oxygen demand (COD) removal efficiencies after 120 min reaction were 64–74%. The overall apparent reaction rate constants were 0.0101–0.0117 min−1, which has no obvious relationship with the initial COD of BCW and pre-treatment biological process. The IR demonstrated the highest efficiency due to the enhancement of mass transfer and the utilization efficiency of ozone. Bypass internal circulation can further improve the reactor efficiency. The optimal results were obtained with the ozone absorption section accounting for 19% of the valid water depth in the reactor and 250% of circulation flow ratio. The long-term and full-scale application of the novel reactor in a continuous mode indicated stable removal of COD and polycyclic aromatic hydrocarbons (PAHs). The results showed that the system of IR is a promising reactor type for tertiary treatment of coking wastewater by catalytic ozonation. Full article
(This article belongs to the Special Issue AOP Processes for Organics Removal in Water and Wastewater)
Show Figures

Figure 1

Back to TopTop