Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = P84 co-polyimide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5737 KB  
Article
Advanced Optimization of Optical Carbon Dioxide Sensor Through Sensitivity Enhancement in Anodic Aluminum Oxide Substrate
by Manna Septriani Simanjuntak, Rispandi and Cheng-Shane Chu
Polymers 2025, 17(11), 1460; https://doi.org/10.3390/polym17111460 - 24 May 2025
Cited by 1 | Viewed by 957
Abstract
The current research developed an optical carbon dioxide (CO2) sensor using anodized aluminum oxide (AAO) as the substrate. We developed an optical carbon dioxide (CO2) sensor utilizing CdSe/ZnS quantum dots (QDs) as the fluorescent dye and Phenol Red as [...] Read more.
The current research developed an optical carbon dioxide (CO2) sensor using anodized aluminum oxide (AAO) as the substrate. We developed an optical carbon dioxide (CO2) sensor utilizing CdSe/ZnS quantum dots (QDs) as the fluorescent dye and Phenol Red as the pH indicator. The QDs acted as the CO2-responsive fluorophore and were embedded in a polyimide butyl methacrylate (polyIBM) matrix. This sensing solution was applied to an anodized aluminum oxide (AAO) substrate, which provided a porous and stable platform for sensor fabrication. Photoluminescence measurements were conducted using the coated AAO substrate, with excitation from a 405 nm LED light source. The sensor exhibited red fluorescence emission at 570 nm and could detect CO2 concentrations in the linear range of 0–100%. Experimental results showed that fluorescence intensity increased with CO2 concentration, achieving a sensitivity of 211. A wavelength shift of 0.1657 nm/% was observed, indicating strong interactions among CO2 molecules, Phenol Red, and the QDs within the AAO matrix. The sensor demonstrated a response time of 55 s and a recovery time of 120 s. These results confirm the effectiveness of this optical sensing approach in minimizing fluctuations from the excitation light source and highlight the potential of the AAO-supported QDs and Phenol Red composite as a reliable CO2 sensing material. This advancement holds promise for applications in both medical and industrial fields. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

22 pages, 5202 KB  
Article
Preparation, Thermal Stability, and Preliminary Gas Separation Performance of Furan-Based Bio-Polyimide Films
by Wei Jiao, Jie Zhou, Qinying Gu, Zijun Liu, Jiashu Pan, Jiangchun Qin, Yiyi Zhu, Dengbang Jiang and Jiayang Hu
Polymers 2025, 17(10), 1362; https://doi.org/10.3390/polym17101362 - 16 May 2025
Cited by 2 | Viewed by 1531
Abstract
The need for renewable alternatives to petroleum-based polymers is growing in response to environmental concerns and resource depletion. Polyimides (PIs), which are traditionally synthesized from petroleum-derived monomers, raise sustainability issues. In this work, renewable 2,5-furandicarboxylic acid (FDCA) was employed as a sustainable feedstock [...] Read more.
The need for renewable alternatives to petroleum-based polymers is growing in response to environmental concerns and resource depletion. Polyimides (PIs), which are traditionally synthesized from petroleum-derived monomers, raise sustainability issues. In this work, renewable 2,5-furandicarboxylic acid (FDCA) was employed as a sustainable feedstock to synthesize a bio-based diamine monomer, N,N′-bis(4-aminophenyl)furan-2,5-dicarboxamide (FPA). Subsequently, FPA was polymerized with various aromatic dianhydrides through thermal imidization, yielding four distinct bio-based polyimide (FPA-PI) films. The resulting films exhibited exceptional thermal stability, with 5% weight loss temperatures exceeding 425 °C and char yields ranging from 54% to 60%. Mechanical characterization revealed high elastic moduli (2.14–3.20 GPa), moderate tensile strengths (50–99 MPa), and favorable aging resistance. Gas permeation tests demonstrated promising CO2/N2 separation performance, with FPA-DODDA achieving superior CO2/N2 selectivity (27.721) compared to commercial films such as Matrimid®, polysulfone, and polycarbonate, while FPA-BPFLDA exhibited enhanced CO2 permeability (P(CO2) = 2.526 Barrer), surpassing that of Torlon®. The CO2/N2 separation performance of these FPA-PI films is governed synergistically by size-sieving effects and solution-diffusion mechanisms. This work not only introduces a novel synthetic route for bio-based polymers but also highlights the potential of replacing conventional petroleum-based materials with renewable alternatives in high-temperature and gas separation applications, thereby advancing environmental sustainability. Full article
Show Figures

