Preparation, Thermal Stability, and Preliminary Gas Separation Performance of Furan-Based Bio-Polyimide Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of FDCDCl
2.3. Synthesis of FPN
2.4. Synthesis of FPA
2.5. Synthesis of Tetranitriles
2.6. Synthesis of Tetracarboxylic Acids and Dianhydrides
2.7. Preparation of FPA-PI Films
2.8. Characterization
3. Results and Discussion
3.1. Structural Characterization of FPA
3.2. Intrinsic Viscosity of FPA-PAAs and Solubility Testing of FPA-PIs
3.3. Morphological Characterization of FPA-PI Films
3.4. FT-IR Characterization of FPA-PI Films
3.5. XRD Characterization of FPA-PI Films
3.6. Thermal Property Characterization of FPA-PI Films
3.7. Mechanical Properties of FPA-PI Films
3.8. Evolution of Elastic Modulus and Elongation at Break in FPA-PI Films with Aging Time
3.9. CO2/N2 Gas Permeability Properties of FPA-PI Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Duan, Y.; Yun, H.; Chen, X.; Liu, J.; Lv, S.; Zhang, Y. Progress on the research and development of the biomass-based polyimide. Ind. Crops Prod. 2024, 220, 119239. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, S.; Yi, X.; Li, B.; Chen, S.; Liu, S.; Hu, T.; Chen, S. Preparation and Property of Bio-Polyimide/Halloysite Nanocomposite Based on 2,5-Furandicarboxylic Acid. Polymers 2021, 13, 4057. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.; Jiang, B.; Gauvin, R.M.; Thomas, C.M. 2,5-Furandicarboxylic Acid: An Intriguing Precursor for Monomer and Polymer Synthesis. Molecules 2022, 27, 4071. [Google Scholar] [CrossRef]
- Kashparova, V.P.; Chernysheva, D.V.; Klushin, V.A.; Andreeva, V.E.; Kravchenko, O.A.; Smirnova, N.V. Furan monomers and polymers from renewable plant biomass. Russ. Chem. Rev. 2021, 90, 750–784. [Google Scholar] [CrossRef]
- Su, Y.-K.; Shorta, G.N.; Miller, S.A. Renewable and water-degradable polyimide-esters from citric acid. Green Chem. 2023, 25, 6200–6206. [Google Scholar] [CrossRef]
- Sava, I.; Damaceanu, M.-D.; Constantin, C.-P.; Asandulesa, M.; Wolińska-Grabczyk, A.; Jankowski, A. Structure–promoted high performance properties of triphenylmethane-containing polyimides and copolyimides. Eur. Polym. J. 2018, 108, 554–569. [Google Scholar] [CrossRef]
- Liu, X.-J.; Zheng, M.-S.; Chen, G.; Dang, Z.-M.; Zha, J.-W. High-temperature polyimide dielectric materials for energy storage: Theory, design, preparation and properties. Energy Environ. Sci. 2022, 15, 56–81. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Li, S.; Zhang, X.; Wang, T.; Wang, Q. Fully Closed-Loop Recyclable Thermosetting Shape Memory Polyimide. ACS Sustain. Chem. Eng. 2020, 8, 18869–18878. [Google Scholar] [CrossRef]
- Mai, A.T.M.; Thakur, A.; Ton, N.N.T.; Nguyen, T.N.; Kaneko, T.; Taniike, T. Photodegradation of a semi-aromatic bio-derived polyimide. Polym. Degrad. Stab. 2021, 184, 109472. [Google Scholar] [CrossRef]
- Jiang, X.; Long, Y.; Chen, K.; Yu, Q.; Jiang, L.; Chi, Z.; Liu, S.; Xu, J.; Zhang, Y. Preparation, characterization, and bio-degradation studies of high-performance bio-based polyimides based on bicyclic diamines derived from citric acid. J. Mater. Chem. C 2023, 11, 1082–1094. [Google Scholar] [CrossRef]