Figure 1

15 pages, 2114 KB  
Article
Laser-Induced Graphene Electrodes for Flexible pH Sensors
by Giulia Massaglia, Giacomo Spisni, Tommaso Serra and Marzia Quaglio
Nanomaterials 2024, 14(24), 2008; https://doi.org/10.3390/nano14242008 - 14 Dec 2024
Cited by 4 | Viewed by 2682
Abstract
In the growing field of personalized medicine, non-invasive wearable devices and sensors are valuable diagnostic tools for the real-time monitoring of physiological and biokinetic signals. Among all the possible multiple (bio)-entities, pH is important in defining health-related biological information, since its variations or [...] Read more.
In the growing field of personalized medicine, non-invasive wearable devices and sensors are valuable diagnostic tools for the real-time monitoring of physiological and biokinetic signals. Among all the possible multiple (bio)-entities, pH is important in defining health-related biological information, since its variations or alterations can be considered the cause or the effect of disease and disfunction within a biological system. In this work, an innovative (bio)-electrochemical flexible pH sensor was proposed by realizing three electrodes (working, reference, and counter) directly on a polyimide (Kapton) sheet through the implementation of CO2 laser writing, which locally converts the polymeric sheet into a laser-induced graphene material (LIG electrodes), preserving inherent mechanical flexibility of Kapton. A uniform distribution of nanostructured PEDOT:PSS was deposited via ultrasonic spray coating onto an LIG working electrode as the active material for pH sensing. With a pH-sensitive PEDOT coating, this flexible sensor showed good sensitivity defined through a linear Nernstian slope of (75.6 ± 9.1) mV/pH, across a pH range from 1 to 7. We demonstrated the capability to use this flexible pH sensor during dynamic experiments, and thus concluded that this device was suitable to guarantee an immediate response and good repeatability by measuring the same OCP values in correspondence with the same pH applied. Full article
Show Figures

Figure 1

14 pages, 9812 KB  
Article
One-Step Fabrication of Composite Hydrophobic Electrically Heated Graphene Surface
by Mian Zhong, Shichen Li, Hongyun Fan, Huazhong Zhang, Yong Jiang, Jinling Luo and Liang Yang
Coatings 2024, 14(8), 1052; https://doi.org/10.3390/coatings14081052 - 17 Aug 2024
Viewed by 1759
Abstract
Ice accumulation poses considerable challenges in transportation, notably in the domain of general aviation. The present study combines the strengths and limitations of conventional aircraft deicing techniques with the emerging trend toward all-electric aircraft. This study aims to utilize laser-induced graphene (LIG) technology [...] Read more.
Ice accumulation poses considerable challenges in transportation, notably in the domain of general aviation. The present study combines the strengths and limitations of conventional aircraft deicing techniques with the emerging trend toward all-electric aircraft. This study aims to utilize laser-induced graphene (LIG) technology to create a multifunctional surface, seamlessly integrating hydrophobic properties with efficient electrical heating to mitigate surface icing effectively. We investigated the utilization of a 10.6 μm CO2 laser for direct writing on polyimide (PI), a widely used insulating encapsulation material. From the thermomechanical perspective, our initial analysis using COMSOL Multiphysics software (V5.6) revealed that when the laser power P exceeds 5 W, the PI substrate experiences ablative damage. The experimental results show that when P ≤ 5 W, an increase in power has a positive impact on the quality, surface porosity, roughness reduction, line-spacing reduction, and water contact-angle enhancement of the graphene. Conversely, when P > 5 W, higher power negatively affects both the substrate and the graphene structure by inducing excessive ablation. However, it influences the graphene line height positively and is consistent with overall experimental–simulation congruence. Furthermore, the incorporation of high-quality graphene resulted in a surface that exhibited higher contact angles (CA > 120°), lower energy consumption, and higher heating efficiency compared to the use of traditional electrically heated materials for anti-icing applications. The potential applications of this one-step fabrication method extend across various industries, particularly aviation, marine engineering, and other ice-prone domains. Moreover, the method has extensive prospects for addressing pivotal challenges associated with ice formation and serves as an innovative and efficient anti-icing technology. Full article
Show Figures