- Lin, H.; Fan, H.; Yang, C.; Zhu, S.; Xie, T.; Xiang, C.; Yao, H.; Guan, S. Porous polyimide films with low dielectric constant prepared by integrated strategy containing construction of pore structure and crosslinking network engineering. Polymer 2025, 319, 128000. [Google Scholar] [CrossRef]
- Wang, Q.; Li, X.; Kan, M.; Gao, H.; Liu, S.; Ji, X.; Mu, H.; Mao, Z.; Yuan, Z. Lignin enhanced shape memory polyimide with superior mechanical property and performance. Chem. Eng. J. 2025, 507, 60374. [Google Scholar] [CrossRef]
- Tsurusaki, Y.; Sawada, R.; Liu, H.; Ando, S. Optical, Dielectric, and Thermal Properties of Bio-Based Polyimides Derived from An Isosorbide-Containing Diamine. Macromol. Rapid Commun. 2025, 46, 2401113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, L.; He, Y.; Luo, W.; Li, K.; Min, Y. Synthesis of Furan-Based Diamine and Its Application in the Preparation of Bio-Based Polyimide. Polymers 2023, 15, 1088. [Google Scholar] [CrossRef]
- Troiano, D.; Orsat, V.; Dumont, M.-J. Status of Biocatalysis in the Production of 2,5-Furandicarboxylic Acid. ACS Catal. 2020, 10, 9145–9169. [Google Scholar] [CrossRef]
- Ma, K.; Chen, G.; Wang, W.; Zhang, A.; Zhong, Y.; Zhang, Y.; Fang, X. Partially bio-based aromatic polyimides derived from 2,5-furandicarboxylic acid with high thermal and mechanical properties. J. Polym. Sci. A Polym. Chem. 2018, 56, 1058–1066. [Google Scholar] [CrossRef]
- Favvas, E.P.; Katsaros, F.K.; Papageorgiou, S.K.; Sapalidis, A.A.; Mitropoulos, A.C. A review of the latest development of polyimide based membranes for CO2 separations. React. Funct. Polym. 2017, 120, 104–130. [Google Scholar] [CrossRef]
- Hu, X.; Lee, W.H.; Zhao, J.; Bae, J.Y.; Kim, J.S.; Wang, Z.; Yan, J.; Zhuang, Y.; Lee, Y.M. Tröger’s Base (TB)-containing polyimide membranes derived from bio-based dianhydrides for gas separations. J. Membr. Sci. 2020, 610, 118255. [Google Scholar] [CrossRef]
- Chen, G.; Li, D.; Chen, L.; Lin, Z.; Li, W.; Zhao, B.; Zhao, Z.; Liu, J.; Sun, Y.; Pang, J.; et al. Innovative thermal crosslinked polyimide gas separation membrane with highly selective and resistance to physical aging base on phenyl ethynyl. Chem. Eng. J. 2024, 500, 156642. [Google Scholar] [CrossRef]
- Sanaeepur, H.; Amooghin, A.E.; Bandehali, S.; Moghadassi, A.; Matsuura, T.; Van der Bruggen, B. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering. Prog. Polym. Sci. 2019, 91, 80–125. [Google Scholar] [CrossRef]
- Huang, Y.; Li, K.; Zhang, Y.; Wang, G.; Ma, Y.; Jiao, L.; Shu, D.; Yang, S.; Ma, X.; Zhang, Q.; et al. Fine-tuning gas separation performance of copolymer polyimide by the regulation of local microstructure. J. Membr. Sci. 2025, 718, 123689. [Google Scholar] [CrossRef]
- Bei, P.; Liu, H.; Zhang, Y.; Gao, Y.; Cai, Z.; Chen, Y. Preparation and characterization of polyimide membranes modified by a task-specific ionic liquid based on Schiff base for CO2/N2 separation. Environ. Sci. Pollut. Res. 2021, 28, 738–753. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, B.; Wang, Z. Highly Selective Separation of CO2, CH4, and C2–C4 Hydrocarbons in Ultramicroporous Semicycloaliphatic Polyimides. ACS Appl. Mater. Interfaces 2018, 10, 26618–26627. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Song, J.; Bae, T.-H. CO2/N2 Separation Properties of Polyimide-Based Mixed-Matrix Membranes Comprising UiO-66 with Various Functionalities. Membranes 2020, 10, 154. [Google Scholar] [CrossRef]
- Suvannasara, P.; Tateyama, S.; Miyasato, A.; Matsumura, K.; Shimoda, T.; Ito, T.; Yamagata, Y.; Fujita, T.; Takaya, N.; Kaneko, T. Biobased Polyimides from 4-Aminocinnamic Acid Photodimer. Macromolecules 2014, 47, 1586–1593. [Google Scholar] [CrossRef]
- Michael, A.J. Biosynthesis of polyamines and polyamine-containing molecules. Biochem. J. 2016, 473, 2315–2329. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Chung, C.L.; Lee, M.L. Synthesis and characterization of soluble polyimides derived from 2′,5′-bis(3,4-dicarboxyphenoxy)-p-terphenyl dianhydride. Polym. Sci. A Polym. Chem. 2004, 42, 1008–1017. [Google Scholar] [CrossRef]
- Liaw, D.-J.; Liaw, B.-Y.; Hsu, P.-N.; Hwang, C.-Y. Synthesis and Characterization of New Highly Organosoluble Poly(ether imide)s Bearing a Noncoplanar 2,2′-Dimethyl-4,4′-biphenyl Unit and Kink Diphenylmethylene Linkage. Chem. Mater. 2001, 13, 1811–1816. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Lin, E.; Zong, L.; Jian, X. Synthesis and properties of phthalonitrile-terminated oligomeric poly(ether imide)s containing phthalazinone moiety. Polym. Degrad. Stab. 2012, 97, 460–468. [Google Scholar] [CrossRef]
- Terraza, C.A.; Ortiz, P.; Tagle, L.H.; Pérez, G.; Saldias, C.; Rodríguez-González, F.E.; Cabrera-Barjas, G.; Catalán, H.; Tun-didor-Camba, A.; Coll, D. Synthesis and Properties of Poly(imides) and Poly(imides)/Ionic Liquid Composites Bearing a Ben-zimidazole Moiety. Polymers 2019, 11, 759. [Google Scholar] [CrossRef]
- Bao, F.; Qiu, L.; Zou, B.; Lei, H.; Peng, W.; Cheng, S.Z.D.; Huang, M. Development of Fluorinated Colorless Polyimides of Restricted Dihedral Rotation toward Flexible Substrates with Thermal Robustness. Macromolecules 2024, 57, 3568–3579. [Google Scholar] [CrossRef]
- ASTM D3985-17; Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. ASTM International: West Conshohocken, PA, USA, 2017.
- Ohya, S.; Fujii, Y.; Yao, S. Creation of porous polyimide membrane by viscoelastic phase separation. Nihon Reoroji Gakk. 2007, 35, 93–98. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Q.; Shao, W.; Li, F.; Chen, H.; Pei, Y.; Wang, J. Soluble and cross-linkable polyimides from a vanillin-derived diamine: Preparation, post-polymerization and properties. Polym. Chem. 2023, 14, 4188–4198. [Google Scholar] [CrossRef]
- Lee, J.; Baek, S.; Kim, J.; Lee, S.; Kim, J.; Han, H. Highly Soluble Fluorinated Polyimides Synthesized with Hydrothermal Process towards Sustainable Green Technology. Polymers 2021, 13, 3824. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-R.; Moon, S.-Y.; Park, C.-Y.; Chang, B.-J.; Kim, J.-H. Solution-processable methyl-substituted semi-alicyclic homo- and co-polyimides and their gas permeation properties. Polymer 2018, 145, 95–100. [Google Scholar] [CrossRef]
- Soh, L.S.; Hong, S.U.; Liang, C.Z.; Yong, W.F. Green solvent-synthesized polyimide membranes for gas separation: Coupling Hansen solubility parameters and synthesis optimization. Chem. Eng. J. 2023, 478, 147451. [Google Scholar]