Figure 1

12 pages, 3920 KB  
Article
Recovery of Metal Ions (Cd2+, Co2+, and Ni2+) from Nitrate and Sulfate on Laser-Induced Graphene Film Using Applied Voltage and Its Application
by Xiu-man Wang, Tong Su and Yujun Chai
Materials 2024, 17(12), 2965; https://doi.org/10.3390/ma17122965 - 17 Jun 2024
Cited by 1 | Viewed by 1409
Abstract
The urgent removal of Cd, Co, and Ni from nitrate and sulfate is essential to mitigate the potential risk of chemical pollution from large volumes of industrial wastewater. In this study, these metal ions were rapidly recovered through applying voltage on nitrate and [...] Read more.
The urgent removal of Cd, Co, and Ni from nitrate and sulfate is essential to mitigate the potential risk of chemical pollution from large volumes of industrial wastewater. In this study, these metal ions were rapidly recovered through applying voltage on nitrate and sulfate, utilizing laser-induced graphene/polyimide (LIG/PI) film as the electrode. Following the application of external voltage, both the pH value and conductivity of the solution undergo changes. Compared to Co2+ and Ni2+, Cd2+ exhibits a lower standard electrode potential and stronger reducibility. Consequently, in both nitrate and sulfate solutions, the reaction sequence follows the order of Cd2+ > Co2+ > Ni2+, with the corresponding electrode adsorption quantities in the order of Cd2+ > Co2+ ~ Ni2+. Additionally, using the recovered Co(OH)2 as the raw material, a LiCoO2 composite was prepared. The assembled battery with this composite exhibited a specific capacity of 122.8 mAh g−1, meeting practical application requirements. This research has significance for fostering green development. Full article
(This article belongs to the Special Issue Electrochemical Material Science and Electrode Processes)
Show Figures

Figure 1

17 pages, 4997 KB  
Article
Study on the Application of Fluorinated Polyimide in the Acidic Corrosion Protection of 3-nitro-1,2,4-trizole-5-one (NTO)-Based Explosive Formulations
by Huanmin Liu, Chongchong She, Jiaming Gao and Kun Chen
Polymers 2024, 16(12), 1624; https://doi.org/10.3390/polym16121624 - 7 Jun 2024
Cited by 1 | Viewed by 1587
Abstract
3-nitro-1,2,4-triazol-5-one (NTO) has been widely used as a kind of insensitive single-compound explosive owing to its excellent balance between safety and explosive energy. To reduce its possible acid corrosion and extend its application to insensitive ammunition, acid protection research on NTO-based explosives is [...] Read more.
3-nitro-1,2,4-triazol-5-one (NTO) has been widely used as a kind of insensitive single-compound explosive owing to its excellent balance between safety and explosive energy. To reduce its possible acid corrosion and extend its application to insensitive ammunition, acid protection research on NTO-based explosives is significant. Traditionally, the acid protection effect was evaluated by metal corrosion, which is time-consuming and qualitative. An efficient and quantitative method is desirable for evaluating the acid protection effect and exploring novel protection materials. Herein, a polyimide of 4,4’-(hexafluoroisopropene)diphthalic anhydride (6FDA)/2,2-bis(trifluoromethyl)-4,4-diaminobiphenyl (TFMB) was synthesized by replacing the 4,4’-diaminodiphenyl ether (ODA) monomer with a TFMB monomer to act as an acid-protective coating material for NTO-based explosives. Compared with three other coating materials, polyvinylidene fluoride (PVDF), polyetherimide (PEI), and copolyimide (P84), the fluorinated polyimide exhibits the best acid protection effect. Moreover, a new method was constructed to obtain the pH time-dependent curve in order to evaluate efficiently the acid protection effect of the polymer materials. By the virtue of molecular dynamic simulation (Materials Studio 2023), the interfacial effects of the coating materials with NTO-based explosives were obtained. The study provides an interpretation of the acid protection effect on the molecular level, suggesting that the higher content of fluorine atoms is beneficial for stabilizing the active hydrogen atom of the NTO by forming intermolecular hydrogen bonds. Full article
(This article belongs to the Special Issue Application of Novel Polymer Coatings)
Show Figures