- Otárola-Sepúlveda, J.; Cea-Klapp, E.; Aravena, P.; Ormazábal-Latorre, S.; Canales, R.I.; Garrido, J.M.; Valerio, O. Assessment of Hansen solubility parameters in deep eutectic solvents for solubility predictions. J. Mol. Liq. 2023, 388, 122669. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, J.; Zhang, K.; Wu, Y.; Li, Y. Effect of co-solvent on the structure and dielectric properties of porous polyimide membranes. J. Phys. D Appl. Phys. 2018, 51, 215305. [Google Scholar] [CrossRef]
- Liao, R.; Guo, Y.; Yang, L.; Zhou, H.; Jin, W. Solvent-induced microstructure of polyimide membrane to enhance CO2/CH4 separation. J. Membr. Sci. 2023, 666, 121199. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, J.; Huang, H.; Liu, S.; Zhao, J. Facile synthesis of acyloxy-containing fluorene-based Cardo polyimides with high optical transparency, fluorescence and low dielectric constant. React. Funct. Polym. 2021, 16, 104979. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, H.; Gao, C.-F. The intrinsic relationship of the thermal stress intensity factor and the temperature difference at the crack surface. J. Therm. Stress. 2024, 47, 897–908. [Google Scholar] [CrossRef]
- Zhu, G.; Lao, H.; Feng, F.; Wang, M.; Fang, X.; Chen, G. Synthesis and characterization of poly(amide-imide)s with high Tg and low CTE derived from isomeric amide-containing diamines. Eur. Polym. J. 2022, 179, 111558. [Google Scholar] [CrossRef]
- Chen, C.-K.; Lin, Y.-C.; Miyane, S.; Ando, S.; Ueda, M.; Chen, W.-C. Thermally and Mechanically Stable Polyimides as Flexible Substrates for Organic Field-Effect Transistors. ACS Appl. Polym. Mater. 2020, 2, 3422–3432. [Google Scholar] [CrossRef]
- Ma, X.; Swaidan, R.; Belmabkhout, Y.; Zhu, Y.; Litwiller, E.; Jouiad, M.; Pinnau, I.; Han, Y. Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity. Macromolecules 2012, 45, 3841–3849. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Zhang, J.; Liang, Y.; Chi, H.; Xiao, G. Enhanced toughness and gas permeabilities of polyimide composites derived from polyimide matrix and flower-like polyimide microparticles. Polym. Compos. 2021, 42, 3870–3881. [Google Scholar] [CrossRef]
- Siracusa, C.; Quartinello, F.; Soccio, M.; Manfroni, M.; Lotti, N.; Dorigato, A.; Guebitz, G.M.; Pellis, A. On the Selective Enzymatic Recycling of Poly(pentamethylene 2,5-furanoate)/Poly(lactic acid) Blends and Multiblock Copolymers. ACS Sustain. Chem. Eng. 2023, 11, 9751–9760. [Google Scholar] [CrossRef] [PubMed]
- Bicerano, J. Prediction of Polymer Properties, 3rd ed.; Marcel Dekker Inc.: New York, NY, USA, 2002. [Google Scholar]
- Park, C.-Y.; Kim, E.-H.; Kim, J.H.; Lee, Y.M.; Kim, J.-H. Novel semi-alicyclic polyimide membranes: Synthesis, characterization, and gas separation properties. Polymer 2018, 151, 325–333. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Hung, D.-Y.; Liu, Y.-L. Is a Vitrimer with a High Glass Transition Temperature Available? A Case Study on Rigid Polyimides Cross-Linked with Dynamic Ester Bonds. Macromol. Rapid Commun. 2024, 45, 2400312. [Google Scholar] [CrossRef]
- Krishnan, P.S.G.; Veeramani, S. Effect of methyl group substitution in the diamine and copolymer composition on thermal degradation of copolyimides based on 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride. Polym. Degrad. Stab. 2003, 81, 225–232. [Google Scholar] [CrossRef]