Figure 1

16 pages, 8106 KB  
Article
Laser-Induced Nitrogen-Doped Graphene Composite Iron–Cobalt Hydroxide for Methylene Blue Degradation via Electrocatalytic Activation of Peroxymonosulfate
by Liqin Chen, Jianjun Liao, Chen Li, Yandong Xu, Chengjun Ge, Wen Xu, Xiong He and Wenyu Liu
Catalysts 2023, 13(6), 922; https://doi.org/10.3390/catal13060922 - 23 May 2023
Cited by 4 | Viewed by 2427
Abstract
With the acceleration of industrialization, the removal of refractory organic dyes from water and how to promote its practical application remains a challenge. Herein, we synthesized an FeCo-LDH/LI-NDG composite electrode material by a simple laser-induced technique on polyimide films, which could electrocatalytically activate [...] Read more.
With the acceleration of industrialization, the removal of refractory organic dyes from water and how to promote its practical application remains a challenge. Herein, we synthesized an FeCo-LDH/LI-NDG composite electrode material by a simple laser-induced technique on polyimide films, which could electrocatalytically activate peroxymonosulfate (PMS) to completely degrade MB in about 6 min. The reaction rate constant (kobs) was 0.461 min−1. It was faster than most of the currently reported electrocatalysts. The reaction system demonstrated good interference resistance and catalytic effectiveness in the pH range of 3 to 9. According to the chemical quenching and electron paramagnetic resonance (EPR) experiments, the non-radical pathway of 1O2 and the radical pathways of SO4·−, ·OH and O2·− were involved in the reaction synergistically, with 1O2 playing the dominant role. 1O2 was produced through the dual pathway of PMS electron loss at the anode and O2·− intermediate transformation at the cathode. The two activation methods of electro-activation and catalytic activation of PMS had synergistic effects to achieve high efficiency in the whole process of production, reaction and recovery, providing new ideas to advance practical applications. Full article
Show Figures

Figure 1

9 pages, 2396 KB  
Communication
Facile Preparation of Loose P84 Copolyimide/GO Composite Membrane with Excellent Selectivity and Solvent Resistance
by Runlin Han, Kui Wu and Lingfeng Xu
Polymers 2022, 14(7), 1353; https://doi.org/10.3390/polym14071353 - 27 Mar 2022
Cited by 11 | Viewed by 3374
Abstract
In this study, multilayer graphene oxide (GO) was used to prepare the functional layer of polyimide/GO composite membrane with polyimide (P84) used as the supporting layer. Chitosan added in the functional layer was utilized to adjust the selectivity of the composite membrane. The [...] Read more.
In this study, multilayer graphene oxide (GO) was used to prepare the functional layer of polyimide/GO composite membrane with polyimide (P84) used as the supporting layer. Chitosan added in the functional layer was utilized to adjust the selectivity of the composite membrane. The effects of GO and chitosan contents on membrane morphology and separation performance were investigated in detail. The composite membrane showed high rejection to Congo red and Methyl orange with high flux but low rejection to Na2SO4 and MgCl2 at 0.2 MPa and ambient temperature. The membrane exhibited excellent solvent resistance in N,N-dimethylacetamide (DMAc) after being crosslinked with 0.5 wt.% triethylene tetramine. The result means that a highly selective and solvent-resistant P84/GO composite membrane was prepared with the facile filtration preparation method. Full article
(This article belongs to the Special Issue Advances of Polymeric Membranes)
Show Figures