- Yerzhankyzy, A.; Wang, Y.; Ghanem, B.S.; Puspasari, T.; Pinnau, I. Gas separation performance of solid-state in-situ thermally crosslinked 6FDA-based polyimides. J. Membr. Sci. 2022, 641, 119885. [Google Scholar] [CrossRef]
- Norton, G.A.; Devlin, S.L. Determining the modern carbon content of biobased products using radiocarbon analysis. Bioresour. Technol. 2006, 97, 2084–2090. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Zhu, T.; Xiong, L.; Liu, F.; Qi, H. Conversion of renewable vanillin into high performance polyimides via an asymmetric aromatic diamine derivation. Polym. Degrad. Stab. 2019, 167, 67–76. [Google Scholar] [CrossRef]
- Tang, A.; Chen, Z.; Nie, H.; Dong, J.; Zhao, X.; Li, X.; Xu, Q.; Zhang, Q. Polyimide gas separation membrane with an ultrahigh molecule sieving ability by interchain hydrogen-bonding and thermo-oxidative cross-linking networks. Sep. Purif. Technol. 2025, 364, 132333. [Google Scholar] [CrossRef]
- An, N.; Pochiraju, K.V.; Tandon, G.P. Accelerated Testing Methods for Oxidative Aging of Polymeric Composites. In Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; Proulx, T., Ed.; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: New York, NY, USA, 2011; Volume 3, pp. 29–35. [Google Scholar]
- Ruggles-Wrenn, M.B.; Broeckert, J.L. Effects of Prior Aging at 2888C in Air and in Argon Environments on Creep Response of PMR-15 Neat Resin. J. Appl. Polym. Sci. 2009, 111, 228–236. [Google Scholar] [CrossRef]
- Crochon, T.; Li, C.; Lévesque, M. Ontime-temperature-dependent viscoelastic behavior of an amorphous polyimide. Mech. Time-Depend. Mater. 2015, 19, 305–324. [Google Scholar] [CrossRef]
- Tin, P.S.; Chung, T.S.; Liu, Y.; Wang, R.; Liu, S.L.; Pramoda, K.P. Effects of cross-linking modification on gas separation performance of Matrimid membranes. J. Membr. Sci. 2003, 225, 77–90. [Google Scholar] [CrossRef]
- McHattie, J.S.; Koros, W.J.; Paul, D.R. Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings. Polymer 1991, 32, 840–850. [Google Scholar] [CrossRef]
- Muruganandam, N.; Koros, W.J.; Paul, D.R. Gas Sorption and Transport in Substituted Polycarbonates. J. Polym. Sci. Pol. Phys. 1987, 25, 1999–2026. [Google Scholar] [CrossRef]
- Kumbharkar, S.C.; Karadkar, P.B.; Kharul, U.K. Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture. J. Membr. Sci. 2006, 286, 161–169. [Google Scholar] [CrossRef]
- Sawada, R.; Ando, S. Colorless, Low Dielectric, and Optically Active Semialicyclic Polyimides Incorporating a Biobased Isosorbide Moiety in the Main Chain. Macromolecules 2022, 55, 6787–6800. [Google Scholar] [CrossRef]
- Pandey, P.; Chauhan, R.S. Membranes for gas separation. Prog. Polym. Sci. 2001, 26, 853–893. [Google Scholar] [CrossRef]
- McDonald, T.M.; D’Alessandro, D.M.; Krishna, R.; Long, J.R. Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic framework CuBTTri. Chem. Sci. 2011, 2, 2022–2028. [Google Scholar] [CrossRef]