Figure 1

13 pages, 3243 KB  
Article
P84/ZCC Hollow Fiber Mixed Matrix Membrane with PDMS Coating to Enhance Air Separation Performance
by Nurul Widiastuti, Triyanda Gunawan, Hamzah Fansuri, Wan Norharyati Wan Salleh, Ahmad Fauzi Ismail and Norazlianie Sazali
Membranes 2020, 10(10), 267; https://doi.org/10.3390/membranes10100267 - 28 Sep 2020
Cited by 30 | Viewed by 4844
Abstract
This research introduces zeolite carbon composite (ZCC) as a new filler on polymeric membranes based on the BTDA-TDI/MDI (P84) co-polyimide for the air separation process. The separation performance was further improved by a polydimethylsiloxane (PDMS) coating to cover up the surface defect. The [...] Read more.
This research introduces zeolite carbon composite (ZCC) as a new filler on polymeric membranes based on the BTDA-TDI/MDI (P84) co-polyimide for the air separation process. The separation performance was further improved by a polydimethylsiloxane (PDMS) coating to cover up the surface defect. The incorporation of 1 wt% ZCC into P84 co-polyimide matrix enhanced the O2 permeability from 7.12 to 18.90 Barrer (2.65 times) and the O2/N2 selectivity from 4.11 to 4.92 Barrer (19.71% improvement). The PDMS coating on the membrane further improved the O2/N2 selectivity by up to 60%. The results showed that the incorporation of ZCC and PDMS coating onto the P84 co-polyimide membrane was able to increase the overall air separation performance. Full article
Show Figures

Figure 1

17 pages, 2941 KB  
Article
Synthesis and Performance of 6FDA-Based Polyimide-Ionenes and Composites with Ionic Liquids as Gas Separation Membranes
by Kathryn E. O’Harra, Irshad Kammakakam, Emily M. Devriese, Danielle M. Noll, Jason E. Bara and Enrique M. Jackson
Membranes 2019, 9(7), 79; https://doi.org/10.3390/membranes9070079 - 3 Jul 2019
Cited by 47 | Viewed by 9115
Abstract
Three new isomeric 6FDA-based polyimide-ionenes, with imidazolium moieties and varying regiochemistry (para-, meta-, and ortho- connectivity), and composites with three different ionic liquids (ILs) have been developed as gas separation membranes. The structural-property relationships and gas separation behaviors of the newly developed [...] Read more.
Three new isomeric 6FDA-based polyimide-ionenes, with imidazolium moieties and varying regiochemistry (para-, meta-, and ortho- connectivity), and composites with three different ionic liquids (ILs) have been developed as gas separation membranes. The structural-property relationships and gas separation behaviors of the newly developed 6FDA polyimide-ionene + IL composites have been extensively studied. All the 6FDA-based polyimide-ionenes exhibited good compatibility with the ILs and produced homogeneous hybrid membranes with the high thermal stability of ~380 °C. Particularly, [6FDA I4A pXy][Tf2N] ionene + IL hybrids having [C4mim][Tf2N] and [Bnmim][Tf2N] ILs offered mechanically stable matrixes with high CO2 affinity. The permeability of CO2 was increased by factors of 2 and 3 for C4mim and Bnmim hybrids (2.15 to 6.32 barrers), respectively, compared to the neat [6FDA I4A pXy][Tf2N] without sacrificing their permselectivity for CO2/CH4 and CO2/N2 gas pairs. Full article
Show Figures

Graphical abstract

17 pages, 6410 KB  
Article
Colorless and Transparent Copolyimides and Their Nanocomposites: Thermo-Optical Properties, Morphologies, and Gas Permeabilities
by Hyeon Il Shin, Young-Je Kwark and Jin-Hae Chang
Polymers 2019, 11(4), 585; https://doi.org/10.3390/polym11040585 - 1 Apr 2019
Cited by 10 | Viewed by 3538
Abstract
A series of linear aromatic copolyimides (Co-PIs) were synthesized by reacting 4,4′-biphthalic anhydride (BPA) with various molar contents of 2,2′-bis(trifluoromethyl)benzidine (TFB) and p-xylylenediamine (p-XDA) in N,N′-dimethylacetamide (DMAc). Co-PI films were fabricated by solution casting and thermal imidization [...] Read more.
A series of linear aromatic copolyimides (Co-PIs) were synthesized by reacting 4,4′-biphthalic anhydride (BPA) with various molar contents of 2,2′-bis(trifluoromethyl)benzidine (TFB) and p-xylylenediamine (p-XDA) in N,N′-dimethylacetamide (DMAc). Co-PI films were fabricated by solution casting and thermal imidization with poly(amic acid) (PAA) on glass plates. The thermo-optical properties and gas permeabilities of Co-PI films composed of various molar ratios of p-XDA (0.2–1.0 relative to BPA) were investigated. Thermal properties were observed to deteriorate with increasing p-XDA concentration. However, oxygen-transmission rates (O2TRs) and optical transparencies improved with increasing p-XDA concentration. Co-PI hybrids with a 1:0.2:0.8 molar ratio of BPA:TFB:p-XDA and organically modified hectorite (STN) were prepared by the in situ intercalation method. The morphologies and the thermo-optical and gas permeation properties of the hybrids were examined as functions of STN loading (5–50 wt %). XRD and TEM revealed substantial increases in clay particle agglomeration in the Co-PI hybrid films as the clay loading was increased from 5 to 50 wt %. The coefficient of thermal expansion (CTE) and the O2TR of a Co-PI hybrid film were observed to improve with increasing STN concentration; however, its optical transparency decreased gradually with increasing STN concentration. Full article
(This article belongs to the Special Issue Advanced Engineering Plastics)
Show Figures

Graphical abstract

18 pages, 11126 KB  
Article
Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation
by Sara Escorihuela, Lucía Valero, Alberto Tena, Sergey Shishatskiy, Sonia Escolástico, Torsten Brinkmann and Jose Manuel Serra
Membranes 2018, 8(4), 128; https://doi.org/10.3390/membranes8040128 - 9 Dec 2018
Cited by 16 | Viewed by 6415
Abstract
Three polyimides and six inorganic fillers in a form of nanometer-sized particles were studied as thick film solution cast mixed matrix membranes (MMMs) for the transport of CO2, CH4, and H2O. Gas transport properties and electron microscopy [...] Read more.
Three polyimides and six inorganic fillers in a form of nanometer-sized particles were studied as thick film solution cast mixed matrix membranes (MMMs) for the transport of CO2, CH4, and H2O. Gas transport properties and electron microscopy images indicate good polymer-filler compatibility for all membranes. The only filler type thatdemonstrated good distribution throughout the membrane thickness at 10 wt.% loading was BaCe0.2Zr0.7Y0.1O3 (BCZY). The influence of this filler on MMM gas transport properties was studied in detail for 6FDA-6FpDA in a filler content range from one to 20 wt.% and for Matrimid® and P84® at 10 wt.% loading. The most promising result was obtained for Matrimid®—10 wt.% BCZY MMM, which showed improvement in CO2 and H2O permeabilities accompanied by increased CO2/CH4 selectivity and high water selective membrane at elevated temperatures without H2O/permanent gas selectivity loss. Full article
(This article belongs to the Special Issue Gas Transport in Glassy Polymers)
Show Figures

Figure 1

12 pages, 2114 KB  
Article
Impact of Endometallofullerene on P84 Copolyimide Transport and Thermomechanical Properties
by Galina Polotskaya, Maia Putintseva, Alexandra Pulyalina, Iosif Gofman and Alexander Toikka
Polymers 2018, 10(10), 1108; https://doi.org/10.3390/polym10101108 - 7 Oct 2018
Cited by 3 | Viewed by 3624
Abstract
Novel polymer composite materials, including unique nanoparticles, contribute to the progress of modern technologies. In this work, the endohedral fullerene C60 with incapsulated iron atom (endometallofullerene Fe@C60) is used for modification of P84 copolyimide. The impact of 0.1, 0.5, and [...] Read more.
Novel polymer composite materials, including unique nanoparticles, contribute to the progress of modern technologies. In this work, the endohedral fullerene C60 with incapsulated iron atom (endometallofullerene Fe@C60) is used for modification of P84 copolyimide. The impact of 0.1, 0.5, and 1 wt % endometallofullerene on the structure and physicochemical properties of polymer films is studied through scanning electron microscopy, thermogravimetric analysis, and thermomechanical tests. Transport properties are estimated through sorption and pervaporation techniques toward methanol and methyl acetate mixture. The inclusion of endometallofullerene into the copolyimide matrix improves membrane permeability and selectivity in the separation of methanol—methyl acetate mixtures. The maximal effect is achieved with a composite containing 0.5 wt % Fe@C60. The developed composites are effective for energy and resource saving purification of methyl acetate by pervaporation. Full article
(This article belongs to the Special Issue Polymers for Modern and Advanced Engineering Applications)
Show Figures