- Kosuri, M.R.; Koros, W.J. Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide–imide polymer, for high-pressure CO2 separations. J. Membr. Sci. 2008, 320, 65–72. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Chung, T.S. Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J. Membr. Sci. 2009, 328, 174–185. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Wen, Q.; Tang, A.; Chen, C.; Liu, Y.; Xiao, C.; Tan, J.; Li, D. Impact of Backbone Amide Substitution at the Meta- and Pa-ra-Positions on the Gas Barrier Properties of Polyimide. Materials 2021, 14, 2097. [Google Scholar] [CrossRef]
FPA-PIs | [η] (dL·g−1) | ρ [g·cm−3] | NMP | DMF | DMAC | DMSO | DCM | CHCl3 | THF | Acetone |
---|---|---|---|---|---|---|---|---|---|---|
FPA-BPFLDA | 2.38 d | 1.298 | -- | -- | -- | -- | -- | -- | -- | -- |
FPA-DODDA | 0.60 d | 1.341 | -- | -- | -- | -- | -- | -- | -- | -- |
FPA-PMDA | 1.08 d | 1.390 | -- | -- | -- | -- | -- | -- | -- | -- |
FPA-ODPA | 0.93 d | 1.391 | -- | -- | -- | -- | -- | -- | -- | -- |
FPA-SDPDA | 0.28 e | 1.388 | X | X | X | X | X | X | X | X |
FPA-BPAFDA | 0.26 e | 1.420 | X | X | X | X | X | X | X | X |
FPA-BTDA | 0.49 e | 1.393 | X | X | X | X | X | X | X | X |
FPA-HQDA | 1.23 e | 1.366 | X | X | X | X | X | X | X | X |
FPA-PIs | Bio-C (%) a | Tg (°C) b | Td5% (°C) c | Td10% (°C) d | Char Yield (%) e |
---|---|---|---|---|---|
FPA-BPFLDA | 10.2 | 313 | 438 | 463 | 57.8 |
FPA-ODPA | 17.6 | N.F. | 463 | 484 | 59.6 |
FPA-DODDA | 13.0 | N.F. | 425 | 440 | 55.7 |
FPA-PMDA | 21.4 | N.F. | 475 | 504 | 54.8 |
FPA-PIs | EM (GPa) a | TS (MPa) b | EB (%) c |
---|---|---|---|
FPA-BPFLDA | 2.25 ± 0.13 | 79.03 ± 4.19 | 6.03 ± 0.36 |
FPA-ODPA | 2.61 ± 0.10 | 95.22 ± 4.11 | 7.94 ± 0.38 |
FPA-DODDA | 3.20 ± 0.15 | 99.43 ± 4.06 | 7.46 ± 0.23 |
FPA-PMDA | 2.14 ± 0.11 | 50.47 ± 1.80 | 4.90 ± 0.20 |
FPA-PIs | P(CO2) (Barrer) a | P(N2) (Barrer) b | α(CO2/N2) c |
---|---|---|---|
FPA-BPFLDA | 2.526 ± 0.167 | 0.470 ± 0.017 | 5.368 ± 0.167 |
FPA-ODPA | 0.242 ± 0.010 | 0.109 ± 0.004 | 2.215 ± 0.018 |
FPA-DODDA | 1.204 ± 0.065 | 0.043 ± 0.003 | 27.721 ± 0.953 |
FPA-PMDA | 0.282 ± 0.017 | 0.071 ± 0.004 | 3.963 ± 0.073 |
Matrimid® 5218 [59] | 6.5 | 0.25 | 25.6 |
Polysulfone [60] | 5.6 | 0.25 | 22.400 d |
Polycarbonate [61] | 6.0 | 0.289 | 20.761 d |
PBI-I [62] | 0.16 | 0.0048 | 33.333 d |
Torlon® [66] | 0.47 | 0.014 | 33.571 d |
P84 [67] | 1.37 | 0.050 | 27.400 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, W.; Zhou, J.; Gu, Q.; Liu, Z.; Pan, J.; Qin, J.; Zhu, Y.; Jiang, D.; Hu, J. Preparation, Thermal Stability, and Preliminary Gas Separation Performance of Furan-Based Bio-Polyimide Films. Polymers 2025, 17, 1362. https://doi.org/10.3390/polym17101362
Jiao W, Zhou J, Gu Q, Liu Z, Pan J, Qin J, Zhu Y, Jiang D, Hu J. Preparation, Thermal Stability, and Preliminary Gas Separation Performance of Furan-Based Bio-Polyimide Films. Polymers. 2025; 17(10):1362. https://doi.org/10.3390/polym17101362
Chicago/Turabian StyleJiao, Wei, Jie Zhou, Qinying Gu, Zijun Liu, Jiashu Pan, Jiangchun Qin, Yiyi Zhu, Dengbang Jiang, and Jiayang Hu. 2025. "Preparation, Thermal Stability, and Preliminary Gas Separation Performance of Furan-Based Bio-Polyimide Films" Polymers 17, no. 10: 1362. https://doi.org/10.3390/polym17101362
APA StyleJiao, W., Zhou, J., Gu, Q., Liu, Z., Pan, J., Qin, J., Zhu, Y., Jiang, D., & Hu, J. (2025). Preparation, Thermal Stability, and Preliminary Gas Separation Performance of Furan-Based Bio-Polyimide Films. Polymers, 17(10), 1362. https://doi.org/10.3390/polym17101362