Graphical abstract

12 pages, 2671 KB  
Article
Improved Hydrogen Separation Using Hybrid Membrane Composed of Nanodiamonds and P84 Copolyimide
by Alexandra Pulyalina, Galina Polotskaya, Valeriia Rostovtseva, Zbynek Pientka and Alexander Toikka
Polymers 2018, 10(8), 828; https://doi.org/10.3390/polym10080828 - 27 Jul 2018
Cited by 27 | Viewed by 7230
Abstract
Membrane gas separation is a prospective technology for hydrogen separation from various refinery and petrochemical process streams. To improve efficiency of gas separation, a novel hybrid membrane consisting of nanodiamonds and P84 copolyimide is developed. The particularities of the hybrid membrane structure, physicochemical, [...] Read more.
Membrane gas separation is a prospective technology for hydrogen separation from various refinery and petrochemical process streams. To improve efficiency of gas separation, a novel hybrid membrane consisting of nanodiamonds and P84 copolyimide is developed. The particularities of the hybrid membrane structure, physicochemical, and gas transport properties were studied by comparison with that of pure P84 membrane. The gas permeability of H2, CO2, and CH4 through the hybrid membrane is lower than through the unmodified membrane, whereas ideal selectivity in separation of H2/CO2, H2/CH4, and CO2/CH4 gas pairs is higher for the hybrid membrane. Correlation analysis of diffusion and solubility coefficients confirms the reliability of the gas permeability results. The position of P84/ND membrane is among the most selective membranes on the Robeson diagram for H2/CH4 gas pair. Full article
Show Figures

Graphical abstract

17 pages, 4831 KB  
Article
Development of Honeycomb Methanation Catalyst and Its Application in Power to Gas Systems
by Philipp Biegger, Florian Kirchbacher, Ana Roza Medved, Martin Miltner, Markus Lehner and Michael Harasek
Energies 2018, 11(7), 1679; https://doi.org/10.3390/en11071679 - 27 Jun 2018
Cited by 25 | Viewed by 6548
Abstract
Fluctuating energy sources require enhanced energy storage demand, in order to ensure safe energy supply. Power to gas offers a promising pathway for energy storage in existing natural gas infrastructure, if valid regulations are met. To improve interaction between energy supply and storage, [...] Read more.
Fluctuating energy sources require enhanced energy storage demand, in order to ensure safe energy supply. Power to gas offers a promising pathway for energy storage in existing natural gas infrastructure, if valid regulations are met. To improve interaction between energy supply and storage, a flexible power to gas process is necessary. An innovative multibed methanation concept, based on ceramic honeycomb catalysts combined with polyimide membrane gas upgrading, is presented in this study. Cordierite monoliths are coated with γ-Al2O3 and catalytically active nickel, and used in a two-stage methanation process at different operation conditions (p = 6–14 bar, GHSV = 3000–6000 h−1). To fulfill the requirements of the Austrian natural gas network, the product gas must achieve a CH4 content of ≥96 vol %. Hence, CH4 rich gas from methanation is fed to the subsequent gas upgrading unit, to separate remaining H2 and CO2. In the present study, two different membrane modules were investigated. The results of methanation and gas separation clearly indicate the high potential of the presented process. At preferred operation conditions, target concentration of 96 vol % CH4 can be achieved. Full article
(This article belongs to the Special Issue Power-to-Gas Energy Storage Technologies)
Show Figures

Figure 1

Back to TopTop